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Abstract

This report describes the work done in the distributed Computational Science and Engineering (dCSE)
project aimed to extend functionality of the linear scaling ab initio Density Functional Theory code Con-
quest by adding spin polarisation and van der Waals functional described by works of Dion et al.[3] and
Roman-Perez et al.[15]. This work would allow Conquest to perform simulations on magnetic systems
and on bio-molecular systems in which van der Waals interactions are essencial. The implementations
has been successful.
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1 Introduction
There are various classes of important problems in biochemistry which rely quantum mechanical properties
of the biological systems dominate. Due the complexity of biomolecules and the importance of environment
(such as the presence of water), isolated quantum mechanical studies on a small part of the molecule may
not be sufficient in reproducing and understanding the key properties of the molecule. The ideal quantum
mechanical method would allow simulation of a large part of the biomolecule (or even the entire molecule)
inside an environment in a highly scalable manner on modern high performance computation platforms.
The method should also correctly model the systems which contain transition metal complexes and van dar
Waals interactions.

Conquest is a linear scaling Density Functional Theory (DFT) code which has demonstrated excellent
scaling for computation on large number of cores. The good scaling makes it an appealing platform for large
scale quantum mechanical studies on biomolecules. The aim of this dCSE project is to extend the infras-
tructure of Conquest to include spin polarisation, and to incorporate a first principle density functional
for van der Waals interactions[3].

This project aims to add the collinear form of spin polarisation into Conquest. This means there are
two spin states (↑ and ↓). Conquest was originally written for spin non-polarised calculations only, and the
data structures in the code reflect this. For this reason a significant portion of the code has to be updated to
accommodate the extra degrees of freedom introduced by spin. Never-the-less, linear scaling is generally not
effected by adding spin. This is because the spin implementation always uses the existing Conquest kernels
for distributing data and computation, so the underlining communication and computation mechanisms has
not been changed. Since the implementation of spin spreads through-out the code and involves some changes
to data structure while the van der Waals functional can be written within additional modules and uses spin
dependent quantities, it was decided that spin implementation should be done before the work on van der
Waals functional.

There are two flavours of spin polarised calculation implemented for this project:

1. Calculations with spin populations fixed to user given values through-out.

2. Calculations that start with spin populations set by the user, but then are allowed to change—while still
keeping the total electron number fixed—and self-adjust to give minimum energy. The final difference
of the spin populations will be the relaxed spin polarisation of the system.

In contrast to the implementation of spin polarisation, van der Waals functional can be implemented as
a relatively self-contained module. The implementation follows closely to the work done by Dion et al.[3]
and Roman-Perez et al.[15].

This report describes the work done for implementing the updates to Conquest mentioned above. Since
this work is oriented around extending features and functionality of the code, most resources has been
allocated to code development rather than profiling and optimisation. For work on spin since large parts of
the code has been updated, and most involve simply adding a loop in the calculation for the second spin
component. It would be impractical and tedious to include in this report all the changes made to the code.
I will therefore only give an account of the relatively important parts of the modification.

2 Implementing Spin Polarisation
Conquest before the project started only handles spin non-polarised calculations. This means that only
the matrices and grid data associated to one spin component are stored and calculated, and any extensive
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quantities are calculated with an additional factor of 2 knowing the contribution from spin up and down
components are identical. The aim of this dCSE project is to extend this to allow collinear1 spin polarisation
calculations, where physical quantities associated to each spin channels (↑ and ↓) are calculated and are
allowed to differ with the constraint that total number of electrons has to be conserved.

Conquest uses a set of optimised support functions as a basis-set to give matrix representations of the
various quantum mechanical operators. The support functions them-selves are generated by using linear
combination of a set of basis functions either in the form of psudo-atomic orbitals (PAOs) or localised blip
(B-spline) functions[2]. Each support function centers on a given atom and only basis functions within a
given range contributes to the support function. This ensures strict locality of the support functions and
hence making linear-ordering calculations possible. The coefficients of the linear combinations are then
optimised during the energy minimisation step to ensure the minimum energy is found with the given set of
basis functions.

Ideally for spin polarised calculations, in addition to separate matrices and data on grid for physical
quantities in each spin channel, one would also benefit from making the support functions them-selves spin
dependent. This offers more flexibility in optimising the basis coefficients and hence leads to more optimised
ground-state energies. However allowing the support functions to be spin dependent would mean rewriting
a significant portion of Conquest given virtually all subroutines and quantities in the code except the core
linear algebra, FFT and MPI communication kernels depend or operate on the support functions and their
derived quantities. Therefore within the given time-frame of the project, we have decided to use the existing
support functions in Conquest for both spin channels.

2.1 Changes To Data Structure
There are in general three types of data storage for physical quantities in Conquest:

• Matrices: These store the overlap of the support functions and matrix representations of the quantum
operators in a compressed (sparse) format and distributes them to processors with respect to the atomic
labels in rows. Conquest stores the matrices in a stack and refers to each matrix using an unique
integer tag.

• Functions-on-grid : These store the support functions them-selves and Kleinman-Bylander (K.B.) non
local pseudopotential projectors (including those linearly operated by a matrix), which are functions of
a given label (be it support function label or KB projector label) defined on every grid point. Conquest
distributes these functions according to the real-space grid point blocks, so that each processor gets a
subset of such functions (with values associated to all atomic and support labels) on a set of real-space
grid points (organised in blocks) it is in charge of. Again the data associated to the functions are
stored in a stack and there is an unique integer tag referring to each function. Note that the set of all
support functions is considered to be a single “function on grid”.

• Numbers-on-grid : These store the function of the form f(r) defined on the real-space or FFT grid. They
differ from “functions on grid” in that there is no other index dependencies other than that associated
to the grid point. These are stored as ordinary arrays of real numbers. Conquest distributes them
among the processors again according to the real-space grid point blocks.

For collinear spin polarised calculations the matrices are given as direct sums of its spin components:

M = M↑ ⊕M↓ ≡
(

M↑ 0

0 M↓

)
Hence the matrices have the properties: (α, β ∈ C)

(αA + βC)B =
(
(αA↑ + βC↑)B↑

)
⊕
(
(αA↓ + βC↓)B↓

)
The following global matrices in Conquest are spin dependent:

1This means the spins of the electrons in the system under study are aligned, so spin states can be either “up” or “down”.
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Matrix Conquest Variable Description
L matL auxiliary matrix, all indices contravariant
K matK density matrix, all indices contravariant
H matH Hamiltonian matrix, all indices covariant
LS matLS auxiliary matrix, second index covariant
SL matSL auxiliary matrix, first index covariant
Φ matphi derivative of electron no. w.r.t. auxiliary matrix
M12 matM12 part of derivative of energy w.r.t. support functions
M4 matM4 part of derivative of electron no. w.r.t. support functions

All of these matrices were originally implemented in Conquest as integer variables storing the tag to the
internal matrix stack. For spin polarised calculations, we need a second copy for the other spin component.
We also need to make sure that there will be no memory wastage when doing spin non-polarised calculations
and only one set of the above matrices are allocated and used. The easiest way to achieve this is to add a
global control variable nspin which can be either 1 for spin non-polarised calculations or 2 for spin polarised
calculations. Then the matrices in the above list (and all other similar matrices used as local variables
within subroutines) are redefined as allocatable integer arrays of dimension nspin. Hence once allocated and
initialised at the beginning of execution, matM(1) corresponds to M↑ and matM(2) corresponds to M↓.

Conquest was not consistent in the definition of the spin non-polarised matrices in its original imple-
mentation. For example, matL and matH were defined as L↑ and H↑ correspondingly, however matphi was
defined as 2Φ↑ =

∑
σ Φσ (σ denotes spin). To be consistent and avoid future confusion—that leads to

bugs, I modified this definition so that matM(1) always refers to the spin up component of the matrix M
irrespective to whether the calculation is spin polarised or not.

As we have discussed in section Implementing Spin Polarisation the overlap matrix S = Siαjβ =
〈φiα|φjβ〉—where φiα(r) are the support functions—is treated as spin independent.

Extensive quantities such as the energy and electron numbers are calculated as traces of spin dependent
matrices. The trace of any matrix M is simply the sum of the trace of its spin components:

trM = trM↑ + trM↓

To take into account that only one of the spin component is stored for spin non-polarised calculations, I
have introduced a factor spin_factor which is set to 1.0 for spin polarised calculations and 2.0 otherwise.
so that the above sum is performed in the code as follows:

value = zero
do spin = 1, nspin

value = value + spin_factor * trace(matM(spin))
end do

Conquest stores three functions-on-grid as global variables available through using functions_on_grid
module. They correspond to the support functions, the result of Hamiltonian matrix acting on the support
functions (H_on_support) and the pseudopotential functions. Only H_on_support should be spin dependent
as the Hamiltonian matrix is spin dependent. Therefore following the same method for matrices, I redefined
the integer variable H_on_support (which stores the tag referencing the functions-on-grid object in the
internal stack) as an array of dimension 2. Because of the way the functions on grid reference tags are
implemented, it would be difficult to allow the dimension of H_on_support to vary according to value of
nspin. However to save memory for non-spin polarised calculations, there will still only one functions-on-grid
object allocated in the stack for H_on_support and only H_on_support(1) references to the correct location
in the stack.

Spin dependent numbers-on-grid global quantities in Conquest are density, and potential, both are
redefined as allocatable real arrays of dimension (maxngrid, nspin). maxngrid stores the maximum number
of grid points on the node. Again to avoid confusion, density(1) always stores the electron density for the
spin up channel irrespective to whether the calculation is spin polarised or not. The original Conquest had
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a factor of 2 contained inside density so that it gives the total density. This has been redefined after the
spin implementations.

2.2 Order N : Spin Polarised Energy Minimisation
Under linear scaling scheme, Conquest finds the ground-state energy of a system by minimising band-
energy:

E = tr(HK) =
∑
σ

tr(HσKσ)

by varying the auxiliary matrices Lσ under the constraint on the conservation number of electrons. The
density matrix Kσ is defined in terms of the auxiliary and overlap matrices

Kσ = 3LσSLσ − 2LσSLσSLσ

The minimisation is an iterative process by working out a search direction based on the gradient of the
energy with respect to Lσ; propagate the auxiliary matrix along the search direction until a local minimum
is found; and a new search direction is worked out from there and repeat the process. At n+ 1-th step, the
auxiliary matrix (written as a direct sum) may be written as

Ln+1 = Ln + λnGn

For spin polarised calculations we treat the problem as a minimisation procedure on the direct sum of the
spin dependent matrices.

The search direction Gn = G↑n ⊕G↓n is calculated to be the direction opposite to the slope in energy
surface ∂E

∂Lσ and then corrected so that it remains on the tangent plane to the iso-electron-number surface.
The step λn is calculated by minimising E along Gn.

There are two choices for the search direction, which in turn define the type of problem we wish to
calculate.

1. The spin populations (i.e. total magnetisation) are fixed. In this case the search direction
in each spin channel is corrected so that the it stays on the tangent plane of the iso-electron-number
surface for the particular spin:

G↑n = − ∂E

∂L↑
+

(
∂E
∂L↑
· ∂N
∂L↑

)∥∥ ∂N
∂L↑

∥∥2 ∂N

∂L↑

G↓n = − ∂E

∂L↓
+

(
∂E
∂L↓
· ∂N
∂L↓

)∥∥ ∂N
∂L↓

∥∥2 ∂N

∂L↓

2. The spin populations are allowed to vary, but the total electron number N = N↑ + N↓ are
required to be fixed. In this case the search direction is corrected so that the direct sum G needs to
stay on the tangent plane ∂N

∂L of the iso-surface of the total electron number. Hence

G↑n = − ∂E

∂L↑
+

(
∂E
∂L ·

∂N
∂L

)∥∥∂N
∂L

∥∥2 ∂N

∂L↑

G↓n = − ∂E

∂L↓
+

(
∂E
∂L ·

∂N
∂L

)∥∥∂N
∂L

∥∥2 ∂N

∂L↓

where ∂E
∂L ·

∂N
∂L ≡

∂E
∂L↑
· ∂N
∂L↑

+ ∂E
∂L↓
· ∂N
∂L↓

and ∂N
∂L ·

∂N
∂L ≡

∂N
∂L↑
· ∂N
∂L↑

+ ∂N
∂L↓
· ∂N
∂L↓

.
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2 IMPLEMENTING SPIN POLARISATION

Note that in Conquest ∂N
∂L is named as Φ and stored in matphi. And the dot product A ·B between

matrices is defined as trace of their product tr(AB) and norm of a matrix is defined as the square root of
its own dot product ‖A‖ =

√
A ·A.

The difference in the definition of search direction is crucial for calculations where spin is allowed to vary,
because the constraint on total electron number means electron populations within each channel are allowed
to readjust, whereas the definition of G in the first case (fixed spin population) prohibits this.

Special attention should be paid to the “step-size” λn. While for spin polarised case it is possible to make
λn = λσn to be spin dependent, it is important to bare in mind that each minimisation step is should be a
linear propagation of the auxiliary matrix (direct sum of the spin components), and making the propagation
step spin dependent breaks this linearity.

2.2.1 Pulay Minimisation

To find the minimum band energy the procedure Ln+1 + λnGn is repeated until G becomes less than a
given tolerance. One can readily see that this procedure is identical to the linear mixing method used for
calculating self-consistent densities. This means we can employ the Pulay methods[6, 14] for making the
minimisation faster. Conquest implements this by regarding G as the residual.

The key to extending the implementation to spin polarised calculations is to understand that the minimi-
sation process sees the over all direct sum of the spin matrices as the minimisation variable, not its individual
spin components. Therefore the correct form to use for magnitude for the residual is given as ‖G‖, or for
more simplicity ‖G‖2 = tr(GG) =

∑
σ tr(G

σGσ).
Because the Pulay minimisation procedure concerns the direct sum matrix, there is no difference to

whether the spin population is fixed or not. The different constraints on electron number are included in
the definition of Gσ.

2.2.2 Constraint on Electron Numbers

While the definition of the search directions ensures the new auxiliary matrices stay on tangent plane of
the iso-electron number energy surfaces, this still only conserves the electron numbers up to the first order.
It was found that the accuracy and stability of ground-state energy calculations are highly dependent on
electron numbers being correct at each minimisation iteration step. Hence Conquest employs a further
step to correct L to give the correct number of electrons.

For spin polarised calculations things are slightly more complex. For the case of fixed spin populations, we
want to apply electron number corrections so that populations in each spin channels remain the same as those
at the beginning of the calculation. On the other hand for spin relaxation calculations, we would need to allow
the electron populations in each spin channels to vary while keeping the total electron number the same. The
spin non-polarised calculations are in effect the same as spin-fixed calculations with same populations in each
channel, and therefore it is easy to convert the existing electron number correction subroutine in Conquest
to work with both spin non-polarised and fixed polarisation cases. For spin relaxation calculations, a new
subroutine has to be written.

The basic idea behind the procedure for electron number correction is to find the correct step-size x along
a search direction so that

L′ = L + xΓ

gives the correct number of electrons. For spin-fixed or non-spin polarised case, this means we need to find
xσ for each spin channel σ (for spin non-polarised calculations we of course only need to correct electron
number for one spin channel as the other is assumed to be identical), so that

N(L′σ) = tr(3SL′σSL′σ)− tr(2SL′σSL′σSL′σ) = Nσ

where Nσ are the spin populations defined by user at initialisation. For spin relaxation calculations, we
should treat the electron correction process as an linear operator acting on the direct sum L, so that the
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step x should not be spin dependent. We need to find x so that∑
σ

N(L′σ) =
∑
σ

(
tr(3SL′σSL′σ)− tr(2SL′σSL′σSL′σ)

)
= N

where N is the total number of electrons in the system under calculation.
Since the energy minimisation step takes L slightly away from the iso-electron number surface, the search

direction thus should be perpendicular to that surface. This means

Γσ = S−1
∂Nσ

∂Lσ
S−1 ≡ S−1ΦσS−1

where Nσ = N(Lσ), and the inverse of overlap matrix appears because the support functions are non-
orthogonal. Note that because electron number is an extensive quantity and N(L) = N(L↑) + N(L↓) =
N↑ + N↓, ∂N

∂Lσ = ∂Nσ

∂Lσ so that the search direction is the same for both fixed spin and spin relaxation
calculations.

The step size x (or xσ for fixed spin or non-polarised case) is calculated by recognising that N(L + xΓ)
is a cubic polynomial of x, and x (or xσ) needs to be chosen so that N (or Nσ) is stationary—that is its
derivative with respect to x is zero.

The electron number correction procedure is done after every Pulay energy minimisation step to ensure
the electron numbers are correct through out minimisation process.

2.3 Order N : McWeeny Initialisation
For order N calculations, before entering the energy minimisation procedures, the auxiliary matrices are
first initialised to make sure its eigenvalues are in between 0 and 1. It is then passed through a McWeeny
iteration loop[1, 8] so that all of the eigenvalues of L are either 0 or 1. This ensures idempotency of the
density matrix, and hence conservation of electron number.

The McWeeny initialisation and iteration procedures used by Conquest is described by the works of
Palser and Manolopoulos[8], and extended to non-orthogonal basis sets (support functions) by Bowler[1].

2.3.1 Case for Fixed Spin Populations

To extend the procedure for spin polarised calculations, I noted again that the fixed spin case is equivalent
to spin non-polarised case, one only has to repeat the original procedures for the other spin channel. The
initial guess for the σ channel auxiliary matrix thus should be given as

Lσ0 =
λσ

N

(
µσS−1 − S−1HσS−1

)
+
Nσ
e

N
S−1

where N is the dimension of Lσ matrix, which equals to the total number of support functions available for
the calculation. Nσ

e is the fixed population for spin channel σ, and

λσ = min

(
Nσ
e

Hσ
max−µσ

,
N −Nσ

e

µσ −Hσ
min

)
where Hσ

max and Hσ
min are bounds to the maximum and minimum eigenvalues of the Hamiltonian component

in spin channel σ.
µσ takes values depending on the value of

µσ =


tr(SS−1HσS−1)

N +AHσ
max if Hσ

min < µσ < Hσ
max

tr(SS−1HσS−1)
N −AN

σ
e H

σ
min

N−Nσe
1− AN

N−Nσe

if Hσ
min < µσ < Hσ

max

A is the “error” which comes from the fact that S−1 is not exact for order N calculations: A = 1− SS−1

N .
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The McWeeny iteration step is given as:

Lσn+1 =

{
(1−2cσn)L

σ
n+(1+cσn)L

σ
nSL

σ
n−L

σ
nSL

σ
nSL

σ
n

1−cσn
if cσn ≤ 1

2
(1+cσn)L

σ
nSL

σ
n−L

σ
nSL

σ
nSL

σ
n

cσn
if cσn ≥ 1

2

where cσn, which should lie between [0, 1] is given by

cσn =
tr(LσnSLσn − LσnSLσnSLσn)

trLσn − LσnSLσn

2.3.2 Case for Spin Relaxation

If the spin population is allowed to vary, then we should do McWeeny initialisation and iteration on the
whole direct sum L = L↑ ⊕ L↓. In this case the initial guess for Lσ should be

Lσ0 =
λ

2N

(
µS−1 − S−1HσS−1

)
+
Ne
2N

S−1

where N is still the number of support functions, however because we are working with the whole direct
sum, the dimension of matrix doubles. Ne =

∑
σ N

σ
e now should be the total electron number in the cell.

λ should no longer be spin dependent:

λ = min

(
Ne

Hmax − µ
,
2N −Ne
µ−Hmin

)
where now Hmin = min(H↑min, H

↓
min) and Hmax = max(H↑max, H

↓
max).

µ is also spin independent, and should be given as

µ =


∑
σ tr(SS−1HσS−1)

2N +AHmax if Hmin < µ < Hmax∑
σ tr(SS−1HσS−1)

2N −ANeHmin
2N−Ne

1− 2AN
2N−Ne

if Hmin < µ < Hmax

Note that value of A should remain the same, as S extends to both spin components.
The McWeeny iteration step should be given as

Lσn+1 =

{
(1−2cn)Lσn+(1+cn)L

σ
nSL

σ
n−L

σ
nSL

σ
nSL

σ
n

1−cn if cn ≤ 1
2

(1+cσn)L
σ
nSL

σ
n−L

σ
nSL

σ
nSL

σ
n

cσn
if cn ≥ 1

2

where cn is given by

cn =

∑
σ tr(L

σ
nSLσn − LσnSLσnSLσn)∑

σ tr(L
σ
n − LσnSLσn)

2.4 Diagonalisation: Finding Fermi Energy
As well as the orderN methods described above, Conquest also implemented the standard orderN3 method
of calculating the ground-state energy from finding eigenvectors of the Hamiltonian matrix by diagonalisation
using ScaLAPACK. The diagonalisation methods are useful for calculations involving metallic systems where
the charge densities are not sufficiently localised for order N method to function well.

The most significant changes need to be done to the code for spin polarised calculations is to work out
the occupancies of the electrons associated to the eigen-states of the Hamiltonian matrices Hσ.

Since spin non-polarised calculations is simply a fixed spin calculation with zero polarisation, it is very
easy to extend the original spin non-polarised Fermi energy searching subroutines to fixed spin case. All
one needs to do is to repeat the same code for the second spin component. In this case it is important to
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note that the Fermi energies for spin up and spin down components differ2. This is a consequence of spin
populations being forced to stay the same.

For spin relaxation calculations, there is only one Fermi energy, and spin populations in each channel are
calculated by filling up occupancies up to to the Fermi level. To calculate Fermi level, we fill up the spin
eigen-states of Ĥσ from the lowest eigenstate (in /both/channels), until an upper bound is found. Fermi
energy is then calculated using bisection.

2.5 Spin Polarised Pulay Mixing
To achieve self-consistency in the calculation, the input density used to generate the Hamiltonian matrix
should be the same as the output density calculated from the Hamiltonian. One of the most commonly used
method for helping to achieve self-consistency is Pulay mixing[6, 14].

Given an input electron density ρnin at n-th step, the residual is defined as

Rn ≡ R[ρnin] = ρnout − ρnin

The standard Pulay mixing method tries to replace ρnin with an optimal ρnopt—constructed from a linear
combination of the input densities of the previous steps—in the mixing step:

ρn+1
in = ρnin + λnR[ρ

n
in]

where λn is the mixing parameter, so that the norm3 of residual ‖Rn‖2 is minimised. The minimisation
is done with respect to the coefficients αi and with the constraint that

∑n
i αi = 1. This is to ensure the

conservation of number of electrons.
For spin polarised calculations however, things are not as straight-forward. At first glance, we may define

ρσnopt =

n∑
i

ασi ρ
σi
in

and require the Pulay method to minimise the quantity ‖R(ρσnopt)‖2, where

R(ρσnopt) =

n∑
i

ασi R(ρ
σi
in ) =

n∑
i

ασi R
σi

with the constraint that:

1. For fixed spin:

(1) Nσ =

n∑
i

ασi N(ρσ,iin )

2. For spin relaxation:

(2) N =
∑
σ

n∑
i

ασi N(ρσ,iin )

It is important to note that if we define the minimisation problem this way then the coefficients α must be
spin dependent, because the associated Lagrange Multiplier equations for solving the minimisation problem

2In the case of spin non-polarised calculation the Fermi energies of the spin channels happen to be the same due to symmetry
of the two channels.

3The inner product between two residual functions Rn and Rm is defined by 〈Rn, Rm〉 ≡
∫
d3rRn(r)Rmr; and the norm of

Rn is simply ‖Rn‖ =
√
〈Rn, Rn〉.

9



2 IMPLEMENTING SPIN POLARISATION

is given as

(3)
∂

∂ασi
‖Rσnopt‖2 + γ

∂

∂G
ασi = 0

where γ is the Lagrange multiplier. G is one of the constraint equation on electron numbers described above
(equation (1) or (2)). This is a set of 2n equations, and if we have a non-spin dependent coefficients α then
there will only be n variables.

2.5.1 Case for Fixed Spin Population

This approach is correct for fixed spin calculations. Since we require for every mixing step N(ρσ,iin ) = Nσ,
equation (1) becomes

(4)
n∑
i

ασi = 1 (∀σ)

These constraints (note there are two equations one for each value of σ) also ensure conservation of total
charge, as

Nn
opt =

∑
σ

Nσn =
∑
σ

n∑
i

ασi︸ ︷︷ ︸
1

Nσ = N

Hence substituting equation (4) into the Lagrange Multiplier equation (3) we obtain

(5) 2

n∑
j

Aσijασj + γσ = 0

where

(6) Aσij ≡ 〈Rσi, Rσj〉 ≡
∫

d3rRσi(r)Rσj(r)

We can see that for fixed spin case we just have the ordinary Pulay mixing procedure for each spin
channel. The coefficients ασi can be found by treating the equation (5) as a matrix equation, and provided
Aσij is invertible, we get

αi = −
γσ

2

n∑
j

(Aσ)−1ij

Substituting this back into the constraints given in equation (4) we obtain the value of the multiplier, and
hence

ασi =

∑n
j (A

σ)−1ij∑n
ij(A

σ)−1ij

2.5.2 Case for Spin Relaxation

If we follow the same steps taken for the fixed spin case, and use equation (2) as the constraint, then the
form of ασi is given by

ασi = N

∑n
j (A

σ)−1ij N
σj∑

σ′
∑n
jk(A

σ′)−1jk N
σ′jNσ′k

10



2 IMPLEMENTING SPIN POLARISATION

where Nσi = N(ρσiin ) are the spin populations for the previous iterations steps.
However, there is a flaw in our arguments. By constraining the total electron number while allowing

the spin populations to vary, and by allowing the Pulay coefficients for each spin channel to differ, we have
unintentionally created a situation where the minimisation of ‖R(ρσnopt)‖2 becomes ill-defined. Pulay mixing
procedure always tries to minimise ‖R(ρσnopt)‖2 w.r.t. the coefficients ασi , and if during a charge mixing step
one of the spin channels (let us call it σ1) has either a larger spin population or lower residual (this amounts
to higher values in (Aσ)−1ij ) than the other, then ασi for this spin channel will always have a larger value
than that of the other spin channels. This means after mixing more electrons will “flow” to channel σ1. This
causes spin populations in channel σ1 to increase while the population in the other channel decrease. This
further increases the weight to the coefficients in channel σ1 and hence the self-consistency cycle will be
trapped and inevitably all electrons will falsely go to channel σ1.

This problem is not present for fixed spin case because the α coefficients in each channel are both
constrained to give the sum of 1. However the same constraints cannot be applied to spin relaxation case
because the spin populations will be expected to be different at every mixing step. Thus constraint

∑
i α

σ
i = 1

will not be able to conserve total number of electrons.
The solution to this problem is to recognise that the Pulay coefficients α must be the same for both

spin channels in the case for spin relaxation. This also means we need to redefine the quantity we wish to
minimise in Pulay mixing procedure. Instead of minimising ‖R(ρσnopt)‖2 for each of the spin channels, we
minimise the quantity ∑

σ

‖R(ρσnopt)‖2 = ‖R(ρ↑nopt)‖2 + ‖R(ρ
↓n
opt)‖2

Note that
∑
σ‖R(ρσnopt)‖2 = 0 implies both ‖R(ρ↑nopt)‖2 and ‖R(ρ↓nopt)‖2 must also be zero. Thus∑

σ‖R(ρσnopt)‖2 → 0 is still a well defined condition for achieving self-consistency.
Hence the modified Pulay mixing procedure for spin relaxation calculation is given as follows: we define

ρσnopt =

n∑
i

αiρ
σi
in

and assuming

Rσnopt ≡ R[ρσnopt] =

n∑
i

αiR
σi

The optimised input density for mixing is given by minimising
∑
σ‖Rσnopt‖2 w.r.t. the coefficients αi, subject

to the constraint equation (2). Note that now we are solving n equations with n degrees of freedom.
We have ∑

σ

‖Rσnopt‖2 =
∑
σ

∑
ij

αiA
σijαj

and hence by noting Aσij defined by equation (6) is symmetric

∂

∂αi

∑
σ

‖Rσnopt‖2 = 2
∑
σ

∑
j

Aσijαj

substituting into the Lagrange Multiplier equation (3) gives

2
∑
σ

∑
j

Aσijαj + γ
∑
σ

Nσi = 0

11



2 IMPLEMENTING SPIN POLARISATION

If we define

Aij ≡
∑
σ

Aσij

N i ≡
∑
σ

Nσi

then assuming Aij is invertible

αi =
−γ
2

∑
j

A−1ij N
j

substitute this into constraint equation (2), we therefore get

αi = N

∑
j A
−1
ij N

j∑
ij A

−1
ij N

iN j

It is worth noting that the issues with constraints and conservation of electron numbers do not feature
in the Pulay minimisation scheme described in section Order N : Spin Polarised Energy Minimisation. This
is because the eigen-values of auxiliary matrices Lσ are already restricted within [0, 1] due to the McWeeny
initialisation steps, and therefore the standard Pulay constraint of

∑
i αi = 1 is enough to ensure the

eigenvalues of L to remain inside [0, 1]. Further more, the electron numbers are constrained at each step
anyway by the added electron number correction step.

2.5.3 Kerker Preconditioning and Wave-dependent Metric

Following the work of the previous dCSE project[16], the Kerker preconditioning and wave-dependent metric
methods were implemented in Conquest. Due to the need to minimise the number of FFTs, separate
storages were provided for the pre-conditioned residuals and the covariant versions of the residuals needed
for the wave-dependent metric. Because of this there was a lot of repeats of the Pulay mixing code as the code
requires to access different arrays depending on the user options on whether to switch on the preconditioning
and wave-dependent metric.

Since the Pulay mixing algorithms needs to be rewritten for spin polarised calculations, I took this
opportunity to tidy up the code by introducing pointers to residual and covariant residual arrays so that the
Pulay mixing step only has to work with the pointers, while a separate subroutine manages these pointers
to make sure they point to the correct data arrays based on user options.

2.6 Spin Polarised Exchange-Correlation Functionals
The ground-state energy Conquest or any other density functional code tries to calculate is the sum of
several parts[7]:

EDFT = T + EH + Exc + Elocal + Enl + Eion

where T is the non-interacting electron kinetic energy, EH is the Hartree energy corresponding to the classical
coulomb interaction between te charge densities, Exc is the exchange-correlation energy that takes into
account all the non-classical interactions between the electrons, Elocal and Enl are the local and non-local
pseudopotential energies describing electron-ion interactions and finally Eion is the Ewald ion-ion interaction
energy.

Eion does not depend on electronic charge density. The kinetic, Hartree and both pseudopotential energies
depend only on the total charge density ρ↑ + ρ↓. Only the exchange-correlation energy depends also on the
spin polarisation ρ↑ − ρ↓. Therefore for spin implementation in Conquest I have to extend the versions of
the exchange-correlation functionals already implemented in the code to include dependences on ρ↑ − ρ↓.

12



2 IMPLEMENTING SPIN POLARISATION

Since the main goal of the project is to add spin infrastructure to Conquest, priority is given to just
implement the minimum set of spin polarised exchange-correlation functionals to ensure the code functions
correctly, while implementation of the spin polarised version of the full set of different flavours of exchange-
correlation functionals already implemented in the code would take too much time and is put-aside as possible
projects for the future.

The table below describes the status of the various functionals implemented in Conquest

Functional Type Name Status
LDA PZ81[12] Spin non-polarised, disabled for spin polarised calculations
LDA GTH96[4] Spin non-polarised, disabled for spin polarised calculations
LDA PW92[11] Fully Spin Polarised
GGA PBE[9] Spin Polarised, disabled for non-self-consistent force calc.
GGA revPBE[10] Spin Polarised, disabled for non-self-consistent force calc.
GGA RPBE[5] Spin Polarised, disabled for non-self-consistent force calc.

I aimed to provide at least one spin polarised LDA functional and one GGA functional for Conquest.
Since the three flavours of the GGA functionals already included in Conquest are very similar, minimum
amount of work was required to upgrade all of the GGA functionals to work with spin.

Conquest also allows the user to calculate non-self-consistent atomic forces. This requires the code to
be able to calculate the derivative of exchange-correlation potentials (double derivative with respect to the
energy functionals) with respect to the spin charge density. The spin polarised form of the derivative for
PW92 LDA functional could be derived relatively easily with the help of Mathematica[18], and thus has been
implemented in Conquest. For the GGAs, the form of the non-self-consistent forces are given by the work
of Torralba et al. [17]. However an extension to spin-polarised case would involve very complex algebra and
would have taken too long. Since this is not part of the main aim of this dCSE project, I have left this work
for possible future projects.

2.7 Test Results
To test the spin implementations I have done calculations mainly on two systems: bulk Silicon in FCC
lattice, which is not ferromagnetic and should have a net apin polarisation of 0 at ground state; and bulk
iron, in BCC lattice, which is ferromagnetic and should have an experimental magnetic moment of 2.12 per
atom (the difference between the number of electrons in different spin channels).

For bulk Si I used a simulation cell of 8 atoms with lattice parameter being 5.4282 Ang, integration grid
size of 72× 72× 72 and 13× 13× 13 grid k-points. The functional used was PW92 LDA, and a single-zeta
minimum basis set was used.

For bulk Fe I used a simulation cell of 2 atoms with lattice parameter being 2.8690 Ang, integration grid
size of 36×36×36 and 13×13×13 grid k-points. The functional used was also PW92 LDA and a single-zeta
minimum basis set was used.

The case of spin fixed calculations with initial spin polarisation of 0 should be the same as spin non-
polarised calculations (vanilla Conquest), and indeed this is the case

bulk Si
Calculation Type Ground State Energy (eV)
Diagonalisation (spin non-polarised) -855.811987
Diagonalisation (spin fixed, polarisation = 0) -855.811987
Order N (spin non-polarised) -855.603347
Order N (spin fixed, polarisation = 0) -855.603347

The small differences in the total energy calculated amounts to the different minimisation schemes imple-
mented. For diagonalisation calculations, Fermi smearing has been used with a temperature of 300K to help
convergence. For order N methods however there is no need to calculate Fermi energies and occupancies
and so the calculation is strictly zero temperature.
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Figure 1: Bulk Si: spin polarisation in the cell vs self-consistency steps. Left: calculated using diagonalisation
method. Right: calculated using order N method. Basis: SZ PAO.

Figure 1 shows the total spin polarisation in the simulation cell for bulk silicon during the self-consistency
iteration step for a spin relaxation calculation using diagonalisation and order N methods. In both cases
spin polarisation converges to 0.0, confirming our expectations.

Figure 2 shows the total spin polarisation in the simulation cell for bulk iron during the self-consistency
iteration steps for a spin relaxation calculation. Both diagonalisation and order N methods are used. As
we can see if the calculation starts of with 0.0 magnetisation (i.e. populations in each spin channels equal)
then the magnetisation stays 0.0 through-out the self-consistency steps. This corresponds to one of the
stable magnetisation states of bulk iron. Once we break the symmetry the calculations converges to a total
spin polarisation of around 5.2 per cell (see the table below for more details). This corresponds to spin
polarisation of 2.6 per atom, which is higher than the experimental values of 2.12. However this is expected
as LDA is known to over estimate spin polarisations and we have used minimum basis set. When compared
with calculations done with other codes (see below) this value is reasonable.

I have also tested calculations using the Conquest blip (B-spline) basis set, with the same number of
support functions as the PAO base. At each energy minimisation step the blip basis coefficients are also
optimised. The results on convergence of spin polarisation are presented in figure 3. They are comparable
to the PAO calculations.

The final spin polarisations per atom calculated using different methods for bulk iron with non-zero initial
magnetisation is given in the following table

Method/Code init. mag = 2.0 4.0 6.0 8.0
Diagonalisation, LDA, SZ (PAO) 2.62636 2.62636 2.62662 2.62637
Diagonalisation, LDA, Blips 2.69637 2.69699 2.69683 2.69670
Order N , LDA, SZ (PAO) 2.59853 2.59892 2.59795 2.59901
Order N , LDA, Blips 2.68764 2.68748 2.68711 2.68829
Siesta, LDA, Blips – – – 2.62397

Note that for Siesta calculation, the same pseudopotential and PAO SZ basis set, integration grid
(36× 36× 36) and the same Fermi smearing temperature of 300K were used.

14



2 IMPLEMENTING SPIN POLARISATION

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

 0  2  4  6  8 10 12

Sp
in

 P
ol

ar
is

at
io

n 
(N

eU
P 

- N
eD

N
)

SCF Iterations

Init. Mag = 0
Init. Mag = 2
Init. Mag = 4
Init. Mag = 6
Init. Mag = 8

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

 0  2  4  6  8 10 12

Sp
in

 P
ol

ar
is

at
io

n 
(N

eU
P 

- N
eD

N
)

SCF Iterations

Init. Mag = 0
Init. Mag = 2
Init. Mag = 4
Init. Mag = 6
Init. Mag = 8

Figure 2: Bulk Fe: spin polarisation in the cell vs self-consistency steps. Left: calculated using diagonalisation
method. Right: calculated using order N method. Basis: SZ PAO

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

 0  2  4  6  8 10 12

Sp
in

 P
ol

ar
is

at
io

n 
(N

eU
P 

- N
eD

N
)

SCF Iterations

Init. Mag = 0
Init. Mag = 2
Init. Mag = 4
Init. Mag = 6
Init. Mag = 8

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

 0  2  4  6  8 10 12

Sp
in

 P
ol

ar
is

at
io

n 
(N

eU
P 

- N
eD

N
)

SCF Iterations

Init. Mag = 0
Init. Mag = 2
Init. Mag = 4
Init. Mag = 6
Init. Mag = 8

Figure 3: Bulk Fe: spin polarisation in the cell vs self-consistency steps. Left: calculated using diagonalisation
method. Right: calculated using order N method. Basis: blip
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3 IMPLEMENTING VAN DER WAALS ENERGY CORRECTION

3 Implementing van der Waals Energy Correction
The aim for the second part of this dCSE project is to implement the ab initio van der Waals energy
correction term to density functional calculations described by Dion et al.[3] in Conquest. The energy
correction term provides a excange-correlation functional which includes long-range correlations essencial for
modelling van der Waals interactions.

The new functional takes the form

EvdW = ErevPBE
x + EPW92

c + Enl
c

so that the functional takes the exchange term from a GGA functional and the correlation term from a LDA
functional together with contribution from a non-local functional.

The non-local functional is given as

(7) Enl
c =

1

2

∫∫
d3r1d

3r2 ρ(r1)ρ(r2)φ(q1, q2, r12)

where r12 = ‖r1 − r2‖, qi = q0(ri), and q0(r) is a function of r that is dependent on charge density ρ(r)
and its gradient. Its form is given by equations (11) and (12) in Dion’s paper[3]. The form of the non-local
functional kernel φ(q1, q2, r12) = φ(d1, d2), where di = qir12 is given by equations (14) to (16) in Dion’s
paper.

It would be impractical to try to evaluate equation (7) directly due to the double integral on real-
space coordinates. Even for a modest grid of 64 × 64 × 64 in the simulation cell, this corresponds to
646 = 68719476736 number of evaluation of φ and products with the two densities to evaluate the integral.

Approximations must be applied.

3.1 Overview of Approach
Roman-Perez et al.[15] proposed an efficient approximation to equation (7), by interpolating the non-local
kernel φ(q1, q2, r12) on a logarithmic grid of the q0(r) values:

φ(q1, q2, r12 ≈
∑
αβ

φ(qα, qβ , r12)pα(q1)pβ(q2) ≡
∑
αβ

φαβ(r12)pα(q1)pβ(q2)

where qα are points on the logarithmic grid, and pα(q1) are a set of cubic spline interpolations of the delta
functions δ(q1 − qα) whose values at the grid points are δβ = δα,β .

By approximating the kernel this way, the dependence on q1 and q2 are now separated, and hence equation
(7) can be approximated as

Enl
c ≈

1

2

∫∫
d3r1d

3r2
∑
αβ

θα(r1)φαβ(r12)θβ(r2)

where θα(ri) = ρ(ri)pα(qi). The equation above now contains a convolution and hence when working in the
Fourier transform space we have

(8) Enl
c =

1

2

∫
d3k θ̃∗α(k)θ̃β(k)φ̃αβ(k)

The calculation thus becomes manageable.
φαβ(r12) is a radial function, and hence a radial FFT subroutine needs to be implemented in Conquest

in order to obtain φ̃αβ(k). The θα(r) functions are ordinary functions on the 3D real grid, and hence can be
Fourier transformed by the existing FFT algorithms implemented in Conquest.
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3.2 Grids
There are several different types of grids used for the implementation.

1. First of all there is the Conquest’s own integration/FFT grid, distributed among the processors, on
which the values of θα(r) and their Fourier transforms will be stored.

2. There is the grid for the q values, and upon which each value of φαβ(r) (for fixed r) and polynomials
pα are defined. These are logarithmic grids, and following advice from the paper[15], I have defined 30
grid points for this grid. And this grid is local to each processor.

3. Further more, there is the radial grid, upon which the values of φαβ(r) is calculated for fixed α and
β. Since the radial grid is one dimensional (and hence relatively small) and Fourier transforms will be
done on this grid, it is sensible to make this grid local to each processor as well. For the moment I have
fixed the grid size to 1024. This is dense enough for most calculations, but still tiny when compared
with the 3D real-space grid.

The final integration for calculating the non-local energy Enl
c is done on the Conquest integration/FFT

grid. However if we simply use the radial Fourier transforms of φαβ(r12) calculated on the radial grid, we will
cause errors due to inconsistencies of the two different grids. Hence the φ̃αβ(k) calculated will be interpolated
results from the values calculated on the radial grid.

3.3 Implementation of Radial FFT
To calculate the Fourier transforms of q(r) defined on the radial grid, I have to implement a version of radial
FFT in Conquest.

We note that for any radial function f(r) = f(r) the Fourier transform may be written in spherical polar
coordinates with the z-axis defined to coincide with vector k, as:

F (k) = 2π

∫ ∞
0

dr

∫ π

0

dθ r2 sin(θ)e−i2πkr cos(θ)f(r)

where k = ‖k‖. The θ integral may be evaluated to give∫ π

0

dθ sin(θ)e−i2πkr cos(θ) =
[
e−i2πkr cos(θ)

]π
0

1

i2πkr
=

2 sin(2πkr)

2πkr

Therefore:

(9) F (k) = F (k) =

∫ ∞
0

dr
2 sin(2πkr)

2πk
rf(r)

In other words the Fourier transform of a radial function is also radial.
Now we need to discretise equation (9). If the real space radial grid goes from 0 to rmax with N data

points then

Fj ≈ dr
N−1∑
i=0

2 sin(2πidrjdk)

jdk
idrfi

where i = 0, N−1 indices the real space radial grid and j = 0, N−1 indices the reciprocal grid. dr = rmax/N ,
and dk is given in terms of the Nyquist critical frequency associated to the chosen real space grid. The critical
frequency is given[13] as fc = 1

2dr . This is the maximum possible k value beyond which point any non-zero
F(k) values will be folded back and causing aliasing. Hence it is the usual practice to set the maximum k
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value on the discrete FFT radial grid to be fc. So going from 0 to fc with N points, dk = 1
2Ndr . Therefore

substitute the value of dk into the above equation, we obtain

Fj ≈
dr

jdk

N−1∑
i=0

2 sin(2πij/N)idrfi

Define gi ≡ 2idrfi we thus have

(10) Fj ≈
dr

jdk

N−1∑
i=0

sin(2πij/N)gi

where unless fi ∼ 1
idrn for integer n > 1, gi = 0 at i = 0. Hence baring the special case for fi (which will be

outside the range of functions we will need to consider) the sum in equation (10) is just a standard discrete
sin transform[13].

There is a logarithmic singularity at k = 0 due to the 1
k factor in equation (9), and therefore the k = 0

point is treated separately. If k = 0 then limk→0 sin(2πkr)k = 2πr. Hence after discretisation

F0 ≈ dr
N−1∑
i=0

4π(idr)2fi

Thus the algorithm for radial FFT implemented in Conquest is as follows

subroutine radfft(func, func_out, n_r, dr)
dk = half / real(dr * n_r, double)
! set the real data to 2 * r * func(r)
do ir = 1, n_r

rr = (ir - 1) * dr
data(ir) = two * rr * func(ir)

end do
! do sin FT
call sinft(data, n_r) ! from Numerical Recipes
! leave the k = 0 point aside, this is treated separately
do ik = 2, n_r, 1

kk = (ik - 1) * dk
func_out(ik) = data(ik) / kk

end do
! doing the k = 0 point
! the limit (k -> 0) of 2 * r * sin(2*pi*k*r) / k is 4*pi*r**2
func_out(1) = zero
do ir = 1, n_r

rr = (ir - 1) * dr
func_out(1) = func_out(1) + (four * pi * rr**2 * func(ir))

end do
! scale func_out by to give approximation to non-discrete form
func_out = dr * func_out

end subroutine

It is important to note that radfft calculates the approximation of the continuous radial Fourier trans-
form, unlike a standard FFT subroutine, which calculates the discrete Fourier transform of a given set of
data points.

The grid size must be of integer powers of two.
The subroutine has been tested against and shows good agreement to the analytical results calculated

from Mathematica on various gaussian functions.
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3.4 Implementation of van der Waal Energy Correction
The non local correlation energy Enl

c given in equation (8) are calculated in Conquest as follows.

subroutine vdWXC_nl_energy(rho, E_vdW_nl)
1. From the Conquest integration/FFT mesh get mesh spacing
2. From FFT mesh spacing, calculate Nyquist critical frequency and

hence kcut and dk
3. Set up q-mesh (logarithmic)
4. Calculate phi(r, q1, q2), and its Fourier transform for each

points q1, q2 on the q-mesh and r (and k) on the radial mesh as
well as the second derivatives and store the interpolation table
in file vdW_kernel.tab

5. Calculate gradient of rho (density) and store in grho
6. Calculate polynomials p(q1) as a function of rho and grho

6.1 Calculate the value of q from rho and grho
6.2 Interpolate p(q1) from given q for every q1 on q-mesh

7. From p(q1) and rho calculate theta(vec_r,q1)
8. FFT theta(vec_r,q1) on Conquest FFT grid for every q1 on q-mesh
9. Loop over FFT grid points

Calculate mag_k = sqrt(sum(vec_k**2)) for a given vec_k on grid point
if (mag_k < kcut) then

Interpolate from the vdW_kernel table to get phi(k,q1,q2)
calculate the complex matrix multiplication and dot product on q-mesh

phi(k,q1,q2) * theta(vec_k,q1) theta(vec_k,q2)
Accumulate into E_vdW_nl (for non-local energy)

end if
end Loop

10. Gather and reduce values of E_vdW_nl distributed among the processors
end subroutine vdWXC_nl_energy

The over all van der Waals exchange-correlation energy is the calculated as a sum of Enl
c (calculated

above), the exchange part of revPBE functional and the correlation part of PW92 function.
When used in actual applications, Conquest first runs a self-consistent calculation with either one of the

LDA or GGA functionals, and after it reached self-consistency the van der Waals exchange-correlation energy
is then calculated using the self-consistent density. The van der Waal energy correction is then calculated
by subtracting the original LDA/GGA exchange-correlation energy from the calculated value.

3.5 Test Results
Test runs have been performed on a system of two benzene rings, stacked one directly on top of the other along
the concentric axis. Interaction energies of the benzene rings can be calculated by taking the difference in
total energy between the two ring system and 2 times a single benzene system. The van der Waals correction
to interaction energies are calculated by first calculating interaction energies calculated using either LDA or
GGA functionals, and then subtract this from the interaction energies calculated with van der Waals energy
correction turned on4. The calculated results are then compared with results calculated from Siesta, which
has implemented the same van der Waals functional. It has to be noted however that the comparison can
not be exactly due to the fact that in Siesta the van der Waals functional is self-consistent and hence unlike
in Conquest calculation the results are calculated using van der Waals function (potential) through out.

The simulation cell (for both Conquest and Siesta calculations) was set to be cubic, with lattice
parameter set to 20.0 Ang on all sides. The number of grid points are set to be 128×128×128. For Conquest

4The same LDA or GGA functional is used to compute the self-consistent density prior the van der Waals correction step.
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Figure 4: System of two benzene molecules stacked one directly on top of the other along the concentric
axis.

calculations pseudopotential and basis sets are generated by either LDA or GGA functionals (which ever
is under comparison), for Siesta calculations, the LDA and GGA results are calculated using identical
pseudopotential and basis sets as that used by Conquest, however the van der Waals used pseudopotentials
and basis sets generated by van der Waals functional.

Figure 4 shows the van der Waals correction to interaction energies for system calculated either using
PW92 LDA or revPBE GGA. The values are plotted against separation distances between the two ben-
zene rings. The results show reasonable agreement between the Conquest implementation and Siesta
implementation, bare in mind that the Siesta calculation is self-consistent while Conquest is not.

The table below shows the total execution time taken for the van der Waals correction implementation
and its percentage in relation to the total program run time. The test calculation is done on two benzene
rings using revPBE functional with van der Waals correction with an integration grid size of 128×128×128.
It took 6 SCF steps for the calculation to converge

Number of Nodes Total run time (s) vdW time (s) Ratio
1 339.730000 156.125000 0.459000
2 217.320000 116.082030 0.534000
4 131.870000 93.398440 0.708000

It can be seen that the van der Waals correction subroutines does cost a significant portion of the total
run time. There is also an indication that it becomes less efficient compared to the rest of the code when
number of computation nodes increases.

The code generates the interpolations of the non-local kernels when it first runs. For the subsequent runs
the results are simply read from the table at start up. The following shows the times taken if the table has
been pre-generated

Number of Nodes Total run time (s) vdW time (s) Ratio
1 309.060000 133.914060 0.433000
2 196.290000 95.933590 0.488000
4 113.660000 76.636720 0.674000

Slight improvements on performance can be observed.
The long processing time can be expected, due to the nature of the algorithm. For the calculation of

the non-local correlation energy Enl, we have to do a matrix product and a dot product on the q-mesh, for
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every integration point on the 3D FFT mesh. This amounts to 302 = 900 times the work-load compared to
a typical electron number calculation or an inner product between the residuals.

This can be confirmed by following table, which shows break downs on the major parts of the van der
Waals code:

Area Time/Ratio (s) (1 node) 2 nodes 4 nodes
Generate φ table 19.390630 (0.124) 18.445310 (0.158) 18.195310 (0.194)
build ∇ρ 2.613280 (0.016) 2.832030 (0.024) 2.156250 (0.023)
build θ 2.253910 (0.014) 1.066410 (0.009) 0.625000 (0.006)
FFT θ 19.429690 (0.124) 21.257810 (0.183) 24.472660 (0.262)
Integrate Enl 78.988280 (0.505) 49.218750 (0.423) 25.640630 (0.274)

This clear shows that for small number of nodes the k space integration is the most expensive part of the
implementation. However as the number of nodes increase FFT quickly becomes the new bottle neck. This
also also explains the apparently poor scaling displayed by the code. Because the implementation requires 30
FFTs to be done the communication inefficiencies of the FFT routines quickly becomes a significant factor.
Note that the poor scaling in the φ table generation part is mainly due to only one node is doing all the IO
during the writing to file phase, and this process is expected to be slow and non-scaling.

If the non-local kernel table has been pre-generated, then we can see clearly that significant amount of
work can be avoided.

Area Time/Ratio (s), 1 node 2 nodes 4 nodes
Generate φ table 0.187500 (0.001) 0.187500 (0.001) 0.203130 (0.002)
build ∇ρ 2.851560 (0.021) 2.175780 (0.022) 2.847660 (0.037)
build θ 1.878910 (0.014) 1.062500 (0.011) 0.507810 (0.006)
FFT θ 18.902340 (0.141) 18.785160 (0.195) 24.929690 (0.325)
Integrate Enl 76.058590 (0.567) 50.558590 (0.527) 25.847660 (0.337)

The table below shows memory usage by the implementation:

Calc Type Maximum RSS (MB) per node, 1 node 2 nodes 4 nodes
vdW without table 2021.910156 1053.257812 549.960938
vdW with table 2021.851562 1053.210938 547.882812
Vanilla (no vdW) 1017.695312 545.023438 276.968750

The van der Waals implementation uses twice the amount of memory as the original code. My initial
version of the implementation uses even more memory, due to the fact that original Conquest implemen-
tations of exchange-correlation functionals takes in the grid data arrays as input and output. This required
a number of temporary storages for passing grid data from one subroutine to another. To reduce memory I
changed the implementation of these functional act point-wise on the grid data. While this introduced inef-
ficiency as the exchange-correlation functional subroutines have to be called at every grid point, it reduced
memory usage significantly (by about factor of three). However even after this memory usage is still large.

This high memory usage is caused by the fact that there are 30 θ functions—one for every point on the
q-mesh, all of which are data points on the real/FFT grid—we need to store at the same time. We cannot
do this one by one because a pair of the functions are required at any one time in the integral for calculating
Enl

c , and we have to go through all permutations of the pairings. One could in theory recalculate the θ
functions at every integration accumulation step, but that will lead to a lot of unnecessary re-evaluation of
the θ functions and their Fourier transforms. Considering FFT becomes the bottle neck for more processors
I believe doing this would be unwise.

4 Conclusion and Future Work
Both spin polarisation and van der Waals functional have been successfully implemented and test calcula-
tions gives expected results. For spin relaxation calculations the new energy minimisation scheme and Pulay
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mixing scheme for self-consistency has been tested and demonstrated to be working. The data structure of
Conquest now handles spin polarisation naturally, and efforts has been made to make the existing subrou-
tines to handle both spin non-polarised and polarised calculations. This helps to make future developments
in Conquest easier, the developer do not have to develop separate versions codes for spin non-polarised
and polarised calculations.

Four out of the six exchange-correlation functionals implemented in Conquest has been extended to
work with spin polarised calculations. Future work remains for converting the rest. While the spin polarised
version of non-self-consistent forces has been implemented for a LDA functional, the derivation of equations
for the GGA functionals are left for future work due to its complexity. Protective warning messages and
default behaviours have been added in the code to prevent the user from making wrong choice of functionals
and force settings when running a spin polarised calculation.

Memory usage is a big concern with the implementation of van der Waals functions. As it is shown in
test calculations, the memory usage with van der Waals correction turned on is almost twice of standard
calculations. The fundamental reason for high memory usage seems to be due to the functional form used to
approximate the functional. This same problem has been observed in Siesta. Never-the-less this approxi-
mation made a functional previously impractical to use (due to its double integration and non-local nature)
practical.

Due to the large number of grid integrations one needs to perform, van der Waals functional is relatively
expensive computationally, in our test calculations it has the equivalent cost of roughly 6 energy minimisation
operations. While integration on grid shows good scalability with number of nodes, the over all scalability
of the code is hampered by the extensive use of FFT. For calculation of large systems, a more efficient FFT
engine would benefit. At the moment Conquest uses its own FFT implementation, and future work could
be done to allow Conquest to use standard external FFT libraries optimised for HCP platforms.

It is also possible in the future to extend the van der Waals implementation for self-consistent calculations.
This involves finding the potential by calculating the derivatives of the functional with respect to density.

At the moment most of the grid settings for the logarithmic and radial grid used by van der Waals
functional are defined as parameters in the code. While those seldom needs to be changed, in the future it
would be beneficial to include them as part of the input changeable by the user.

The spin implementations has already been submitted to Conquest code repository and implementation
of van der Waals functional will be submitted shortly. The beta release of Conquest can be obtained from
http://www.order-n.org/.
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