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Abstract

This report describes the work done in the one year Distributed Computational Science and
Engineering (dCSE) project aimed to develop an ab initio Density Functional Theory code highly
efficient for calculation on metallic systems that allows simulation of 1000s of atoms on high perfor-
mance computing facilities with reasonable cost. The code is developed on the existing open-source
linear scaling code Conquest. While the same linear scaling properties associated to insulators and
semiconductors cannot be achieved for metallic systems due to the long range interactions in the
density, we maximise efficiency by using ScaLAPACK, compact basis sets offered by Conquest and
various methods for reducing the number of required diagonalisations.
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1 Introduction

The understanding to many problems in material science and nanotechnology involving metallic systems
attracting interests today requires calculations to be done on a large scale. While significant advance-
ments has been made in highly scalable and efficient computer codes for insulators and semi-conductors
there is comparatively less work done for metallic systems. Although most of the algorithms that make
up scalable computer codes for insulators and semiconductors are transferable to metallic systems, such
as the efficient evaluation of the Hamiltonian and the use of compact and flexible basis sets, it is not
possible to achieve the same scalability for calculations on metals because the density matrix for these
systems are generally long ranged, and the conventional linear scaling techniques for insulators that
rely on the short range nature of the density matrix no longer applies. The main goal of the project
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1 INTRODUCTION

is to take an existing linear scaling Density Functional Theory (DFT) code designed for insulators and
semiconductors (Conquest[4]) and modify it so that it can be efficiently applied to metals.

Conquest is a suitable basis for this modification because a metallic density matrix solver that
involves direct diagonalisation of the Hamiltonian using SCaLAPACK v1.7 is already in place. It is also
a mature open source linear scaling code with spectacular scaling with respect to number of processors.
Conquest uses either B-splines or Pseudo-atomic orbitals to generate a flexible set of functions (support
functions) in which to expand the wavefunctions. With B-Spline basis it can achieve plane-wave accuracy
with a small number of functions. This is important for efficient metallic calculations, because the cost
of diagonalisation depends directly on the number of spanning functions. Further more, Conquest has
already been used successfully for simulating insulators on HECToR with 4096 processors (supported
under the UKCP grant, project e89).

Following changes must be applied to the code for efficient calculation on metallic systems:

1. The density matrix solver cannot be based on the existing linear scaling techniques for insulators
and semiconductors, hence the proposal is to use a simple matrix diagonalisation on the Hamil-
tonian using tools from a mature parallel processing linear algebra library, such as ScaLAPACK.
This is already implemented in Conquest.

2. Introduce efficient Brillouin zone integration (Methfessel-Paxton method[14]) to reduce the number
of diagonalisations need for achieving self-consistency. This is particularly important for metals
because of the partially occupied bands which produces a discontinuity in occupation function at
Fermi energy—problematic for accurate numerical integrations in Brillouin zone and hence effecting
self-consistency.

3. Introduce a more efficient technique for reaching self-consistency in large systems. As the simulated
system gets larger, a phenomenon called charge-sloshing which causes the inout and output electron
density to oscillate and never reach self-consistency becomes a frequent occurrence for metals. This
has been successfully tackled by introducing Kerker preconditioning and Wave-dependent metric
in the ab initio code VASP[12] and the same techniques are to be added to Conquest.

4. Metallic systems in general have sharp and rapidly varying band-structure, and hence requires
a high density of k points for accurate Brillouin zone integration. And each k point requires a
separate diagonalisation. Further efficiency in calculation can be achieved if diagonalisation on
several k points can be processed in parallel.

5. The metallic calculations on Conquest need to be profiled to spot potential bottlenecks, and
optimal input parameters need to be found.

With these improvements and the already excellent scaling properties, Conquest can become a
valuable tool for allowing large scale ab initio electronic structure simulation on metallic materials on
HECToR.

This report describes the work done for implementing the above mentioned modifications and the
profiling of the code. Section 2 describes the work done on implementation of Kerker preconditioning
and wave-dependent metric; section 3 describes the implementation of Methfessel-Paxton Brillouin zone
integration technique, in which we also discovered and solved a technical complication that was previously
unknown in the field; section 4 gives the results from profiling Conquest, and confirms diagonalisation
is indeed the bottleneck for the calculation; section 5 describes the work done on k parallelisation; and
finally a prove of a theorem central to the solution for reliable implementation of the Methfessel-Paxton
approximation is included in appendix A.

Before we move onto the first topic, we will briefly describe the physical system used for the various
tests performed in this report. Bulk aluminium will be used through out (except in cases where a
vacancy is introduced to break symmetry). Aluminium was chosen because it is near the top of the
periodic table and therefore one does not have to worry about relativistic or semi-core corrections to the
pseudopotential. At the same time it still has enough screening from core electrons so the pseudopotential
will not be very complicated. The purpose of the test is to demonstrate the efficiency of the code,
complications in the pseudopotential add an unnecessary overhead. The exchange-correlation functional
used for our tests will be the local density approximation (LDA). This is justified because firstly it was
reported by Gaudoin et al.[6, 7] that the LDA approximation is adequate for bulk aluminium calculations,
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and secondly the focus of our calculations again is on the efficiency of the code, not on the accuracy
of the band structure. The aluminium pseudo-potential is calculated using OPIUM[1] according to the
method of Rappe et. al.[17, 18]. This method generally gives a softer pseudopotential than a standard
Troullier-Martins method[19]. Two 3s and one 3p electrons are taken as valence electrons for aluminium
and partial-core (also known as non-linear core) or relativistic corrections are not included. The basis
set used was double-zeta-polarisation (DZP) numerical pseudo-atomic-orbital (PAO) basis. The basis
was generated from Siesta[2] with energy shift of 100 meV. For the the current study we used just one
support function per basis. The optimum lattice constant was found by calculating the ground-state
energies for the system (using 4 Al atoms unit cell) with the lattice parameter varying from 3.50–4.40Å,
and then finding the minimum by interpolating the results. We found for the above mentioned set-up the
optimum lattice parameter for the LDA calculation to be a0 = 4.01155Å. This can be compared to the
result of Gaudoin et al. 3.960Å and experimental value of 4.022Å. It was also found that a real-space mesh
with 32 grid points in each direction, and a reciprocal space mesh with 25 k-points in each direction
(generated using Monkhorst-Park[15] method) is sufficient for accuracy up to 10−6Ha with smearing
temperature of 0.001Ha (≈ 300K). For unit cells of different sizes, we scaled the grid points accordingly,
this means we need 64 real space points and 13 k points in each direction for a 32 atoms cell, and 128
real space points and 7 k points in each direction for 108 atoms cell. The calculations mentioned in the
report will assume these parameters unless otherwise stated.

2 Kerker Preconditioning and Wave-dependent Metric

Pulay mixing[16] has became one of the standard methods implemented in the ab initio Density Func-
tional Theory (DFT)[8, 10] codes to achieve self-consistency in ground-state energy calculations[13, pp.
172–174]. The scheme at beginning of a given self-consistent loop m, takes a set of histories of input
densities ρiin from self-consistency loops i in the range i = m−NPulay to m−1 (for a given integer NPulay

and if m = 1 then we use an initial guess) and forms an optimised input density for step m

ρmin =
m−1∑

i=m−NPulay

αi
(
ρiin + λR[ρiin]

)
(1)

where λ is the mixing parameter; the parameters αi are given as

αi =

∑m−1
j=m−NPulay

A−1
ji∑m−1

i,j=m−NPulay
A−1
ji

, Aji =
∫

d3rR([ρjin], r)R([ρiin], r) (2)

and satisfies the constraint
∑m−1
i=m−NPulay

αi = 1; the residual R([ρiin], r) is defined as the difference
between the output (calculated from minimising the energy functional dependent on the input density)
and input density:

R([ρiin], r) = ρiout([ρ
i
in], r)− ρiin(r)

Note also that by choosing NPulay = 1 we get back simple linear mixing scheme.
The phenomenon called “charge sloshing”[9]—where a small variation in the input density (in the self-

consistency loop) causes a large change in output density—is often observed in calculations for metallic
systems. This results in very long repeats of the self-consistency loop if the calculation ever converges
and it is one of the main obstacles against fast calculations on metallic systems. The solution to this
problem exists from noting that charge sloshing is caused by long-range real-space changes (and hence
short reciprocal-space changes) in the density dominating the variation of the Hartree potential. Hence
by slightly modifying the mixing procedure and by filtering out the long range changes in density (the
residuals) one can reduce the effect of charge sloshing and hence achieve much faster self-consistency
convergence. This preconditioning method is named after its inventor Kerker[9], and has already been
successfully applied to various ab initio electronic structure codes[11, 12]. An alternative method is by
adding weight to the computation of the residual metric (Aij in equation (2)) so that the short ranged
variations in density are given more importance in the mixing procedure, and this method is referred to
as Wave-dependent metric approach.
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Working under reciprocal space, the Pulay mixing equation (1) becomes

ρ̃min =
m−1∑

i=m−NPulay

αi

(
ρ̃iin + λR̃[ρ̃iin]

)
where ρ̃iin(q) are the Fourier transform of input density histories; and R̃([ρ̃iin],q) = ρ̃iout(q)− ρ̃iin(q). For
Kerker preconditioning, we replace the scalar mixing parameter λ with a diagonal matrix in reciprocal
space:

G = λ
q2

q2 + q20
, q = ‖q‖

where q0 is a user input parameter controlling the meaning of “long ranged” variation in density in the
preconditioning procedure: for q � q0 (short range in real space), G ≈ λ so we have normal Pulay
mixing, but for q � q0 (long range in real space), G ≈ 0 so the portion of ρiin do not take part in the
mixing.

While the Kerker preconditioning method effectively adds a q-dependent weight to the mixing pa-
rameter, the wave-dependent metric method adds a q-dependent weight on how we compute the Pulay
paramaters αi. We modify the residual metric Aij (given in equation (2)) to become

Ãij =
∑
q

q2 + q21
q2

R̃([ρ̃iin],q)R̃([ρ̃jin],q), q = ‖q‖ (3)

in the reciprocal space. q1 is an user input parameter so that for q � q1 (short range in real space) the
weight for the metric→ 1 and hence its contribution (in terms of its inverse) to the Pulay parameters αi
will be as normal; and for q � q1 (long range in real space), the weight →∞ and hence its contribution
to the parameters αi becomes negligible.

Special treatment is needed for the point q = 0, since ω(q) = q2+q21
q2 is undefined at this point. The

easiest approach is to define the weight at q = 0 as analytic continuation of the factor, and hence we
define ω(q = 0) ≡ maxq ω(q).

2.1 Implementation

To implement both Kerker preconditioning and wave-dependent metric method into Conquest we note
that both involves at least two Fourier transforms (to transform into reciprocal space and then back). It
is therefore ideal if we can add the Kerker preconditioning and the wave-dependent weight at the same
time while we are working inside the reciprocal space. Two additional arrays of the dimensions NPulay×
No. of reciprocal space grid points were added, one for storing the preconditioned residuals on real space
grid: F−1

(
GR̃[ρiin]

)
(r) and one for storing the covariant residuals for the wave-dependent metric on

real space grid: F−1
(
q2+q21
q2 R̃[ρ̃iin]

)
(r). Note that here F−1 denotes the inverse Fourier transform.

It is possible to save the memory and calculate the preconditioned and the covariant residuals for
every Pulay history and then accumulate in the Pulay mixing procedure (see equation (1)). However since
Conquest is a code optimised for parallel calculation with many processors and Fourier transformation
is a very communication intensive procedure, such approach would mean we have to do two Fourier
transforms for every of the NPulay Pulay histories for every history summation loop in equation (1), and
this would result a very inefficient code. By introducing two additional arrays to the code we minimise
communications required for performing Fourier transforms. Note also that the original histories of the
residual are still required because they are still needed in the calculation of the metric Aij—acting as
the contravariant part of the inner product.

Three subroutines were added to the original hartree_module in the Conquest source code. Sub-
routine kerker is for self-consistent calculation using Kerker preconditioning only, wdmetric is for using
wave-dependent metric only and kerker_and_wdmetric is for using both.

Pseudocode algorithm 1 gives a rough schematic for subroutine kerker_and_wdmetric. The sub-
routines kerker and wdmetric are similar with the relevant parts omitted (for kerker the parts with
wave-dependent metric will be omitted and vice versa for wdmetric). One of the subroutines is called
depending on user input (whether to use Kerker preconditioning or wave-dependent metric or both) for
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2 KERKER PRECONDITIONING AND WAVE-DEPENDENT METRIC

Algorithm 1 Subroutine kerker and wdmetric

1: Compute q20 and q21 from user input
2: Allocate temporary arrays FR kerker(:) and FR wdmetric(:)
3: Fourier transform the newest residual and store in both FR kerker(:) and FR wdmetric(:)
4: facmax = 0
5: for all reciprocal grid points q do
6: if q2 > 0 then
7: Calculate preconditioning factor fac = q2

q2+q20
8: FR kerker = fac ∗ FR kerker
9: Calculate the weight for wave-dependent metric fac2 = q2+q21

q2

10: FR wdmetric = fac2 ∗ FR wdmetric
11: facmax = max(facmax , fac2 )
12: end if
13: end for
14: Use MPI calls to find the global maximum of facmax across all processors
15: if q2 = 0 then
16: FR kerker(i0) = 0 . i0 corresponds the grid index for q = 0

17: FR wdmetric(i0) = facmax ∗ FR wdmetric(i0)
18: end if
19: Inverse Fourier transform FR kerker and FR wdmetric, store in respective arrays
20: Deallocate FR kerker and FR wdmetric

every new residual, and the results from the temporary arrays FR kerker and FR wdmetric (see algo-
rithm 1) are stored in the correct Pulay history slots in the F−1

(
GR̃[ρiin]

)
(r) and F−1

(
q2+q21
q2 R̃[ρ̃iin]

)
(r)

arrays respectively. The preconditioned and covariant residuals are then used in the normal Pulay mixing
routine already implemented in Conquest, replacing the appropriate Pulay history residuals.

2.2 Test Results

Due to symmetry of the aluminium bulk charge sloshing will not take place. Any updates in density
will follow the same symmetry as one cannot distinguish one lattice direction from another, resulting an
output density which obeys the same symmetry as input density, which in turn preserves the symmetry of
the updated Hartree potential V̂H. Indeed for bulk calculations with either 32 atoms or 108 atoms unit cell
even with no Kerker preconditioning or wave-dependent metric the calculation reached self-consistency
within 12 Pulay mixing steps (with mixing parameter set at λ = 0.5).

To break the symmetry a vacancy is introduced to the aluminium bulk by removing one atom
at (0, 0, 0). The standard linear mixing method failed to reach self-consistency with mixing parame-
ter λ ranging from 0.1 to 0.8, however adding Kerker Preconditioning significantly improved the self-
consistency convergence properties. Figure 1 shows charge sloshing behaviour in aluminium bulk system
with 32 atoms unit cell and a defect (vacancy) at (0, 0, 0) while using simple linear mixing (q0 = 0
case). The effect of charge sloshing is demonstrated by the oscillations in the calculated ground-state
energy. We can also see that the effect of charge sloshing is damped out with increasing q0 for Kerker
preconditioning.

Figure 2 shows the convergence properties of calculations with different Kerker pre-conditioning
parameters. All calculations were done using simple linear mixing with mixing parameter of 0.5. and
smearing temperature of 300K (≈ 0.001Ha). Calculations with q0 < 0.4 did not converge (no self-
consistent solutions were found due to charge-sloshing). We found that the choice of q0 = 1.0∗2πbohr−1 =
1.188Å

−1
is optimum for aluminium bulk with the chosen vacancy. This is comparable with the results

of [11].
Convergence performances on the 32 atoms aluminium bulk with vacancy at (0, 0, 0) using a wave-

dependent metric method were also tested. However from the test it appears that Pulay mixing alone
(with 5 Pulay history steps) is enough for reaching self-consistency. And switching on/off either wave-
dependent metric or Kerker-preconditioning had no noticeable effect on self-consistency. This may be
because the 32 Al atom with defect system is still not difficult enough for Pulay mixing to fail. More tests
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Figure 1: Left: Total ground-state energy vs. number of self-consistency iterations. Right: Residual in
electron density vs. number of self-consistency iterations.
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Figure 2: Left: Number of iterations required to reach self-consistency vs. q0 for Kerker preconditioning.
Right: Convergence properties with different q0 parameters.
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3 METHFESSEL-PAXTON APPROXIMATION TO STEP FUNCTION

Energy

g(E)*f(E-E_F)

E_F
g(E)

Figure 3: Illustration of the difference between
∫

dE g(E)f(E−EF , T ) and
∫

dE g(E)θ(E−EF , T ). The
blue area corresponds to the former and the red area corresponds to the latter. Notice that the patch of
blue area above EF is not the same size as the (uncovered) red area just below EF .

may be required in future with larger systems with more complex structures may be needed to fully test
the potential of Kerker preconditioning and wave-dependent metric on improving the self-consistency
process.

3 Methfessel-Paxton Approximation to Step Function

Apart from the effects of charge-sloshing, another main problem associated with calculations involv-
ing metallic systems is that one must integrate a discontinuous function over the Brillouin zone due to
the partial filling of the band. For numerical integration methods this requires a very fine reciprocal
space mesh (k-mesh) inside the Brillouin zone. One way to rectify this problem is to approximate the
step-function occupation function wit a Fermi-Dirac function of finite temperature T . This makes the
integrand a differentiable function everywhere in the Brillouin zone and thus improves k-mesh conver-
gence though one has to live with the fact that the result obtained is actually for a slightly different
problem of system under finite temperatures. In fact one can show that by simply approximating the
step function with a Fermi-Dirac distribution

g(E)f(E − EF , T ) ≈ g(E)θ(E − EF )

where
f(E − EF , T ) ≡ 1

e(E−EF )/kBT + 1

we in general cannot get the integral
∫

dE g(E)f(E−EF , T ) to equal to
∫

dE g(E)θ(E−EF , T ) exactly,
this can be seen clearly in figure 3

A more sophisticated approximation to the occupation function can be done using Methfessel and
Paxton method[14]. This method approximates the step-function by starting with approximating the
delta-function using expansion in a set of orthogonal Hermite polynomials. And then the N -th order
approximation SN (x) is obtained by integrating the delta function. The method guarantees that∫

dE g(E)SN

(
E − EF
kBT

)
=
∫

dE g(E)θ
(
E − EF
kBT

)
for any g(E) that is an polynomial of N -th order or less. The expansion in Hermite polynomials are
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Figure 4: Left: Methfessel-Paxton approximation to delta function. Right: Methfessel approximation to
step function.

given as

S0(x) =
1
2

(1− erf(x)) (4)

SN (x) = S0(x) +
N∑
n=1

AnH2n−1(x)e−x
2

(5)

where

An =
(−1)n

n!4n
√
π

(6)

and Hermite polynomials can be generated by the recurrence relation

H0(x) = 1 (7)
H1(x) = 2x (8)

Hn+1(x) = 2xHn(x)− 2nHn−1(x) (9)

Note that at 0-th order, the Methfessel-Paxton method corresponds to a simple Fermi-Dirac like smearing.
The ground-state energy when calculated using Methfessel-Paxton smearing is no-longer variational.

Instead the ground-state density minimises the free energy[11]

F = E −
∑
n

kBT · 1
2
AnH2n

(
En − EF
kBT

)
e
−

“
En−EF

kBT

”2

(10)

Difference between F and E are small even for large kBT . This makes Methfessel-Paxton method
desirable for calculations with metallic systems, one will be able to use a much corser reciprocal grid
with a relatively high smearing factor kBT without introducing too much difference between F and E. If
F −E is large then it means the calculated ground-state energy deviates from the true zero-temperature
energy—which we are trying to approximate—greatly and therefore the result is unreliable.

However Methfessel-Paxton method also introduces a numerical artefact that Fermi-energy may no-
longer be unique. To see this we notice that by expanding the delta function in terms Hermite poly-
nomials, we introduce a number of roots to the function, and this translates into regions of negative
occupancies in SN . This is illustrated in figure 4. As a result, the electron number as a function of Fermi
energy:

Ne(EF ) = 2 ∗
∑
n

∫
d3kw(k)f

(
En(k)− EF

kBT

)
(11)

(where w(k) is weight, and f(x) is the occupation function, which is given as SN (x) for order N
Methfessel-Paxton approximation) is no-longer monotonic. This behaviour can be illustrated by a sim-
ple toy model where we imaging have a system with the density of states represented as two gaussian
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Figure 5: Left: Density of State of a toy model system. Right: The corresponding number of electrons
with respect to Fermi Energy

function separated by some energy ∆E, then Ne(Ef ) can be calculated easily and are plotted in figure 5.
As we can see, there is a possibility that for a given number of electrons there are more than one Fermi
energies that would give the correct answer.

While given a lower bound and upper bound in function Ne(EF ) the bisection method always returns
a solution EF that gives the desired electron numbers, it is important that we are consistent on which
EF—if there are more than one—we actually find. Note that the properties of non-unique Fermi energy
is not physical, but is an artefact of Methfessel-Paxton approximation. Never the less, to be consistent in
our calculations we define the Fermi energy to be always the lowest energy that give the correct electron
number.

To make sure we always find the lowest energy solution, we need to find the lower and upper energy
bounds very carefully. To get a lower bound, we could always start from the lowest energy. However to
be more efficient, this energy is probably too low, and we define a parameter N0 such that we fill up the
lower bands (and assuming occupation of 1.0) until we have Ne −N0 electrons. And we use the highest
filled energy as the lower bound. To find the upper bound, we increase the lower band by energy steps
of δε until Ne(EF ) is greater than the desired number of electrons. To find δε, we have to be careful
the that it is not too big and miss one possible solution and at the same time not too small so that
calculation is still efficient. We note that the width of the Methfessel-Paxton approximation to delta
function is controlled by the gaussian weight e−x

2
, where x = En−EF

kBT
. Hence we may define the width

W of the Methfessel-Paxton approximation to delta function as

W = 2
√
− ln(g)kBT (12)

where g > 0 is a user definable parameter. Then we prove that—see theorem A.1—for a Methfessel-
Paxton approximation of order N , there are exactly 2N roots for DN (x)—Methfessel-Paxton approxi-
mation to δ(x). This implies we can choose the energy step to be

δε =
W

η2N
=

√− ln(g)kBT
ηN

(13)

where η is a user definable parameter controlling finess of the step. If η ≥ 1.0, η should be small enough
to only go over one stationary point in SN at a time—remember DN (x) is the derivative of SN (x).
And hence if starting from an absolute lower bound, the next upper bound we will find for Ne(EF ) will
guaranteed to bracket only the lowest Fermi Energy. We can then use the bisection method to find EF .

3.1 Test Results

Figure 6 shows the comparison between calculations on a 4 atom unit cell aluminium bulk using Fermi
and Methfessel-Paxton smearing methods. We only did non-self-consistency calculations. We can see
that Fermi smearing leads to different energy results as we increase smearing factor kBT . We can see that
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Figure 6: Left: Free energy vs. smearing factor kBT . The inset shows a zoomed in part of the graph,
comparing different values of free energy for different Methfessel-Paxton order of approximations. Right:
The difference between free energy and the calculated ground-state energy (called Harris energy here)
vs. smearing factor kBT .
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Figure 7: k-point convergence for aluminium bulk, 4 atoms cell, with order 5 Methfessel-Paxton smearing.

the difference between Free energy and the calculated ground-state energy (we called it Harris energy)
also increased dramatically for Fermi smearing. This is expected as the smearing does correspond to the
physical temperature and as kBT increases we depart from the zero-temperature regime. On the other
hand, the smearing in Methfessel-Paxton method is just a parameter used in the approximation. And we
can see that increasing kBT has small effect on the energies calculated using Methfessel-Paxton smearing
and results also improve as the order of Hermite polynomials used increases. This means a relatively
large smearing factor can be used under Methfessel-Paxton approximation, which allows fewer k-points.
To be more specific, figure 7 shows that for smearing factor kBT = 0.1Ha = 2.72eV, (corresponding to
smearing temperature of about 31565.51 K), we reach k-point convergence at about 10 Bloch space (k)
points per each reciprocal lattice direction, while the total energy will be within 10−5Ha of the ground
state energies calculated using low smearing and large number of k-points. This is compared with the
requirement of 25 k-points for convergence with a small smearing factor, see figure 8.

4 ScaLAPACK Performance Profiling

The profiling of Conquest is done using CrayPAT on HECToR XT5h (compiled with Cray LibSci
10.5.0). The test is based on the calculation for bulk aluminium with 32 atoms unit cell and BLACS
processor grid given by 1 × 4. This processor grid is used because it is the recommended by BLACS
for small size matrices and that the calculation failed at diagonalisation for process-grid of 2× 2. Table
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below shows the performance comparisons between different ScaLAPACK block dimensions.

ScaLAPACK Block Conquest Wall Time (s) CrayPAT Wall Time (s)
13× 13 8062.169 7981.555
26× 26 7673.137 7626.500
52× 52 8197.790 8163.051

104× 104 8477.819 8451.286

Results for non-square blocks are omitted because for these cases the calculation again failed at diag-
onalisation. As one can see the optimum block dimension of the calculation is 26×26, this marks roughly
10% improvement over the Conquest default input value which is 104× 104. The main bottleneck and
the largest load imbalance in the calculations are found (after specifying trace group MPI in CrayPAT) to
be the MPI_recv calls within the ScaLAPACK subroutine pzhegvx used for diagonalisation. Table below
lists the largest load imbalances in terms of percentages in the calculation for different block sizes. For
calculations with larger block sizes however, the large load imbalances in the MPI_recv calls are partially
off set by the relatively less (but still significant) number of calls, and we see a shift from MPI_recv to
MPI_bcast being the main bottleneck.

Scalapack Block
Largest Load Imbalance
(MPI recv) % % Time

Largest Load Imbalance
(MPI Bcast) % % Time

13× 13 18.7806 29.4 3.0170 16.7
26× 26 10.1233 32.6 7.2327 15.2
52× 52 38.3164 48.0 13.1732 18.0

104× 104 50.6869 35.8 30.7551 27.5

This indicates clearly that the choice of ScaLAPACK block sizes is a determine factor on controlling
the efficiency of the ScaLAPACK routines. For the 32 atom bulk aluminium calculation the optimal
value seems to be 26× 26.

We also compared the efficiency of the ScaLAPACK subroutine pzhegvx with the LAPACK equivalent
zhegvx for a single processor case. These calculations were performed on a local Sun workstation 2 ×
AMD Opteron 2214 (2.2 GHz 2 cores). The table below shows the results of comparison

Total Wall Time (s)
LAPACK 6590.180

ScaLAPACK 8767.027
Time Spent in Calculating Density Matrix (s)

LAPACK 5803.934
ScaLAPACK 7973.105
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FSC

Interaction Range

i

jj�

j�

Figure 9: Interaction range of primary set atom i with its neighbour j and the corresponding periodic
images j′. All j and j′ are in he neighbour list of i.

So it appears that the LAPACK subroutine is inherently more efficient. This may have a lot to do
with the different quality in the libraries used. The LAPACK implementation is supplied by the AMD
Core Math Library (ACML) as part of the standard set of libraries already on the machine, whereas the
ScaLAPACK implementation is a locally compiled version.

5 k-point Parallelisation

The Conquest implementation of matrices do not regard any system (bulk or otherwise) to have periodic
boundary conditions, instead the code treats any location in real space as it is[5]. The cell from user
input is regarded as the Fundamental Simulation Cell (FSC), and the FSC is repeated in all lattice
directions so that all atoms taking part of interaction with that inside the FSC are taken account of
(see figure 9). All quantum-mechanical operators are represented by matrices using support functions
(which for the purpose of this report may be regarded as a set of basis functions upon which we have
our matrix representation). For details on the meaning of support functions, how these are formed from
the (actual) basis—which can either be Pseudo-Atomic Orbitals (PAOs) or B-Spline functions—and how
are the quantum mechanical quantities represented by these support functions, please refer to [4, 5].

The Conquest method of storing matrices of the form

Aiα,nβ =
∫

d3rφiα(r−Ri)Âφnβ(r−Rj) (14)

is illustrated in figure 10. The atoms in the FSC are divided among the processors and the set of FSC
atoms responsible by each processor is called a primary set. To give Conquest more flexibility in data
transfer space is divided into many partitions and atoms contained in a partitioned space are regarded
as to belong to the that particular partition. Matrix elements corresponding to the same partition are
stored together in continuous piece of memory, and data transfer are normally done partition by partition.
Given different matrices (operators) the interaction ranges between atoms differ, a halo atom of a given
matrix (range) type is then defined to be any atom that is within the interaction range of the any atoms
of the primary set. A set halo atoms corresponds to the union of the set of neighbours (neighbour-lists)
of the primary set atoms. A halo partition of a given interaction range is then any partition that contains
at least one halo atom. A halo is then defined to be the collection of all halo partitions corresponding to a
given range. And finally a covering set of a given processor is defined as the minimum orthorhombic cell
that contains the largest (one corresponding do the longest interaction range) halo. In Aiα,nβ defined in
equation (14), on each node i indexes the primary set atoms responsible by the processor, and n indexes
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Figure 10: Conquest matrix storage format. Each block in the diagram corresponds to (i, j)th atom
block with dimension N i

sf×N j
sf, where N i/j

sf is the number of support functions for atom i or j respectively.
npart is the partition index local to each processing-node.

the atoms in the covering set. Moreover, not all terms with a given n is stored, only those actually in
the neighbour-list of each primary set atom i is stored piece-wise in a row-major format (see figure 10).

To update the electron density Conquest solves the generalised eigen-value problem∑
jβ

H̃k
iα,jβ c

kjβ
n = εn(k)

∑
jβ

S̃k
iα,jβ c

kjβ
n (15)

where indices i, j index the atoms in the FSC, and α, β index the support functions associated to
the corresponding atom. H̃k

iα,jβ corresponds to the matrix representation of the Hamiltonian operator
under periodic boundary conditions:

H̃k
iα,jβ =

∫
d3r φ̃k

iα(r−Ri)Ĥφ̃k
jβ(r−Rj) (16)

where the Bloch sums of support functions are defined as

φ̃k
iα =

1√
N

∑
a

eik·(Ri+a)φiα(r−Ri)

and N is normalisation factor, a is any linear combination of integer multiples of the lattice constants1,
and φiα(r−Ri) is the α-th Conquest support function corresponding to atom i. All atoms which are
periodic images of i share the same support function—i.e. φiα(r−Ri) = φi′α(r−Ri′) if Ri′ = Ri + a.
S̃k

iα,jβ denotes the overlap matrix under periodic boundary conditions

S̃k
iα,jβ =

∫
d3r φ̃k

iα(r−Ri)φ̃k
jβ(r−Rj) (17)

1In other words, sum over a corresponds to some over all periodic images of atom at Ri.
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And finally ckiαn are the coefficients of the eigenvectors spanned by the Bloch sums of support functions

ψk
n(r) =

∑
iα

ckiαnφ̃
k
iα(r−Ri)

It can be shown[3] that the hermitian matrices Ãk
iα,jβ such as H̃k

iα,jβ and S̃k
iα,jβ defined in equation

(16) and (17) can be calculated from the native Conquest matrices using the relationship

Ãk
iα,jβ =

∑
j′
eik·(Rj′−Ri)Hiα,j′β (18)

where j′ indexes the atoms in the covering set which is a periodic image of primary set atom j, that is
Rj′ = Rj + a for any a being a sum of integer multiples of the lattice vectors.

A call to ScaLAPACK subroutine pzhegvx is made to obtain the set of eigenvalues (the band struc-
ture) εn(k) which are used to calculate the Fermi-energy and occupation function (this is discussed briefly
in section 3). Once this is done another call to pzhegvx is made to get the eigenvectors for each k point,
the new electronic density can than be calculated using formula[3]

Kiα,j′β =
∑
k

∑
n

fnc
kiα

nc
kjβ

ne
ik·(Rj′−Ri) (19)

where again, atoms j′ corresponds to the periodic images of the primary set atom j and Rj′ = Rj + a.
So Kiα,j′β again is a matrix with j′ extending over the entire covering set, and is a matrix that can
be stored in native Conquest format. Note that there are two calls to pzhegvx because we cannot
calculate the density without knowing the occupation function first, but on the other hand since the
band structure needs eigenvalues calculated for all k if we are going to make only one call to pzhegvx
all eigenvectors are then need to be stored. By calling pzhegvx twice we can save significant memory
by simply accumulating the eigenvectors into the density matrix. It was found2 also that the call to
pzhegvx for only calculating eigenvalues is only about 10% the cost of the full call that also calculates
the eigenvectors.

The original Conquest implementation solves equation (15) one k point at a time. And the matrices
Hiα,nβ and Siα,nβ are then mapped onto new matrices H̃k

iα,jβ and S̃k
iα,jβ distributed across all available

processors arranged in a BLACS processor grid according to ScaLAPACK cyclic block format. The
calculated eigenvectors from ScaLAPACK for each k are then transfered from ScaLAPACK data format
and accumulated into Kiα,j′β stored across the processors in Conquest format, and the self-consistent
calculation carries on from there.

We note that calculations involved for solving eigenvectors for different k are independent from each
other. If we could add a degree of freedom of allowing subgroups of processors working on different k
then it would allow us to choose better optimised parameters for the ScaLAPACK calculations. For
matrices of a given size there is an optimal number of processors that should be allowed to work on it,
and too many processors means inefficient communications taking over. Hence parallelising calculation in
k would in theory allow one to use more processors more efficiently by having groups of optimal number
of processors working for each ScaLAPACK subroutine call. Since for metallic calculations, te number
of k points required are in the order of 1000s, this is a real degree of freedom we can exploit, especially
for calculations running on HPC systems such as HECToR.

5.1 Implementation

We introduced a new user definable parameter NG, denoting the number of processor groups each
responsible for different set of k points. We want to allocate a set of NG

k (nG) points to each process
group nG (nG = 1, . . . , NG), and then the NG

P (nG) processing-nodes inside each group will work on
the NG

k (nG) points. The cyclic allocation technique is the most efficient in terms of evenly distributing
the work-load. So that the process-group indices nG relates to processing-node indices nP and k-point
indices as

nG = mod((np − 1), NG) + 1 (20)

2From private discussion with the main Conquest developer Dr. David Bowler.
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5 K-POINT PARALLELISATION

and
nG = mod((nk − 1), NG) + 1

To work out NG
P we have

NG
P (nG) =

{
aint(NP /NG) + 1 (nG ≤ mod(NP , NG))
aint(NP /NG) (nG > mod(NP , NG))

and similarly

NG
k (nG) =

{
aint(Nk/NG) + 1 (nG ≤ mod(Nk, NG))
aint(Nk/NG) (nG > mod(Nk, NG))

We introduced arrays pg procs(1 : NG, NG
Pmax) and pg kpoints(1 : NG, NG

kmax) to keep track of which
processors and k points are allocated to which processor groups. These arrays can be worked out following
the steps given in algorithm 2. Note however that the algorithm is order N2

P (where NP is total number
of processors), because the same algorithm is repeated on every processor. However the calculations are
simple and one only has to do it once at the beginning of the calculation; further more no communication
is needed between the processors.

Algorithm 2 Calculation of pg procs(:, :) and pg kpoints(:, :)
1: for all Processor groups nG do
2: i = 1
3: for all Processors, globally indexed by nP do
4: if nG == mod((nP − 1), NG) + 1 then
5: pg procs(nG, i) = nP
6: end if
7: i = i+ 1
8: end for
9: i = 1

10: for all k points, indexed globally by nk do
11: if nG == mod((nk − 1), NG) + 1 then
12: pg kpoints(nG, i) = nk

13: end if
14: i = i+ 1
15: end for
16: end for

The goal is to define a mapping between the ScaLAPACK block cyclic format distributed over a
processor grid consisting of only a subset of processors for a given k point and the native Conquest
format that distributes the rows of the matrices into primary set atoms and partitions across the entire
set of processors. In the original Conquest implementation, to aid the mapping a reference matrix
format is introduced. This is the format for the matrices H̃k

iα,jβ and S̃k
iα,jβ which has the same

form as if one writes them down on for calculations on paper. The reference format matrices are never
physically stored. Also in the original implementation by noticing the fact that the order of atoms in
a calculation can be arbitrary, the atomic ordering of the rows of the ScaLAPACK format is chosen to
be the same as that of the native Conquest format. In other words the atomic ordering (index i) of
the ScaLAPACK matrices H̃k

iα,jβ and S̃k
iα,jβ is chosen to be the same as the ordering of i in matrices

Hiα,nβ and Siα,nβ stored in Conquest format. We have kept this requirement for the implementation
k point parallelisation.

Figure 11 shows the possible mapping of matrices if there are 8 processors in total and the user
have chosen 2 processor groups. The BLACS process grid is assumed to be 2× 2 and the ScaLAPACK
blocks are shown in purple boxes. Due to cyclic allocation, the first group will have processors 1, 3, 5,
7 (note we are indexing the processors from 1) and the second group have processors 2, 4, 6, 8. The
ScaLAPACK matrix for each group have identical format, and the matrix elements differ only by the way
different k point is used to generate H̃k

iα,jβ or S̃k
iα,jβ matrices from the Conquest matrices Hiα,nβ

or Siα,nβ . The coloured squares in the Conquest matrix shows the periodic images of atoms all belong
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to the neighbourhood of a given primary set atom. And their contributions are summed up according
to equation (18) and stored in the corresponding coloured location in the ScaLAPACK matrix. The
numbers inside the small boxes identify the processor responsible for the data block.

Since the atomic ordering of rows and columns of the ScaLAPACK is unchanged from the original
implementation, subroutines find_SC_row_atoms, find_ref_row_atoms and find_SC_col_atoms of the
ScalapackFormat module do not need to be modified. However the rest of the module as well as the
data transfer modules in module DiagModule do need modification, to take into account that now the
maps to BLACS processor grid is also dependent on the processor group we are in, and we have to send
one copy of the matrices to each of the NG processor groups.

To obtain the eigenvectors the ScaLAPACK subroutine pzhegvx call is made on every processor,
with each processor group using a different set of H̃k

iα,jβ and H̃k
iα,jβ (corresponding to a different k).

Upon return from the ScaLAPACK call each processor group will have a different set of eigenvectors. To
build the density matrix we first map the ScaLAPACK format eigenvectors into the native Conquest
format, then accumulate the products of the eigenvectors one k point at a time (see equation (19)). This
is preferred because we can then utilise the pre-existing code for generating density matrix, and only one
storage array for eigenvectors in Conquest format is needed on each processor—as contributions from
eigenvectors are accumulated into the density matrix. Also performance wise the main benefit of k point
parallelisation comes from the freedom it offers for optimising the ScaLAPACK routine, and building the
density matrix is simply a scalar multiplication and accumulation process hence it is perfectly efficient to
build the density matrix using the parallel processing format provided by the native Conquest approach
(please read [5] for details on how matrix operations are handled in Conquest).

Some attention needs to be paid on the mapping from the output eigenvectors distributed following
the ScaLAPACK block-cyclic format and the BLACS processor grid, to the distribution format for
matrices used by Conquest. First important fact to note is that the ScaLAPACK subroutine pzhegvx
returns the eigenvectors in columns and in the same order as the corresponding eigenvalues (see Figure
12). On the other hand, in Conquest format for each k each processor is required to be in charge of a
set of atoms in FSC, in other words, a set of indices iα for the eigenvectors ckiαn. And unlike the cases
with conventional matrices in Conquest which are stored in row-major format (i.e. not strictly a matrix
in FORTRAN 90 sense), the eigenvectors are stored as a two-dimensional array. We require the ckiαn
data associated to each iα index to stay in one continuous piece of memory, this means a column-major
storage for the eigenvector. In other words in Conquest format the eigenvectors are stored as ck iα

n .
That is, the eigenvectors are stored in rows. The order of eigenvalues also changes from the ScaLAPACK
format, because the Conquest format ordering should be the same as that of the reference format.

The steps taken to generate the new density is illustrated in pseudocode algorithm 3. One has to
be careful that we do not step over the limits since it is highly likely that number of k points in each
processor group is different, and hence an if statement is required to ensure this.

Algorithm 3 Steps for getting eigenvectors and updating density matrix
1: Build data transfer maps (contained in ScalapackFormat module)
2: for all k point indices pgk in processor groups do
3: Distribute H and S from Conquest format to ScaLAPACK format H̃k and S̃k

4: Call pzhegvx, getting eigenvalues (band structure) only
5: end for
6: Get Fermi energy and occupation function
7: for all k point indices pgk in processor groups do
8: Distribute H and S from Conquest format to ScaLAPACK format H̃k and S̃k

9: Call pzhegvx
10: for all processor groups nG do . We do this one k at a time involving all processors

11: Distribute ckiαn from group nG to all processors from ScaLAPACK format to
Conquest format

12: Accumulate density matrix
13: end for
14: end for
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6 CONCLUSION

5.2 Test Results

Preliminary test calculations were done on both HECToR XT5h (with Cray LibSci 10.5.0) and a local
Sun Workstation with 2 × AMD Opteron 2214 (2 Core 2.2GHz) (with ACML for LAPACK and local
compilation for ScaLAPACK). We used aluminium bulk with 32 atoms unit cell, with a 13× 13× 13 k
point mesh, Fermi-Dirac smearing with temperature of 0.001 Ha. In all cases we did a non-self-consistent
calculation on 4 nodes, results are shown in the table below

NG Processor Grid ScaLAPACK Block Wall Time

HECToR XT5h
1 1× 4 26× 26 2318.599
2 1× 2 26× 26 1808.664
4 1× 1 26× 26 1821.493

Sun Workstation 2
× AMD Opteron
2214

1 1× 4 26× 26 8794.051
2 1× 2 26× 26 6375.609
4 1× 1 26× 26 3331.723

As the results clearly shows that k point parallelisation has a significant improvement on calculation
speed given the same amount of resources compared to the original implementation. This improvement
is more apparent for platforms where the ScaLAPACK libraries are not highly optimised.

6 Conclusion

All of the proposed changes to Conquest code have been successfully implemented and tested. The
Kerker preconditioning method shows clear advantage over linear mixing in allowing calculations to
converge under charge-sloshing conditions. However it is not clear from the examples we have tested
how much improvement Kerker and wave-dependent metric preconditioning have over Pulay mixing,
as the aluminium bulk with defect system also reached self-consistency relatively fast. It is particular
difficult to test the effectiveness of wave-dependent metric preconditioning in this case because it has
to be used together with Pulay mixing. Therefore further testing may be required to realise the true
potential of Kerker preconditioning and wave-dependent metric implementations. We may have to test
on a larger system with more complicated defects.

A technical complexity that could lead to the potential problem of non-unique Fermi energy is discov-
ered in the Methfessel-Paxton method for approximating the step function. This is an intrinsic problem
originating from the form of the Hermite polynomials. The standard search methods still always find a
Fermi energy, but in the rare case of the existence of more than one possible solution, the method can
only pick a random one. This will cause problems later on in the calculations especially if one wants
to calculate forces. We have developed a search method that ensures always the lowest Fermi energy
state is found. And the implementation in Conquest is tested to be working as expected, with the
Methfessel-Paxton approximation allowing much higher smearing temperatures while giving more accu-
rate ground-state energies than Fermi-Dirac smearing. As demonstrated this allows one to reduce the
number of k points required for a calculation significantly and hence reduces the computational cost.

The bottleneck of the calculations was found to be the diagonalisation process, as expected. And
it seems the main bottleneck within the diagonalisation process comes from the imbalances in MPI
communications initiated by ScaLAPACK. Changing the ScaLAPACK block sizes will give a significant
change in the performance of the code, the smaller the block sizes the less load imbalances but at the
same time more communications. Further study is required for testing a wide range of system sizes and
ScaLAPACK parameters which will allow us to develop a better automatic parameterisation scheme for
Conquest, and make it more user friendly. There is an unsolved issue on why the calculation with
2× 2 processor grid and non-square block sizes fails. There may yet be a bug in the code waiting to be
resolved, and more work needs to be done to solve this issue.

The modification of Conquest for k point parallelisation has been successful. There is currently
a limiting requirement that each processor group must hold the same number of processors and no-
redundant processors are allowed. This means NG must be chosen to be a factor of the total number
of processors. We have shown that by dividing processors into subgroups each working on a k point
offers more flexibility and in most cases improves on the efficiency of the code. This is especially true
if running Conquest on a machine that do not have a highly optimised linear algebra library. One
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limitation of the current implication is that k point parallelisation only applies to the processes involved
in diagonalisation, and for other processes the matrices are still shared between all available processors.
This prevents one from using more processors than allowed on calculation with more k points than
number of atoms. There are only a certain number of processors allowed in a given calculation because
no processor is allowed to have zero atoms, but atoms are distributed to all processors. For example it
is not possible to calculate the 32 atom cell bulk aluminium system with 2 processor-groups each having
a 1× 4 processor grid, because this requires 8 processors, but for 32 atoms case some processors will not
be allocated with atoms. More tests are needed to show the potential k point parallelisation have on
much larger calculations on HECToR.

The implementations in Conquest will be submitted to the code repository after further testing and
will be available in the future (beta) release of the code obtainable from http://hamlin.phys.ucl.ac.
uk/NewCQWeb/bin/view.
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A Mathematical Result Used For Implementation of Methfessel-
Paxton Approximation

Theorem A.1 If

DN (x) =
N∑
n=0

AnH2n(x)e−x
2
, An ≡ (−1)n

n!4n
√
π

(21)

and Hn(x) are Hermite polynomials of order n, then DN (x) has exactly 2N real and distinct roots.

Proof We first show that AnH2n(x = 0) > 0,∀n. Using the definition of Hermite polynomials we have

Hn(x = 0) =

{
0 n is odd
(−1)n/2n!

(n/2)! n is even

Hence AnH2n(x = 0) = (−1)n

n!4n
√
π
· (−1)n/2n!

(n/2)! = (2n)!
(n!)24n

√
π
> 0.

Next we show DN (x) is even. This is trivial, since H2n(x) and e−x
2

are even and sum of even
functions is even.

By definition of DN (x) it is a polynomial of degree 2N . Suppose DN (x) has 2k real and distinct roots,
by fundamental theorem of algebra k ≤ N . By fundamental theorem of algebra again any polynomial
could be uniquely defined by its full set of roots up to a constant. In our case let us define a degree
2(k + 1) polynomial S(x) which shares 2k roots with DN (x), but with one extra root at x = 0.

S(x) = α(x− x1)(x+ x1) · · · (x− xk)(x+ xk)x2

where x1, . . . , xk are roots of DN (x), and the scalar factor α = ±1 is defined so that S(x) ≥ 0 for
x ∈ [−x1, x1]. Note that since functions change sign at roots, DN (x) > 0 for x ∈ [−x1, x1], if we define
±x1 to be the closest pair of roots of DN (x) near x = 0.

Suppose (for proof by contradiction) k < N . It is clear from construction that DN (x)S(x) ≥ 0 for
∀x ∈ (−∞,+∞) and also e−x

2
> 0,∀x, hence we have (note that S(x) 6= 0)∫

dxDN (x)S(x)e−x
2
> 0
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On the other hand DN (x) is the (2N + 1)-th order expansion of δ(x). Hence for any polynomial of
degree n, n ≤ N + 1 ∫

dxPn(x)DN (x) =
∫

dxPn(x)δ(x) = Pn(x = 0)

As k < N , which implies 2(k + 1) < 2(N + 1), we have∫
dxS(x)e−x

2
DN (x) = S(x = 0)e0 = 0

We hence have a contradiction. �

References

[1] http://opium.sourceforge.net/.

[2] http://www.icmab.es/siesta/.

[3] D. R. Bowler. Implementation of diagonalisation within conquest. Technical report, University
College London, Oct. 2008.

[4] D. R. Bowler, I. J. Bush, and M. J. Gillan. Practical methods for ab initio calculations on thousands
of atoms. Int. J. Quantum Chem., 77(5):831–842, 2000.

[5] D. R. Bowler, T. Miyazaki, and M. J. Gillan. Parallel sparse matrix multiplication for linear scaling
electronic structure calculations. Comput. Phys. Commun., 137(2):255–273, June 2001.

[6] R. Gaudoin and W. M. C. Foulkes. Ab initio calculations of bulk moduli and comparison with
experiment. Phys. Rev. B, 66(5):052104, Aug 2002.

[7] R. Gaudoin, W. M. C. Foulkes, and G. Rajagopal. Ab initio calculations of the cohesive energy and
the bulk modulus of aluminium. J. Phys.: Condens. Matter, 14(38):8787–8793, 2002.

[8] P. Hohenberg and W. Kohn. Inhomogeneous electron gas. Phys. Rev., 136(3B):B864, 1964.

[9] G. P. Kerker. Efficient iteration scheme for self-consistent pseudopotential calculations. Phys. Rev.
B, 23(6):3082–3084, Mar 1981.

[10] W. Kohn and L. J. Sham. Self-consistent equations including exchange and correlation effects. Phys.
Rev., 140(4A):A1133, 1965.

[11] G. Kresse and J. Furthmüller. Efficiency of ab-initio total energy calculations for metals and semi-
conductors using a plane-wave basis set. Computational Materials Science, 6(1):15–50, July 1996.

[12] G. Kresse and J. Furthmüller. Efficient iterative schemes for ab initio total-energy calculations using
a plane-wave basis set. Phys. Rev. B, 54(16):11169–11186, Oct 1996.

[13] R. M. Martin. Electronic Structure: Basic Theory and Practical Methods. Cambridge University
Press, 2004.

[14] M. Methfessel and A. T. Paxton. High-precision sampling for brillouin-zone integration in metals.
Phys. Rev. B, 40(6):3616–3621, Aug 1989.

[15] H. J. Monkhorst and J. D. Pack. Special points for brillouin-zone integrations. Phys. Rev. B,
13(12):5188–5192, Jun 1976.

[16] P. Pulay. Convergence acceleration of iterative sequences. the case of scf iteration. Chem. Phys.
Lett., 73(2):393 – 398, 1980.

[17] A. M. Rappe, K. M. Rabe, E. Kaxiras, and J. D. Joannopoulos. Optimized pseudopotentials. Phys.
Rev. B, 41(2):1227–1230, Jan 1990.

21



REFERENCES

[18] A. M. Rappe, K. M. Rabe, E. Kaxiras, and J. D. Joannopoulos. Erratum: Optimized pseudopoten-
tials [phys. rev. b 41, 1227 (1990)]. Phys. Rev. B, 44(23):13175–13176, Dec 1991.

[19] N. Troullier and J. L. Martins. Efficient pseudopotentials for plane-wave calculations. Phys. Rev.
B, 43(3):1993–2006, Jan 1991.

22


	Introduction
	Kerker Preconditioning and Wave-dependent Metric
	Implementation
	Test Results

	Methfessel-Paxton Approximation to Step Function
	Test Results

	ScaLAPACK Performance Profiling
	k-point Parallelisation
	Implementation
	Test Results

	Conclusion
	Acknowledgement
	Maths Results Used For Implementation of M-P Approximation

