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Abstract 

The move towards petaflop computing will require scientific software to run efficiently on 
many thousands of processors. For computational fluid dynamics, this imposes new 
challenges. We need to be able to generate very large computational grids, in excess of one 
billion computational cells, to ensure the processors have enough work. In addition, we need 
to partition these large computational meshes for efficient execution on these large scale 
facilities. As most grid generation codes are serial and proprietary, there is little the user can 
do. However, the majority of mesh partitioning software is available open-source and this 
study aims to understand how these codes perform when we need to create an extremely large 
number of computational domains. In particular, we seek to run our fluid dynamics software 
on a petascale system with more than 100,000 cores. This work focuses on the open-source 
software, Code_Saturne, and investigates the issues associated with pre-processing. The mesh 
partitioning software considered in this report has been restricted to open-source packages 
such as Metis, ParMetis, PT-Scotch and Zoltan. Today, Metis is the de facto standard but is a 
sequential code and is therefore limited by memory requirements. Parallel mesh partitioning 
software, such as ParMetis and PT-Scotch, can overcome this limitation provided the quality 
of the partition (edges cut, load balance) remains good. During our study, we found that the 
time required to perform the partition of 121M tetrahedral elements varied with the package 
and found that Metis consistently required the least amount of time. However, in all cases, the 
time to perform the partition was always modest and was not found to be a significant issue. 
In contrast, the memory constraints did vary with the package and PT-Scotch could generate 
mesh partitions in parallel (up to 131072 domains) using only 16 cores whereas ParMetis 
3.1.1 required a minimum of 512 cores to create the 131072 domains. An analysis of the 
metrics suggests that the larger number of cores required by ParMetis results in a partition 
with a poor load balance. In practice, however, the simulation run time did not reflect this 
observation and, for up to 1024 cores, ParMetis produced the lower time to solution. Above 
1024 cores, and up to 8192 cores, the sequential version of Metis showed the best speed-up. 
For 2048 and 4096 cores, PT-Scotch provided a better performance than ParMetis. In general, 
all packages did a reasonable job and it is difficult to identify any specific trends that would 
lead to one package being clearly superior to the others.  
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1. Introduction 

The move towards hardware involving very large numbers of processing units, with state-of-
the-art systems exceeding 100,000 cores, is highlighting many issues related to algorithmic 
scalability. However, for Computational Fluid Dynamics (CFD) software, a new challenge has 
emerged relating to the pre-processing stage. In common with many engineering topics, the 
system of equations (for CFD this is the Navier-Stokes equations) must be discretised onto a 
computational mesh. To run in parallel, the mesh needs to be partitioned into domains of 
equal size to ensure a good load balance. For structured grids, this is fairly straightforward but 
partitioning unstructured grids has always been more challenging. The move to petascale 
computing has made this challenge very immediate. As the computational meshes would have 
to be very large to run efficiently on 100,000 cores, the partitioning software would have to 
run in parallel. This project was to investigate how the partitioning software available would 
perform when creating domains involving very large core counts. 
 
The Computational Fluid Dynamics (CFD) software, Code_Saturne, has been under 
development since 1997 by EDF R&D (Electricité de France) [1]. The software is based on a 
collocated Finite Volume Method (FVM) that accepts three-dimensional meshes built with 
any type of cell (tetrahedral, hexahedral, prismatic, pyramidal, polyhedral) and with any type 
of grid structure (unstructured, block structured, hybrid). This allows Code_Saturne to model 
highly complex geometries. It can simulate either incompressible or compressible flows with 
or without heat transfer and turbulence.  
 
From the outset, Code_Saturne was designed as a parallel code and works as follows: the pre-
processor reads the mesh file and currently partitions the mesh with Metis or Scotch to 
produce the input files for the solver. Once the simulation is complete, the output is post-
processed and converted into readable files by different visualization packages (such as 
ParaView). Parallel code coupling capabilities are provided by EDF’s FVM library. Since 
2007, Code_Saturne has been open-source and is available to any user [2]. To retain the open-
source nature of the proposed work, we have only considered partitioning software that is 
freely available. 
 
One significant advantage of Code_Saturne is its industrial pedigree. The code was originally 
designed for industrial applications and research activities in several fields related to energy 
production. These include nuclear power thermal-hydraulics, gas and coal combustion, turbo-
machinery, heating, ventilation and air conditioning. To highlight the ability of the code to 
handle complex geometries, Figure 1 illustrates a CFD simulation of air flow around the 
Daresbury tower whereas Figure 2 involves water flow around the DARPA-2 submarine. 
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(a) velocity field 
 
 

 
 

(b) turbulence kinetic energy 
 

Figure 1: air flow around the Daresbury tower 
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Figure 2: DARPA-2 submarine model 
 
 
The submarine test case [3, 4], shown in Figure 2, was chosen to test the partitioning software 
and the scalability of Code_Saturne on HECToR. Basic details concerning the submarine’s 
geometry are listed in Table 1. 
 
Table 1 

Geometry Length (L) 4.355 m 

Body diameter (D) 0.507 m 

Exit diameter 0.0075 m 

Sail height (h) 0.206 m 

 
The flow parameters, briefly listed in Table 2, correspond to the DARPA-2 experiment [3, 4]. 
 
Table 2 

Free stream velocity 9 ms-1 

Reynolds number (based on geometry length) 3.89 107 

Outlet pressure 2.01 105 Nm-2 

 
Table 3 lists the simulation parameters used for Code_Saturne. A standard wall function 
method was used for the near wall treatment. 
 
Table 3 

Turbulence model k ε−  
y+ 

≈ 30 (within 25 to 70) 

Discretisation SIMPLE (steady state) 

Solver Algebraic multigrid 
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The test mesh is illustrated in Table 4. 
 
Table 4 

Number of cells 195,877 

Number of interior faces 404,737 

Number of boundary faces 9,324 

Number of vertices 47,131 

 
 
 
Figure 3 compares the results of the pressure coefficient (Cp) at different cross sections along 
the submarine’s body with both experiment data and several CFD codes.  
 

 
Figure 3: comparisons of pressure coefficients 

 
From the comparisons in Figure 3, it can be seen that the results obtained by Code_Saturne 
are in good agreement with experimental data and a range of commercial software packages 
Fluent [5], STAR-CD [6], and CFX [7] and also the open-source software OpenFoam [8]. 
 
For this dCSE project, Code_Saturne 2.0.0-beta2 version will be used. Several open-source 
mesh partitioning packages have been investigated, including Metis, ParMetis, PT-Scotch and 
Zoltan. All packages were integrated into Code_Saturne 2.0.0-beta2 to analyse their parallel 
partitioning performance. A very large submarine test case was created to test the software 
and involved 121,989,150 (121M) tetrahedral cells. 
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2. Mesh partitioning software packages porting into Code_Saturne 

 
In common with many parallel CFD codes, data communication is carried out by exchanging 
data via halo cells [9], as indicated in Figure 4. The halo cells represent the inner boundaries 
between different sub-domains. In this report, each sub-domain is allocated to a core or 
processor. All of the statistics relating to the quality of the mesh partitioning in this report 
include the halo cells. 
 

 
 

Figure 4: working mechanism of halo cells in Code_Saturne 

 
 

2.1 Metis 5.0pre2  

 
Metis 5.0pre2 is a sequential mesh partitioning software package [10] and is widely regarded 
as the de facto standard. It produces high quality partitioned meshes for efficient parallel 
execution. Since it is a serial version, the corresponding newest library of Metis 5.0pre2 was 
introduced through the pre-processor stage of Code_Saturne. The METIS_PartGraphKway 
function of Metis is employed by Code_Saturne to perform the mesh partitioning. 
 
The connection of the libraries can be carried out through the following command lines in the 
installation file for Code_Saturne: 
 
######################### 
## Preprocessor Installation ## 
######################### 
METISPATH=$HOME/metis-5.0pre2 
 

 

2.2 ParMetis 3.1.1 

 
ParMetis 3.1.1 is a parallel version of the partitioning package [11]. One of the aims is to 
investigate its ability to produce high quality mesh partitioning in parallel. For tackling the 
very large meshes envisaged, it will not be possible to use the sequential version of Metis due 
to memory constraints. The latest version of the library, ParMetis 3.1.1, was introduced into 
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Code_Saturne to enable parallel mesh partitioning. The ParMETIS_V3_PartKway function of 
ParMetis is employed by Code_Saturne to perform the mesh partitioning.  
 
The connection of the libraries, which is slightly different from the serial version, can be 
carried out through the following command lines during the parallel running in the ‘runcase’ 
file of the Kernel of Code_Saturne. 
 
##################################################### 
CS_LIB_ADD_metis="$HOME/ParMetis-3.1.1/libmetis.a" 
CS_LIB_ADD_parmetis="$HOME/ParMetis-3.1.1/libparmetis.a" 
##################################################### 
 

 

2.3 PT-Scotch 5.1 

 
An alternative and promising parallel partitioning software is PT-Scotch 5.1 [12]. Our goal 
was to assess the quality of the meshes created in parallel. The latest library of PT-Scotch 5.1 
was introduced through the Kernel of Code_Saturne. The SCOTCH_dgraphPart function of 
PT-Scotch is employed by Code_Saturne to perform the mesh partitioning.  
 
The connection of the libraries can be carried out through the following command lines 
during the parallel running in the ‘runcase’ file of the Kernel of Code_Saturne. 
 
#################################################### 
CS_LIB_ADD_ptscotch="$HOME/scotch_5.1/lib/libptscotch.a" 
#################################################### 
 
 
2.4 Zoltan 3.0 

 
Zoltan 3.0 is another parallel software package that can be used for mesh partitioning [13]. 
For the results presented, geometric mesh partitioning was used. However, limited time 
restricted an in-depth analysis and our results reflect only a preliminary analysis. 
 
The latest version of Zoltan 3.0 is introduced through the Kernel of Code_Saturne. The 
library can be introduced through the following command lines during the execution of the 
‘runcase’ file of the Kernel of Code_Saturne. 
 
############################################################ 
CS_LIB_ADD_zoltan="$HOME/Zoltan_v3.0/src/Obj_generic/libzoltan.a" 
############################################################ 
 

 

2.5 Mesh partitioning quality 

 
The submarine geometry previously discussed will be the standard test case. For our tests, it 
has 121,989,150 computational cells (121M). The key factors associated with good parallel 
performance for unstructured grids are load balance and statistics associated with neighbours 
and halo cells, and the selected partitioning packages Metis 5.0pre2, ParMetis 3.1.1, PT-
Scotch 5.1 and Zoltan (RIB) 3.0 are used. 
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Due to memory constraints, all the partitioning of Metis 5.0pre2 was carried out on a 96 GB 
SGI machine in Daresbury Laboratory [14]. The peak value of memory used by Metis 5.0pre2 
for partitioning the 121M case into 8192 domains is around 32 GB, which is beyond the 
amount of memory available on HECToR Phase 2a processing node. However, partitioning 
the grid in parallel can eliminate the memory limits for large scale mesh partitioning. In 
addition to the partitioning tools discussed, Code_Saturne has its own tools for creating 
meshes in parallel. The two approaches available are Space-Filling Curves (SFC) [15] and a 
simple partitioning strategy that just divides the computational cells by the processor number. 
At the time of this study, these tools were in the beta stage of development and testing by 
EDF and it was not possible to generate domains in parallel. 
 
A special focus on the parallel graph partitioning tools, e.g. ParMetis 3.1.1 and PT-Scotch 5.1 
is considered, for the generation of 32 to 131072 sub-domains from the 121M original grid. 
Tables 5 and 6 give the minimum number of processors ParMetis 3.1.1 and PT-Scotch 5.1 
should be run on, depending on the number of sub-domains, the time spent for the graph 
transfer, the partitioning time, the number of edge-cuts, the load balance, the maximum 
number of neighbours a sub-domain might have. 
 
The load balance is defined as the ratio between the number of cells of the smallest sub-
domain divided by the number of cells of the largest sub-domain. 
 

ParMetis 3.1.1 requires at least 32 processors to perform the partitioning up to 8192 sub-
domains, and at least 512 for the 131072 case. Conversely, PT-Scotch 5.1 only requires 16 
processors for all the partitions. The available partitioning strategy clearly depends on the 
number of processors the parallel partitioner is run on and this could have an impact on the 
quality of the partition obtained. 
 

ParMetis 3.1.1's graph transfer time scales very well (speed-up of 12.5 instead of ideal 16 
going from 32 to 512 processors) and PT-Scotch's graph transfer time on 16 processors is 
about twice as costly as ParMetis 3.1.1 on 32 processors, which indicates that both 
partitioning tools exhibit similar performance. On 32 processors, partitioning takes only about 
10% more time for 8192 domains than for 32 sub-domains for ParMetis 3.1.1. For 16384 
domains and above, 64 to 512 processors are used, but less than 40 seconds are required for 
ParMetis 3.1.1 to complete. The PT-Scotch 5.1 partitioning time is much longer (from just 
over 220 seconds for 32 sub-domains to almost 520 seconds for 131072 sub-domains). In 
practice, the times are all very modest and demonstrate that the computational time associated 
with large-scale partitioning is not a major issue. However, as expected, memory constraints 
do impact on how the partitioning is performed for large scale problems. 
 

An important measure of the resulting partition is the number of edge cuts, which indicates 
how the load is balanced across domains and the amount of communication to be performed 
between sub-domains. For this particular case, the partitions generated by ParMetis 3.1.1 lead 
to a slightly larger number of edge-cuts compared to those obtained by PT-Scotch 5.1. In 
general, for partitions up to 65536 sub-domains, the percentage error between the two 
software packages is less than 14% and typically below 10%. However, for the largest 
partition, which involves 131072 sub-domains and is typical of the scale needed for a realistic 
petascale platform, it is about 57% larger ParMetis 3.1.1. 
 

Considering the two software packages under investigation, PT-Scotch 5.1 produces a good 
load balance (above 83% for all the cases), whereas ParMetis 3.1.1 indicates a high degree of 
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variability with generally poor load balancing for a large number of sub-domains. Finally, the 
maximum number of neighbours associated with a partition is seen to increase with both 
ParMetis 3.1.1 and PT-Scotch 5.1 but, in general, are less with PT-Scotch. These metrics 
suggest that better performance should be observed with Code_Saturne for sub-domains 
obtained by PT-Scotch 5.1 rather than by ParMetis 3.1.1. 
 
 
 
 
Table 5: Metrics for the 121M case - ParMetis 3.1.1 

Domains Minimum 
processors 

Graph 
transfer 
time (s) 

Partitioning 
time (s) 

Edge cuts Load 
balance 

Max neighbours 

32 32 22.22 49.28 1034756 0.94 23 

128 32 22.40 49.69 2014746 0.88 25 

512 32 22.35 50.17 3406940 0.66 35 

2048 32 22.74 51.59 5647363 0.34 76 

8192 32 22.31 55.73 9205459 0.36 72 

16384 64 11.90 32.05 11683666 0.43 Not available 

32768 64 12.12 36.72 14607593 0.40 Not available 

65536 128 6.33 35.70 18474955 0.68 Not available 

131072 512 1.79 35.49 36006281 0.31 Not available 

 
 
 
 
 
 

Table 6: Metrics for the 121M case - PT-Scotch 5.1 

Domains Minimum 
processors 

Graph 
transfer 
time (s) 

Partitioning 
time (s) 

Edge cuts Load 
balance 

Max neighbours 

32 16 47.15 221.04 924584 0.93 15 

128 16 43.33 257.66 1779971 0.92 26 

512 16 43.56 296.48 3143164 0.90 43 

2048 16 44.87 338.25 5299619 0.87 46 

8192 16 53.51 385.38 8755670 0.86 50 

16384 16 51.68 412.05 11173729 0.86 54 

32768 16 56.27 442.80 14188598 0.84 64 

65536 16 62.99 478.25 18075714 0.83 61 

131072 16 66.61 519.08 22911992 0.83 50 
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2.6 Parallel performance on HECToR 
 

For the work presented here, all of the tests have been performed on HECToR Phase2a (Cray 
XT4) [16]. Figure 9 shows the CPU time per time step as a function of the number of cores 
for Code_Saturne's simulations running on up to 8192 cores and pre-processed by Metis 
5.0pre2 (on the 96 GB SGI machine located at Daresbury Laboratory, as described in Section 
2.5), ParMetis 3.1.1, PT-Scotch 5.1 and Zoltan (RIB) 3.0. The CPU time per time step 
decreases for all of the simulations as the number of cores is increased, with ParMetis 3.1.1 
partitioning leading to the fastest simulation but no really significant difference up to 512 
cores. From 1024 cores on, Zoltan (RIB) geometric partitioning has a clear effect on the poor 
performance of Code_Saturne. This is to be expected, as geometry-based partitioning tools 
usually do not perform as well as graph-based tools, with the number of edge-cuts and 
neighbours being very large. From 2048 on, Metis 5.0pre2 produces better results than 
ParMetis 3.1.1 and PT-Scotch 5.1. In Tables 5 and 6, PT-Scotch 5.1 generally showed better 
metrics than ParMetis 3.1.1 and for 2048 and 4096 cores, this is confirmed by Code_Saturne 
performing better. However, there is no conclusive evidence to suggest the improved metrics 
offered by PT-Scotch 5.1 results in the best code performance. 
 
 
 

 
 

Figure 9: CPU time per time step as a function of the number of cores 
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Figure 10: Speed-up as a function of the number of cores 

 
 
 
Figure 10 shows the speed-up based on the CPU time per iteration as a function of the number 
of cores. Metis 5.0pre2 demonstrates the best performance with a speed-up almost ideal up to 
2048 cores, whereas Zoltan (RIB) 3.0 exhibits the poorest performance. Overall, PT-Scotch is 
the best parallel partitioner for 2048 and 4096 cores, as shown by Code_Saturne's speed-up, 
which is very close (about 10% lower) to the speed-up obtained when Metis 5.0pre2 is used 
as the partitioning tool. Despite the poor metric indicators of ParMetis 3.1.1, especially at 
high core counts, the code generally performs well and at lower core counts produces the 
minimum run-time. Even at 8192 cores, it is only just below Metis 5.0pre2 which gives the 
best performance at the highest number of cores tested on HECToR Phase 2a. 
 

3. Conclusions 

 
Mesh partition is a key component of solving grid-based problems using unstructured meshes 
and the advent of petascale and, before 2020, exascale systems has highlighted the need to 
revisit this “solved” problem. To test the available partitioning software for its suitability of 
creating very large-scale mesh partitions, we have used Code_Saturne, an open-source CFD 
package that is used extensively in industry and Europe. The geometric problem is based on 
the DARPA submarine which was meshed with 121M tetrahedral elements to reflect the scale 
of the problem sizes expected on a petascale architecture. 
 
The partitioning software considered was Metis 5.0pre2, ParMetis 3.1.1, PT-Scotch 5.1 and 
Zoltan (RIB) 3.0 which are all available as open-source packages. As partitioning a graph is 
considered to be an NP-hard problem, all packages use heuristics in their solution strategy. 
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This naturally leads to differences in the algorithms employed and their implementation with 
the corresponding result that each software package produces a different partition. As Metis 
5.0pre2 is sequential, there are natural memory limitations that impact the total number of 
sub-domains the package can create. 
 
For PT-Scotch 5.1, we found that we could generate 131072 sub-domains using just 16 cores. 
In contrast, ParMetis 3.1.1 required a minimum of 32 cores to partition the DARPA submarine 
and the number of cores grew with the 131072 partition requiring at least 512 cores. However, 
ParMetis 3.1.1 was consistently faster than PT-Scotch but, in practice, the amount of time 
required to partition the mesh was very modest. Although the time is not a major issue, it is 
clear that memory constraints could make an impact on deciding which package to use. 
 
If we consider the metrics presented in Tables 5 and 6, the indications are that PT-Scotch 5.1 
might provide the better solution. In practice, this was not the case. In contrast to the statistics 
produced, ParMetis 3.1.1 provided the minimum run times up to 1024 cores whereas Metis 
5.0pre2 delivered the best performance above 1024 cores and up to the limit of 8192 cores 
tested on HECToR phase 2a. We did find PT-Scotch 5.1 performing better than ParMetis 3.1.1 
on 2048 and 4096 cores. In general, however, it is not possible to identify specific trends that 
would lead to one package being clearly superior to the others. 
 
The results presented for Zoltan are very preliminary. Although this package indicates it 
provides the worst performance, the limited time available to investigate this package means 
that it would be unfair to take this as a definitive result. However, one aspect that became 
apparent was that it was necessary to allocate one core to each sub-domain being created. This 
could be attributed to a limited understanding of how the software works but it would be 
undesirable feature. 
 
As a final comment and observation, all current packages considered performed well and are 
very similar at low core counts. We should also note that these results are only valid for the 
DARPA test case running with Code_Saturne on HECToR phase 2a and other codes and 
problems could perform in a different way, although we anticipate that the results and 
observations are fairly general.  
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