
1

Porting and Optimisation of Code_Saturne on HECToR

Zhi Shang, Charles Moulinec, David R. Emerson1, Xiaojun Gu

Computational Science and Engineering Department

Science and Technology Facilities Council, Daresbury Laboratory

Warrington WA4 4AD, UK

Abstract

The move towards petaflop computing will require scientific software to run efficiently on
many thousands of processors. For computational fluid dynamics, this imposes new
challenges. We need to be able to generate very large computational grids, in excess of one
billion computational cells, to ensure the processors have enough work. In addition, we need
to partition these large computational meshes for efficient execution on these large scale
facilities. As most grid generation codes are serial and proprietary, there is little the user can
do. However, the majority of mesh partitioning software is available open-source and this
study aims to understand how these codes perform when we need to create an extremely large
number of computational domains. In particular, we seek to run our fluid dynamics software
on a petascale system with more than 100,000 cores. This work focuses on the open-source
software, Code_Saturne, and investigates the issues associated with pre-processing. The mesh
partitioning software considered in this report has been restricted to open-source packages
such as Metis, ParMetis, PT-Scotch and Zoltan. Today, Metis is the de facto standard but is a
sequential code and is therefore limited by memory requirements. Parallel mesh partitioning
software, such as ParMetis and PT-Scotch, can overcome this limitation provided the quality
of the partition (edges cut, load balance) remains good. During our study, we found that the
time required to perform the partition of 121M tetrahedral elements varied with the package
and found that Metis consistently required the least amount of time. However, in all cases, the
time to perform the partition was always modest and was not found to be a significant issue.
In contrast, the memory constraints did vary with the package and PT-Scotch could generate
mesh partitions in parallel (up to 131072 domains) using only 16 cores whereas ParMetis
3.1.1 required a minimum of 512 cores to create the 131072 domains. An analysis of the
metrics suggests that the larger number of cores required by ParMetis results in a partition
with a poor load balance. In practice, however, the simulation run time did not reflect this
observation and, for up to 1024 cores, ParMetis produced the lower time to solution. Above
1024 cores, and up to 8192 cores, the sequential version of Metis showed the best speed-up.
For 2048 and 4096 cores, PT-Scotch provided a better performance than ParMetis. In general,
all packages did a reasonable job and it is difficult to identify any specific trends that would
lead to one package being clearly superior to the others.

Keywords: Code_Saturne, mesh partitioning, Metis, ParMetis, PT-Scotch, Zoltan, HECToR

1
 Corresponding author at: Department of Computational Science and Engineering, Science and Technology Facilities Council,

Daresbury Laboratory, Warrington WA4 4AD, United Kingdom. Tel: +44 1925 603221; Fax: +44 1925 603634.

 E-mail address: david.emerson@stfc.ac.uk (D.R.Emerson)

2

Contents

1 Introduction..3
2 Mesh partitioning software packages porting into Code_Saturne………...............................5
 2.1 Metis 5.0pre2..5
 2.2 ParMetis 3.1.1...6
 2.3 PT-Scotch 5.1..6
 2.4 Zoltan 3.0..6
 2.5 Mesh partitioning quality..7
 2.6 Parallel performance on HECToR..9
3 Conclusions..10
Acknowledgements...11
References...11

3

1. Introduction

The move towards hardware involving very large numbers of processing units, with state-of-
the-art systems exceeding 100,000 cores, is highlighting many issues related to algorithmic
scalability. However, for Computational Fluid Dynamics (CFD) software, a new challenge has
emerged relating to the pre-processing stage. In common with many engineering topics, the
system of equations (for CFD this is the Navier-Stokes equations) must be discretised onto a
computational mesh. To run in parallel, the mesh needs to be partitioned into domains of
equal size to ensure a good load balance. For structured grids, this is fairly straightforward but
partitioning unstructured grids has always been more challenging. The move to petascale
computing has made this challenge very immediate. As the computational meshes would have
to be very large to run efficiently on 100,000 cores, the partitioning software would have to
run in parallel. This project was to investigate how the partitioning software available would
perform when creating domains involving very large core counts.

The Computational Fluid Dynamics (CFD) software, Code_Saturne, has been under
development since 1997 by EDF R&D (Electricité de France) [1]. The software is based on a
collocated Finite Volume Method (FVM) that accepts three-dimensional meshes built with
any type of cell (tetrahedral, hexahedral, prismatic, pyramidal, polyhedral) and with any type
of grid structure (unstructured, block structured, hybrid). This allows Code_Saturne to model
highly complex geometries. It can simulate either incompressible or compressible flows with
or without heat transfer and turbulence.

From the outset, Code_Saturne was designed as a parallel code and works as follows: the pre-
processor reads the mesh file and currently partitions the mesh with Metis or Scotch to
produce the input files for the solver. Once the simulation is complete, the output is post-
processed and converted into readable files by different visualization packages (such as
ParaView). Parallel code coupling capabilities are provided by EDF’s FVM library. Since
2007, Code_Saturne has been open-source and is available to any user [2]. To retain the open-
source nature of the proposed work, we have only considered partitioning software that is
freely available.

One significant advantage of Code_Saturne is its industrial pedigree. The code was originally
designed for industrial applications and research activities in several fields related to energy
production. These include nuclear power thermal-hydraulics, gas and coal combustion, turbo-
machinery, heating, ventilation and air conditioning. To highlight the ability of the code to
handle complex geometries, Figure 1 illustrates a CFD simulation of air flow around the
Daresbury tower whereas Figure 2 involves water flow around the DARPA-2 submarine.

4

(a) velocity field

(b) turbulence kinetic energy

Figure 1: air flow around the Daresbury tower

5

Figure 2: DARPA-2 submarine model

The submarine test case [3, 4], shown in Figure 2, was chosen to test the partitioning software
and the scalability of Code_Saturne on HECToR. Basic details concerning the submarine’s
geometry are listed in Table 1.

Table 1

Geometry Length (L) 4.355 m

Body diameter (D) 0.507 m

Exit diameter 0.0075 m

Sail height (h) 0.206 m

The flow parameters, briefly listed in Table 2, correspond to the DARPA-2 experiment [3, 4].

Table 2

Free stream velocity 9 ms-1

Reynolds number (based on geometry length) 3.89 107

Outlet pressure 2.01 105 Nm-2

Table 3 lists the simulation parameters used for Code_Saturne. A standard wall function
method was used for the near wall treatment.

Table 3

Turbulence model k ε−
y+

≈ 30 (within 25 to 70)

Discretisation SIMPLE (steady state)

Solver Algebraic multigrid

6

The test mesh is illustrated in Table 4.

Table 4

Number of cells 195,877

Number of interior faces 404,737

Number of boundary faces 9,324

Number of vertices 47,131

Figure 3 compares the results of the pressure coefficient (Cp) at different cross sections along
the submarine’s body with both experiment data and several CFD codes.

Figure 3: comparisons of pressure coefficients

From the comparisons in Figure 3, it can be seen that the results obtained by Code_Saturne
are in good agreement with experimental data and a range of commercial software packages
Fluent [5], STAR-CD [6], and CFX [7] and also the open-source software OpenFoam [8].

For this dCSE project, Code_Saturne 2.0.0-beta2 version will be used. Several open-source
mesh partitioning packages have been investigated, including Metis, ParMetis, PT-Scotch and
Zoltan. All packages were integrated into Code_Saturne 2.0.0-beta2 to analyse their parallel
partitioning performance. A very large submarine test case was created to test the software
and involved 121,989,150 (121M) tetrahedral cells.

7

2. Mesh partitioning software packages porting into Code_Saturne

In common with many parallel CFD codes, data communication is carried out by exchanging
data via halo cells [9], as indicated in Figure 4. The halo cells represent the inner boundaries
between different sub-domains. In this report, each sub-domain is allocated to a core or
processor. All of the statistics relating to the quality of the mesh partitioning in this report
include the halo cells.

Figure 4: working mechanism of halo cells in Code_Saturne

2.1 Metis 5.0pre2

Metis 5.0pre2 is a sequential mesh partitioning software package [10] and is widely regarded
as the de facto standard. It produces high quality partitioned meshes for efficient parallel
execution. Since it is a serial version, the corresponding newest library of Metis 5.0pre2 was
introduced through the pre-processor stage of Code_Saturne. The METIS_PartGraphKway
function of Metis is employed by Code_Saturne to perform the mesh partitioning.

The connection of the libraries can be carried out through the following command lines in the
installation file for Code_Saturne:

#########################
Preprocessor Installation ##
#########################
METISPATH=$HOME/metis-5.0pre2

2.2 ParMetis 3.1.1

ParMetis 3.1.1 is a parallel version of the partitioning package [11]. One of the aims is to
investigate its ability to produce high quality mesh partitioning in parallel. For tackling the
very large meshes envisaged, it will not be possible to use the sequential version of Metis due
to memory constraints. The latest version of the library, ParMetis 3.1.1, was introduced into

8

Code_Saturne to enable parallel mesh partitioning. The ParMETIS_V3_PartKway function of
ParMetis is employed by Code_Saturne to perform the mesh partitioning.

The connection of the libraries, which is slightly different from the serial version, can be
carried out through the following command lines during the parallel running in the ‘runcase’
file of the Kernel of Code_Saturne.

CS_LIB_ADD_metis="$HOME/ParMetis-3.1.1/libmetis.a"
CS_LIB_ADD_parmetis="$HOME/ParMetis-3.1.1/libparmetis.a"

2.3 PT-Scotch 5.1

An alternative and promising parallel partitioning software is PT-Scotch 5.1 [12]. Our goal
was to assess the quality of the meshes created in parallel. The latest library of PT-Scotch 5.1
was introduced through the Kernel of Code_Saturne. The SCOTCH_dgraphPart function of
PT-Scotch is employed by Code_Saturne to perform the mesh partitioning.

The connection of the libraries can be carried out through the following command lines
during the parallel running in the ‘runcase’ file of the Kernel of Code_Saturne.

CS_LIB_ADD_ptscotch="$HOME/scotch_5.1/lib/libptscotch.a"

2.4 Zoltan 3.0

Zoltan 3.0 is another parallel software package that can be used for mesh partitioning [13].
For the results presented, geometric mesh partitioning was used. However, limited time
restricted an in-depth analysis and our results reflect only a preliminary analysis.

The latest version of Zoltan 3.0 is introduced through the Kernel of Code_Saturne. The
library can be introduced through the following command lines during the execution of the
‘runcase’ file of the Kernel of Code_Saturne.

CS_LIB_ADD_zoltan="$HOME/Zoltan_v3.0/src/Obj_generic/libzoltan.a"

2.5 Mesh partitioning quality

The submarine geometry previously discussed will be the standard test case. For our tests, it
has 121,989,150 computational cells (121M). The key factors associated with good parallel
performance for unstructured grids are load balance and statistics associated with neighbours
and halo cells, and the selected partitioning packages Metis 5.0pre2, ParMetis 3.1.1, PT-
Scotch 5.1 and Zoltan (RIB) 3.0 are used.

9

Due to memory constraints, all the partitioning of Metis 5.0pre2 was carried out on a 96 GB
SGI machine in Daresbury Laboratory [14]. The peak value of memory used by Metis 5.0pre2
for partitioning the 121M case into 8192 domains is around 32 GB, which is beyond the
amount of memory available on HECToR Phase 2a processing node. However, partitioning
the grid in parallel can eliminate the memory limits for large scale mesh partitioning. In
addition to the partitioning tools discussed, Code_Saturne has its own tools for creating
meshes in parallel. The two approaches available are Space-Filling Curves (SFC) [15] and a
simple partitioning strategy that just divides the computational cells by the processor number.
At the time of this study, these tools were in the beta stage of development and testing by
EDF and it was not possible to generate domains in parallel.

A special focus on the parallel graph partitioning tools, e.g. ParMetis 3.1.1 and PT-Scotch 5.1
is considered, for the generation of 32 to 131072 sub-domains from the 121M original grid.
Tables 5 and 6 give the minimum number of processors ParMetis 3.1.1 and PT-Scotch 5.1
should be run on, depending on the number of sub-domains, the time spent for the graph
transfer, the partitioning time, the number of edge-cuts, the load balance, the maximum
number of neighbours a sub-domain might have.

The load balance is defined as the ratio between the number of cells of the smallest sub-
domain divided by the number of cells of the largest sub-domain.

ParMetis 3.1.1 requires at least 32 processors to perform the partitioning up to 8192 sub-
domains, and at least 512 for the 131072 case. Conversely, PT-Scotch 5.1 only requires 16
processors for all the partitions. The available partitioning strategy clearly depends on the
number of processors the parallel partitioner is run on and this could have an impact on the
quality of the partition obtained.

ParMetis 3.1.1's graph transfer time scales very well (speed-up of 12.5 instead of ideal 16
going from 32 to 512 processors) and PT-Scotch's graph transfer time on 16 processors is
about twice as costly as ParMetis 3.1.1 on 32 processors, which indicates that both
partitioning tools exhibit similar performance. On 32 processors, partitioning takes only about
10% more time for 8192 domains than for 32 sub-domains for ParMetis 3.1.1. For 16384
domains and above, 64 to 512 processors are used, but less than 40 seconds are required for
ParMetis 3.1.1 to complete. The PT-Scotch 5.1 partitioning time is much longer (from just
over 220 seconds for 32 sub-domains to almost 520 seconds for 131072 sub-domains). In
practice, the times are all very modest and demonstrate that the computational time associated
with large-scale partitioning is not a major issue. However, as expected, memory constraints
do impact on how the partitioning is performed for large scale problems.

An important measure of the resulting partition is the number of edge cuts, which indicates
how the load is balanced across domains and the amount of communication to be performed
between sub-domains. For this particular case, the partitions generated by ParMetis 3.1.1 lead
to a slightly larger number of edge-cuts compared to those obtained by PT-Scotch 5.1. In
general, for partitions up to 65536 sub-domains, the percentage error between the two
software packages is less than 14% and typically below 10%. However, for the largest
partition, which involves 131072 sub-domains and is typical of the scale needed for a realistic
petascale platform, it is about 57% larger ParMetis 3.1.1.

Considering the two software packages under investigation, PT-Scotch 5.1 produces a good
load balance (above 83% for all the cases), whereas ParMetis 3.1.1 indicates a high degree of

10

variability with generally poor load balancing for a large number of sub-domains. Finally, the
maximum number of neighbours associated with a partition is seen to increase with both
ParMetis 3.1.1 and PT-Scotch 5.1 but, in general, are less with PT-Scotch. These metrics
suggest that better performance should be observed with Code_Saturne for sub-domains
obtained by PT-Scotch 5.1 rather than by ParMetis 3.1.1.

Table 5: Metrics for the 121M case - ParMetis 3.1.1

Domains Minimum
processors

Graph
transfer
time (s)

Partitioning
time (s)

Edge cuts Load
balance

Max neighbours

32 32 22.22 49.28 1034756 0.94 23

128 32 22.40 49.69 2014746 0.88 25

512 32 22.35 50.17 3406940 0.66 35

2048 32 22.74 51.59 5647363 0.34 76

8192 32 22.31 55.73 9205459 0.36 72

16384 64 11.90 32.05 11683666 0.43 Not available

32768 64 12.12 36.72 14607593 0.40 Not available

65536 128 6.33 35.70 18474955 0.68 Not available

131072 512 1.79 35.49 36006281 0.31 Not available

Table 6: Metrics for the 121M case - PT-Scotch 5.1

Domains Minimum
processors

Graph
transfer
time (s)

Partitioning
time (s)

Edge cuts Load
balance

Max neighbours

32 16 47.15 221.04 924584 0.93 15

128 16 43.33 257.66 1779971 0.92 26

512 16 43.56 296.48 3143164 0.90 43

2048 16 44.87 338.25 5299619 0.87 46

8192 16 53.51 385.38 8755670 0.86 50

16384 16 51.68 412.05 11173729 0.86 54

32768 16 56.27 442.80 14188598 0.84 64

65536 16 62.99 478.25 18075714 0.83 61

131072 16 66.61 519.08 22911992 0.83 50

11

2.6 Parallel performance on HECToR

For the work presented here, all of the tests have been performed on HECToR Phase2a (Cray
XT4) [16]. Figure 9 shows the CPU time per time step as a function of the number of cores
for Code_Saturne's simulations running on up to 8192 cores and pre-processed by Metis
5.0pre2 (on the 96 GB SGI machine located at Daresbury Laboratory, as described in Section
2.5), ParMetis 3.1.1, PT-Scotch 5.1 and Zoltan (RIB) 3.0. The CPU time per time step
decreases for all of the simulations as the number of cores is increased, with ParMetis 3.1.1
partitioning leading to the fastest simulation but no really significant difference up to 512
cores. From 1024 cores on, Zoltan (RIB) geometric partitioning has a clear effect on the poor
performance of Code_Saturne. This is to be expected, as geometry-based partitioning tools
usually do not perform as well as graph-based tools, with the number of edge-cuts and
neighbours being very large. From 2048 on, Metis 5.0pre2 produces better results than
ParMetis 3.1.1 and PT-Scotch 5.1. In Tables 5 and 6, PT-Scotch 5.1 generally showed better
metrics than ParMetis 3.1.1 and for 2048 and 4096 cores, this is confirmed by Code_Saturne
performing better. However, there is no conclusive evidence to suggest the improved metrics
offered by PT-Scotch 5.1 results in the best code performance.

Figure 9: CPU time per time step as a function of the number of cores

12

Figure 10: Speed-up as a function of the number of cores

Figure 10 shows the speed-up based on the CPU time per iteration as a function of the number
of cores. Metis 5.0pre2 demonstrates the best performance with a speed-up almost ideal up to
2048 cores, whereas Zoltan (RIB) 3.0 exhibits the poorest performance. Overall, PT-Scotch is
the best parallel partitioner for 2048 and 4096 cores, as shown by Code_Saturne's speed-up,
which is very close (about 10% lower) to the speed-up obtained when Metis 5.0pre2 is used
as the partitioning tool. Despite the poor metric indicators of ParMetis 3.1.1, especially at
high core counts, the code generally performs well and at lower core counts produces the
minimum run-time. Even at 8192 cores, it is only just below Metis 5.0pre2 which gives the
best performance at the highest number of cores tested on HECToR Phase 2a.

3. Conclusions

Mesh partition is a key component of solving grid-based problems using unstructured meshes
and the advent of petascale and, before 2020, exascale systems has highlighted the need to
revisit this “solved” problem. To test the available partitioning software for its suitability of
creating very large-scale mesh partitions, we have used Code_Saturne, an open-source CFD
package that is used extensively in industry and Europe. The geometric problem is based on
the DARPA submarine which was meshed with 121M tetrahedral elements to reflect the scale
of the problem sizes expected on a petascale architecture.

The partitioning software considered was Metis 5.0pre2, ParMetis 3.1.1, PT-Scotch 5.1 and
Zoltan (RIB) 3.0 which are all available as open-source packages. As partitioning a graph is
considered to be an NP-hard problem, all packages use heuristics in their solution strategy.

13

This naturally leads to differences in the algorithms employed and their implementation with
the corresponding result that each software package produces a different partition. As Metis
5.0pre2 is sequential, there are natural memory limitations that impact the total number of
sub-domains the package can create.

For PT-Scotch 5.1, we found that we could generate 131072 sub-domains using just 16 cores.
In contrast, ParMetis 3.1.1 required a minimum of 32 cores to partition the DARPA submarine
and the number of cores grew with the 131072 partition requiring at least 512 cores. However,
ParMetis 3.1.1 was consistently faster than PT-Scotch but, in practice, the amount of time
required to partition the mesh was very modest. Although the time is not a major issue, it is
clear that memory constraints could make an impact on deciding which package to use.

If we consider the metrics presented in Tables 5 and 6, the indications are that PT-Scotch 5.1
might provide the better solution. In practice, this was not the case. In contrast to the statistics
produced, ParMetis 3.1.1 provided the minimum run times up to 1024 cores whereas Metis
5.0pre2 delivered the best performance above 1024 cores and up to the limit of 8192 cores
tested on HECToR phase 2a. We did find PT-Scotch 5.1 performing better than ParMetis 3.1.1
on 2048 and 4096 cores. In general, however, it is not possible to identify specific trends that
would lead to one package being clearly superior to the others.

The results presented for Zoltan are very preliminary. Although this package indicates it
provides the worst performance, the limited time available to investigate this package means
that it would be unfair to take this as a definitive result. However, one aspect that became
apparent was that it was necessary to allocate one core to each sub-domain being created. This
could be attributed to a limited understanding of how the software works but it would be
undesirable feature.

As a final comment and observation, all current packages considered performed well and are
very similar at low core counts. We should also note that these results are only valid for the
DARPA test case running with Code_Saturne on HECToR phase 2a and other codes and
problems could perform in a different way, although we anticipate that the results and
observations are fairly general.

Acknowledgements

The authors would like to thank the Engineering and Physical Sciences Research Council
(EPSRC) for their support of Collaborative Computational Project 12 (CCP12) and Dr. Ming
Jiang of STFC who assisted with the partitioning libraries of Code_Saturne.

This project was funded under the HECToR Distributed Computational Science and
Engineering (CSE) Service operated by NAG Ltd. HECToR - A Research Councils UK High
End Computing Service - is the UK’s national supercomputing service, managed by EPSRC
on behalf of the participating Research Councils. Its mission is to support capability science
and engineering in UK academia. The HECToR supercomputers are managed by UoE HPCx
Ltd and the CSE Support Service is provided by NAG Ltd.

14

References

[1] F. Archambeau, N. Mechitoua, M. Sakiz. Code_Saturne: A Finite Volume Code for the
Computation of Turbulent Incompressible Flows – Industrial Applications. International
Journal on Finite Volumes, 1(1), 2004.

[2] Code_Saturne open source: http://www.code-saturne.org.

[3] M. Sohaib, M. Ayub, S. Bilal, S. Zahir, M.A. Khan. Calculation of flows over underwater
bodies with hull, sail and appendages. Technical Report of National Engineering and
Scientific Commission, Islamabad, 2001.

[4] Cindy C. Whitfield. Steady and Unsteady Force and Moment Data on a DARPA2
Submarine. Master Thesis of the Faculty of the Virginia Polytechnic Institute and State
University, August 1999, USA.

[5] www.fluent.co.uk.

[6] www.cd-adapco.com/products/STAR-CD.

[7] www.ansys.com/products/fluid-dynamics/cfx.

[8] www.openfoam.com.

[9] EDF R&D. Code_Saturne version 1.3.2 practical user’s guide. April 2008.

[10] G. Karypis, V. Kumar. Metis: A Software Package for Partitioning Unstructured Graph,

Partitioning Meshes, and Computing Fill-Reducing Orderings of Sparse Matrices. Version 5.0, 2007.

[11] http://glaros.dtc.umn.edu/gkhome/views/metis/.

[12] http://www.labri.fr/perso/pelegrin/scotch/.

[13] http://www.cs.sandia.gov/zoltan/Zoltan.html.

[14] http://www.cse.scitech.ac.uk/sog/.

[15] http://www.win.tue.nl/~hermanh/stack/dagstuhl08-talk.pdf.

[16] http://www.hector.ac.uk.

