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Chapter 1

Introduction

1.1 About the CITCOM dCSE Project

This dCSE project was proposed by Dr Jeroen van Hunen, Department of
Earth Sciences, University of Durham along with Dr Charles E. Augarde,
School of Engineering, University of Durham. It is targeted at the multigrid
(MG) improvements to the CITCOM package, a parallel finite element code
designed to solve thermal convection problems relevant to geodynamics. The
code is written in C and parallelisation is based on the MPI library.

1.1.1 Project Duration

This project was granted 12 months full time effort for one person to work
on a full time basis which, as per a flexible working policy, translates to 15
months time on an 80% basis. It started on January 1, 2009 with a scheduled
end date of March 31, 2010 and consisted of three phases, each one dedicated
to one or more specific tasks defined in the project proposal and approved
as appropriate. A breakdown of these tasks can be described as:

1. Initial project study;

2. Multigrid cycles and smoothers;

3. Mesh refinement.
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1.1.2 Project Plan

The aim of this dCSE project is to improve parallel performance and scal-
ability by improving the convergence rate. This would be achieved by im-
plementing/improving algorithmic and programming enhancements for the
existing multigrid cycles (where only the V-cycle was initially implemented)
with the aim being to implement W-cycle and F-cycle methods, along with
mesh refinement and communication amongst the processes. As per pro-
posal, the project is divided into three phases as described in section 1.1.1.
After the initial project study in the first phase, during the next two phases
the potential candidates for improvements are:

• Phase 2

(a) MG cycles
By improving the currently implemented V-cycle and implement-
ing W-cycle and F-cycle.

(b) Smoothing
By replacing the existing Jacobi solver with a Gauss-Seidel solver
that will implement a black/red inter-processes communication
scheme for the boundary nodes (but see further details on this in
Chapter 2).

• Phase 3

(c) Mesh refinement
By implementing local mesh refinement near the high viscosity
gradients.

(d) Improved prolongation and restriction
Interpolation and transfer of information between MG levels. How-
ever, this requires a level of further study/investigation to assess
the feasibility and suitability of CITCOM for this implementation.

Further details of these tasks along with implementation and performance
improvement results are discussed in the following chapters in detail.

1.2 CITCOM Background

This two dimensional / three dimensional Cartesian version of CITCOM was
originally written by Louis Moresi whereas Shijie Zhong later parallelised

2



and improved the code by implementing the full multigrid (MG) algorithm
together with a consistent projection scheme, along with the re-ordering of
the stiffness matrix and its matrix operations such that only half of the
stiffness matrix is stored.
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Chapter 2

Initial Project Study

As per the revised work plan, the first phase is of four months duration with
a start date of January 1, 2009 and end date of April 30, 2009. This also
included an interim report with a description of this phase along with planned
code modifications and tests to be carried out in the next phase. There was
no implementation work planned for this phase as it was to gain CITCOM
related knowledge which was necessary in order to be able to work with the
source code and then perform modifications and further implementations in
the following two phases.
Four months duration of the first phase for the “Initial Project Study” is
necessary for reasons explained in the subsequent paragraphs.

2.1 Background

This CITCOM package is PI’s own copy of the Cartesian version of CITCOM
source code and originated from the time he was working as postdoctoral
researcher at the University of Colorado at Boulder, USA within Depart-
ment of Physics during 2002–2004. In contrast to the Spherical version of
the CITCOM which is well maintained and documented and is available at
the Computational Infrastructure for Geodynamics web site [5], this Carte-
sian version has less documentation for the new users/developers to get kick
started. Also, the source code is commented relatively sparsely otherwise our
effort to get documentation extracted from the source code using Doxygen
[8] would have been reasonably rewarding.
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2.2 Learning Curve

Despite all the difficulties related to understanding the source code due to
lack of documentation and sparsity of comments within the source code,
getting to grips with the code was achieved by a number of ways including,
but not limited to:

• Browsing through the source code to read the source code itself and
sparse comments.

• Making use of Doxygen to extract as much as we could, at least ”Call”
graphs and ”Called by” graphs were of help.

• Making use of etrace package [6] to learn function call tree.

• Meetings and discussions with CITCOM project PI, where his little–
yellow–magic–notebook proved a very valuable asset.

• Googling.

As a result of our combined efforts, we became close to the point where with
some confidence we could say that we are ready for the next phase of the
project and to undertake code development work.
Efforts to learn more about the CITCOM package and implementation con-
tinue throughout this project. Getting hands on with the CITCOM packages,
modifying existing source code, adding new functions, etc. is all useful.

2.2.1 Learning CITCOM

This CITCOM package is built on a structured finite element mesh which is
made up of rectangular elements in two dimensions (2D) and brick elements
in three dimensions (3D). These elements reduce to a square in 2D and a cube
in 3D respectively. Given that an appropriate number of elements are used
in each dimension with respect to the length of the corresponding dimension
and as the size of each element along any axis is dependent of the number
of elements and the overall length of the mesh along that direction. Such
elements can be represented by figure 2.1 in the two dimensional case and by
figure 2.2 in the three dimensional case respectively.
Our main focus here are three dimensional brick elements which for our ap-
plication are more appropriate for the study of the convection of the earth’s
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X(1,0)O(0,0)

Y(0,1)

Figure 2.1: A standard rectangular element in 2D

Y(0,1,0)

Z(0,0,1)

X(1,0,0)O(0,0,0)

Figure 2.2: A standard brick element in 3D

mantle. However, to make the learning systematic and smooth, we would con-
tinue with the description in two dimensions as well as in three dimensions.
It is interesting to learn that structured mesh elements used by CITCOM,
in contrast to the standard Cartesian coordinate system (x,y) in 2D and
(x,y,z) in 3D, have a coordinates system (x,z) in 2D and (x,z,y) in 3D
as shown in figure 2.3 for the two dimensional rectangular element and in
figure 2.4 for the three dimensional brick element respectively.
This fact is further highlighted in figure 2.5 for the two dimensional rectan-
gular element and in figure 2.6 for the three dimensional brick element along
with given coordinates for a unit element where it is also reflected that the
values of z-coordinates along the downward z-axis are taken positive.
Local node numbering for each element is counter-clockwise starting at
the origin (0,0) in 2D as shown in figure 2.5. This is further elaborated
in the 3D case where the local node numbering for an element starts at
the origin (0,0,0), first on the front-face of the element followed by on the
back-face of the element as shown in figure 2.6. This local node numbering
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Z(0,1)

O(0,0)

X(1,0)

Figure 2.3: A CITCOM rectangular element in 2D

Z(0,1,0)

Y(0,0,1)

O(0,0,0)

X(1,0,0)

Figure 2.4: A CITCOM brick element in 3D

runs from 1 to 4 in 2D and from 1 to 8 in 3D with the 0 (zero) position
leaving un–used, in contrast to the C language standard (the language of the
CITCOM package) where everything begins at 0. This is a major feature
of CITCOM that almost everywhere the 0 (zero) position is un–used and
an extra position is allocated where needed in lieu of this un–used position.
However, there are a few exceptions.
There is another point which could be of interest. In most cases, instead of
one extra position in lieu of un–used 0 (zero) position, two extra positions
are defined/allocated.
Also, no element on the mesh surface is considered as a surface element except
those which are on the earth’s surface considering the mapping between mesh
and earth. In other words, only those elements which touch the X-axis in two
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3

4

Unit element nodes

X(1,0)

4 (1, 0)

3 (1, 1)

2 (0, 1)

1 (0, 0)

0 (0, 0)   Not in Use

O(0,0)

Z(0,1)

1

2

Figure 2.5: A CITCOM rectangular element and local nodes relationship

dimensions and XOY-plane in three dimensions are considered to be surface
elements. Similarly, only nodes which are on the X-axis in two dimensions
and XOY-plane in three dimensions are considered to be surface nodes.
To elaborate further on this, in the two dimensional case as shown in fig-
ure 2.7, element 4 is not a surface element whereas element 7 is a surface
element. Also, element 4 has no surface node whereas element 7 has two
surface nodes which are 10 & 13. To emphasise this, any element with sur-
face nodes will have exactly two nodes on the surface irrespective of element
position within the mesh.
Similarly, in the three dimensional case as shown in figure 2.8, element 4

is not a surface element whereas element 15 is a surface element. Also,
element 4 has no surface node whereas element 15 has four surface nodes
which are 40, 25, 28 & 43. To emphasise this, any element with surface
nodes have exactly four nodes on the surface irrespective of element position
in the mesh.
It should be noted that the previous paragraphs which describe surface ele-
ments in a mesh are from the ”numerical” surface of a finite element mesh
perspective rather then from the ”earth science” perspective. In the later
case, the scenario is obvious and well understood. Hence this might just be
a nomenclature issue but it is included here for the sake of clarity.
Mapping of local node numbering for any given element to the correspond-
ing global node numbering is another important relationship for any finite
element mesh. This helps to establish mesh connectivity and the relation-
ship between the nodal coordinates for any given node in the mesh. Such a
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1

2

6

O(0,0,0)

X(1,0,0)

Y(0,0,1)

5 (0, 0, 1)

4 (1, 0, 0)

2 (0, 1, 0)

1 (0, 0, 0)

0 (0, 0, 0)   Not in Use

Z(0,1,0)

3 (1, 1, 0)

6 (0, 1, 1)

7 (1, 1, 1)

8 (1, 0, 1)

Unit element nodes

4

85

3

7

Figure 2.6: A CITCOM brick element and local nodes relationship

connectivity relationship is depicted in figure 2.7 for element 4 and element
7 for the two dimensional case and in figure 2.8 for element 4 and element
15 for the three dimensional case. Having established these relationships for
a finite element mesh, it is not hard to compute the required parameters of
the mesh such as global nodes for other given parameters such as elements
and vice versa. For example, for any given element number, it is not hard
to find a global node number corresponding to a local node number for that
element and hence coordinates for the global node. Conversely, for any given
global node number it can easily be established just how many elements in
the mesh this particular node belongs to. In all mesh elements, local nodes,
global nodes, node coordinates, relationship, etc. extra complexity is intro-
duced by the levels of mesh and all of these entities exist at each level of
the mesh. Each level in the mesh represents a certain depth of when an
element is refined or sub–divided, for example, if a certain element in the
mesh is refined or sub–divided three times, all the resulting elements belong
to the third level of the mesh. These levels of the finite element mesh play
an important role in the multigrid algorithms implemented (or to be imple-
mented) in the CITCOM package. Rather, it is more appropriate to say
that these levels in the finite element mesh provides the basis for multigrid
algorithms.
Let us come back to the mesh element-node relationship. We notice that
all numbering for elements, local nodes and global nodes starts at 1 rather
than 0 (zero). This element numbering and global node numbering begins
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Z−axis element 4

element 7

X−axis

O(0, 0)

6(2) 9(3) 12 15

14(3)11(2)

13(4)10(1)

8(4)5(1)2

1 4 7

3

Figure 2.7: A sample CITCOM mesh of 8 (4x2) rectangular elements

at the origin of the mesh, and gets incremented along the z-axis, followed
by the x-axis and in the 3D case followed by the y-axis. This incremental
order for the element and global node numbering plays an important role
in calculating any entity, whether it is an element–node relationship or the
computation of velocity, pressure, viscosity, etc.
In addition to this order of element and global node numbering in the mesh,
a number of C data structures defined in the header files are of great impor-
tance in implementing algorithms in CITCOM but probably it is not sensible
to go into those details here.

2.3 Precautions

There is no restriction on the number of processes any CITCOM job can
run for or any specific sequence of the number of processes such as 2, 4, 8,

.... However, there are some very basic rules which must be met for any
CITCOM job to be completed successfully. In this regard, a few precautions,
as described below, must be taken.

• The number of mgunit in the (x, z, y)-direction must be at least
twice the number of processes in the (x, z, y)-direction respec-
tively. These mgunit<x,z,y> define the number of elements along the
(x, z, y)-direction for the corresponding structured finite element
mesh at the coarsest level. Thus, the exact number of elements and
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Y−axis

X−axis

Z−axis

element 15

element 4

O(0, 0, 0)

1

2

3 6(2) 12 15

5(1) 11

1074

16

18

19

21(6) 30

4542393633

3832

31

148(4)

17

9(3)

24(7)

23(8)20(5)

35 44(7)

43(8)40(5)3734

22

27

26(2)

25(1)

41(6)

28(4)

13

29(3)

Figure 2.8: A sample CITCOM mesh of 16 (4x2x2) brick elements

the number of global nodes in the (x, z, y)-direction for the given
mesh level are defined as:

– number of elements = mgunit<x, z, y> * 2(level−1)

– number of nodes = mgunit<x, z, y> * 2(level−1) + 1

This helps determine the number of global nodes along the
(x, z, y)-directions to be specified in the CITCOM input file.

The description for the three dimensional case as given above is also
valid for the two dimensional case.

• Any number of processes can be defined in the CITCOM input file
as long as they are consistent with the other predefined parameters,
except the number of processes along the z-direction which must be
1 (one).

2.4 Miscellaneous

This section includes the work which may not necessarily contribute towards
the improvement of the performance of CITCOM but might improve the
CITCOM code in order to make it more user friendly and easy to understand.
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The first of these such additions is described below, others could be added
later as and when implemented.

2.4.1 data directory()

The CITCOM code reads in all of its required parameters from an input file
which is read by CITCOM as first and only input argument at the command-
line. In this input file, a user is required to provide an output directory and
the base name for the output files in the form of <dirname>/<basefilename>
against the input keyword datafile. (Note: The user is free to add new
keywords and/or change existing keywords. Precautions must be taken as
this may trigger changes to the code itself unnecessarily.)
In order to run CITCOM, a user is required to create an empty output
directory before submitting the job, or more appropriately before the start
of execution, within the directory from where the CITCOM job will run. If
the user forgets to create the directory and the job starts executing, it is
certain that the job will crash. However, if the directory was specified in
the input file as existing from a previous run, every thing will be overwritten
unless the base file name is different for the current run.
Addition of the function data directory() has eliminated this unpleasant
possibility. The iser is no longer required to create a directory as specified in
the input file. It will be created at run time. If the directory with the same
name as specified in the input file exists, it will be renamed to a directory,
the name of which is generated by attaching the current date and time (as
explained in section 2.4.2) with current process identity as an extention to
the existing name in the form <directory>.<yyyymmdd>-<hhmmss>.<pid>

to make it unique. Then, the directory as specified in the input file is created
by the root or 0 process and it is assured that no process is allowed to write
to any of the output files until this new directory is created.
This would ensure that no job ends up wasting compute resources and no
results from a previous run are over written due to minor negligence at the
user end.

2.4.2 date and time()

This function utilises C’ built in time struct (struct tm) and returns the
current date and time in the format <yyyymmdd>-<hhmmss> as required by

12



the function date directory() (see section 2.4.1) to make the output data
directory name unique.

2.5 Planned Implementation and Tests

2.5.1 Implementation

During the second phase of this dCSE project, the implementation tasks
as defined in the project proposal are to be implemented. These tasks are
outlined very briefly as follows:

• Study of the currently implemented multigrid V-cycle.

• Implementation of multigrid W-cycle.

• Implementation of multigrid F-cycle.

2.5.2 Testing

Once the implementation of these proposed multigrid cycles is complete, we
would go through testing all three multigrid cycle implementations against
a comparatively smaller to medium size test problem. Hence the tasks are:

• Test multigrid V-cycle for a smaller to medium size test problem(s).

• Test multigrid W-cycle for a smaller to medium size test problem(s).

• Test multigrid F-cycle for a smaller to medium size test problem(s).

2.5.3 Optimisation

All the test results will then be compared against standard benchmarks for
the selected test problem(s). After verifying the accuracy of the test results,
the implementation of multigrid cycles will go through an optimisation phase.
This will require completion of the following tasks:

• Optimise multigrid V-cycle implementation.

• Optimise multigrid W-cycle implementation.

• Optimise multigrid F-cycle implementation.
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At this point it would be especially interesting to see/note if the optimisation
would be problem-dependent, and if so, what characteristics determine the
optimal conditions for these cycles.

2.5.4 Further Testing

Next comes the testing of optimised multigrid cycles for test problem(s)
ranging from medium to large and possibly very large size and subject to
the feasibility of any such test problem in the context of CITCOM capability
and the limitations of the problem itself.

• Test multigrid V-cycle for medium to large size test problem(s).

• Test multigrid W-cycle for medium to large size test problem(s).

• Test multigrid F-cycle for medium to large size test problem(s).

After satisfactory completion of the test runs and verification of results, other
aspects of the CITCOM package would be considered for optimisation as
appropriate. This should lead to the next and final test runs for a number
of benchmark test problems by the end of which we are expecting to have
reasonable performance results available for the report on the end of the
second phase.

2.6 Conclusions

On completion of the first phase of the project within prescribed timescale,
multigrid cycles implementation will be undertaken in the next phase. On
the basis of lessons learnt, it has been understood and recognised mutually
that there should have been more time dedicated towards the learning and
better understanding of this package. In line with this need, time will be
spared to learn more about the CITCOM source code during the next two
phases on the basis of as and when feasible. At the same time, it been agreed
that we will continue to document and improve the existing documentation
both in the form of source code commentary and this report.
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Chapter 3

Multigrids

In order to solve a system of linear equations, typically one of the following
two classes of solvers is used.

1. Direct methods

2. Iterative methods

Direct methods originate from Gaussian elimination, they have a limited
application field and determine the solution at machine precision accuracy
with optimal performance of O(n2log(n)) [7] where n is the number of equa-
tions/unknowns in the linear system.
Iterative methods have wider field of applications with Jacobi, Gauss-Seidel
and Conjugate Gradient being the most popular amongst others. However,
attempts to overcome the unconvincing time efficiency of these methods re-
sulted in an extension to iterative methods called multigrid methods.

3.1 Multigrid Methods

Multigrid (MG) methods are a branch of numerical analysis and comprise
of algorithms for systems of linear equations typically obtained after the
discretization of partial differential equations. Elliptic partial differential
equations are the prime candidates for the multigrid algorithms/applications.
These algorithms employ a hierarchy of discretizations at more than one
level of underlying grid. The purpose of these algorithms is that at multiple
grid levels, called multigrids, they accelerate the rate of convergence. This
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acceleration is achieved by employing a number of steps in a specific order
and includes:

1. Relaxation/Correction of the global solution by solving a coarse grid
problem
Helps reduce high frequency errors by employing Gauss-Seidel like iter-
ative methods, beginning at the finest grid and gradually moving down
to the coarsest grid where it becomes a coarse grid problem.

2. Restriction/Projection of the residual vector of the current approxima-
tion from a fine grid to a coarse grid
Restricts/Projects down the residual vector to a coarse grid by employ-
ing some form of averaging, for example.

3. Prolongation/Interpolation of the approximation to a residual vector
from a coarse grid to a fine grid
Prolongates/Interpolates an approximation to the residual (error) at
the coarse grid to a fine grid and is used for correction there.

These three steps are building blocks or components of any multigrid algo-
rithm and each of these component is briefly described below.

3.1.1 Relaxation/Correction

It has been established [4] that many standard iterative methods possess the
smoothing property. This property makes these methods very effective at
eliminating the high frequency or oscillatory components of the error and
leaves the low frequency or smooth (less oscillatory) components relatively
unchanged. These iterative methods can be further improved to handle er-
ror components of all types equally effectively. Towards this end, relaxation
schemes can be improved by using a good initial guess. A well known tech-
nique to obtain a good initial guess is to perform a few preliminary iterations
on a coarse grid. As there are fewer unknowns on a coarse grid, relaxation
is less expensive and the rate of convergence on a coarse grid is marginally
better as well [4]. Further, a coarse grid solver also takes advantage of the
fact that smooth or low frequency components of error on a fine grid take
the form of oscillatory or high frequency components of error on a relatively
coarse grid. In other words, when a relaxation scheme on a fine grid begins
to stall due to smooth error modes, it is the time to move to the coarse grid
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where these error modes appear more oscillatory and the relaxation scheme
becomes more effective. A combined effect of this, along with other MG
components, results in a substantial improvement to the rate of convergence
of the global problem.
In this context, consider the following steps:

• Relax on fine grid for an approximation to solution.

• Compute residual vector of the current approximation at fine grid.

• Transfer this computed residual vector to the coarse grid by means of
a restriction operator.

• Relax on residual equation on coarse grid to get an approximation to
error.

• Transfer this error approximation to fine grid by interpolation operator.

• Correct the approximate solution obtained on fine grid with error ap-
proximation at coarse grid.

This procedure outlines the correction scheme. Theoretically, relaxation is
employed on a fine grid to approximate the solution until convergence stag-
nates or deteriorates. In practice, relaxation is applied only for a few steps
instead of waiting for convergence to stagnate or deteriorate. This helps
optimise MG schemes. However, the optimal choice of the number of steps
that relaxation is applied may vary for different problems. Relaxation is then
applied to the residual equation on the coarse grid to get the approximation
to the error itself which is then used to correct the solution approximation
already obtained on fine grid. This fine grid and coarse grid scenario when
extended to more than at least two grid levels refers to multigrid and requires
transferring the residual vector to multiple levels in the grid hierarchy, from
the finest grid to the coarsest grid via intermediate grids. The same proce-
dure is required to transfer approximations to the residual (error) but in a
reverse order, from coarsest grid to finest grid. These inter-grid transfer pro-
cedures are referred as restriction/projection and prolongation/interpolation
respectively.
As improvements to prolongation and restriction operators (along with the
mesh refinement) are topics of study planned for phase 3 (the next phase)
within this project, these are not discussed here except the description of the
basic functionality of each of these operators for the sake of completeness.
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3.1.2 Prolongation/Interpolation

Prolongation/Interpolation, in the multigrid context, is an operator used to
transfer error approximation from coarse grid to fine grid. It can be of any
order but even the simplest, linear interpolation for example, works quite
effectively.

3.1.3 Restriction/Projection

As the interpolation operator is used to transfer the error approximation
from a coarse grid to a fine grid, an operator with the reverse or counter
effect that transfers the residual vector from fine grid to coarse grid is called
a restriction/projection operator. The most obvious example for such an op-
erator is the so called injection whereas a more elaborate alternative operator
is the full weighting or weighted average.

3.2 Multigrid Cycles

Multigrid schemes available within CITCOM at the end of this phase (phase
2) are described in this section. The first two schemes implemented in CIT-
COM are known as multigrid V-cycle and W-cycle schemes. The next two
schemes are known as Full Multigrid or FMG schemes, these can also be re-
ferred to as F-cycle schemes. Based on V-cycle and W-cycle within the FMG
scheme, these are referred as FMG(V) and FMG(W) schemes respectively.

3.2.1 V-cycle

Starting at the finest grid, the V-cycle scheme involves a number of relaxation
steps followed by computation of a residual vector which is than transferred
to the next coarser grid with the help of a restriction operator. This proce-
dure is repeated until the coarsest grid with a relatively few grid points (in
comparison to the finest grid) is reached. This scheme then works its way
back to the finest grid while employing the correction just computed to the
next fine grid which is transferred by means of the prolongation operator.
This procedure is repeated until the finest grid is reached. At this point one
iteration of the V-cycle is completed. A graphic representation of a V-cycle
iteration is shown in figure 3.1.
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Figure 3.1: Multigrid V-cycle Scheme

After each completed iteration of the V-cycle scheme, convergence of the
global problem is examined. If a pre-defined convergence criteria is satisfied,
the procedure is terminated. If not, this V-cycle scheme is repeated until
convergence is reached or otherwise the procedure is terminated.

3.2.2 W-cycle
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Grid Level:
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Relaxation/Correction:

4

Legends

Figure 3.2: Multigrid W-cycle Scheme

The W-cycle scheme is sim-
ilar to the V-cycle scheme
as long as the key compo-
nents of the scheme namely
relaxation/correction, restriction
and prolongation operations and
their functionality is concerned.
The only difference, in its sim-
plest form, is that the conver-
gence of the global problem is
examined after the V-cycle iter-
ation and this is repeated twice
to make it a W-cycle scheme as
shown in figure 3.2.
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3.2.3 FMG Cycles

Full Multigrid (FMG) schemes, FMG(V) based on V-cycle and FMG(W)
based on W-cycle, work exactly is the same way as V-cycle and W-cycle
schemes respectively. The difference lies in the iteration which includes all
grid levels in the case of V-cycle and W-cycle schemes in contrast to the
iteration just over two coarsest grid levels at the beginning and this extends
itself to include the next fine grid level, one by one, until it reaches the finest
grid. In other words, it starts a V-cycle (in the case of the FMG(V) scheme)
over two coarsest levels and extends itself incrementally to all grid levels. Due
to incremental inclusion of the next fine grid level into the V-cycle iteration
that started over two coarse grid levels ago and eventually covered all grid
levels (full grid), this scheme is referred as the FMG(V) scheme (also referred
as F-cycle) as shown in figure 3.3. The FMG(W) scheme is not fundamentally
different from the FMG(V) scheme except that it iterates like the W-cycle
instead of the V-cycle as described in section 3.2.2.

1

2

3

4

4Grid Level:

Restriction:

Prolongation:

Relaxation/Correction:

Legends

Figure 3.3: FMG(V)-cycle Scheme

3.2.4 Multigrid Schemes

To summarise, at the end of phase 2 of this project, following four multigrid
schemes are available to solve a variety of problems.

1. Multigrid V-cycle scheme.

2. Multigrid W-cycle scheme.
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3. FMG(V) scheme.

4. FMG(W) scheme.

3.3 Model Problem

The finite element based CITCOM code[11, 12, 15] is designed to solve fluid
flow problems with temperature and composition dependent density and vis-
cosity. The governing equations can be described by a set of conversation
equations for mass, momentum, energy and composition as:

∇ · −→v = 0 (3.1)

∇τ + ∇p = ∆ρgẑ (3.2)

∂T

∂t
+ (−→v · ∇)T = ∇

2T + H (3.3)

∂C

∂t
+ (−→v · ∇)C = 0 (3.4)

In these equations, −→v represents the velocity field, τ the reduced stress field,
p the reduced pressure field, ∆ρ is the relative density dependent on temper-
ature T and composition C, g is the gravitational acceleration, ẑ is the unit
vector in vertical direction, t is the time and H is the heat production rate.
Iterative MG solution methods are used to solve the Stokes equations 3.1
and 3.2, temperature equation 3.3 is solved using a simple explicit forward
integration scheme and composition equation 3.4 is solved using a tracer
method. Equations 3.1 and 3.2 in their discrete form can be written as:

Au + Bp = f (3.5)

BT u = 0 (3.6)

This system of equations is solved using the Uzawa iteration scheme where at
each MG level equation 3.5 is solved iteratively with a Gauss-Seidel method
except at the coarsest grid where it is solved using Conjugate Gradient
method and equation 3.6 is applied as a constraint.
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3.4 Test Problems

For the governing equations (3.1–3.4) representing the model problem, four
representative test problems are considered in this section. This selection of
test problems, in two and three dimensions, covers a variety of geodynamical
problems related to the Earth’s mantle and lithosphere such as:

• Mantle convection

• Subduction zones

• Mantle plumes

These four representative test problems are described as:

1. This “simple 2D test problem” represents time dependent (Rayleigh–
Benard) convection with constant viscosity in a square box (1/h = 1)
with temperature fixed to zero at the top, to ∆T at the bottom and
no internal heat source. However, when run for long enough, that is,
thousands of timesteps on a reasonably coarse mesh, and even much
more timesteps on a finer mesh, this will produce a steady-state solution
if Ra < 106. It reflects symmetry at the side walls (i.e. ∂xT = 0) and
zero shear stress on all boundaries of the square box. The Rayleigh
number is Ra = αg∆Th3/κv = 104 [2] where h is of the order of
hundreds to thousands of kilometres for mantle convection.

2. Time dependent (Rayleigh–Benard) convection with constant viscosity
in a unit cube (1/h = 1) with temperature fixed to zero at the top,
to ∆T at the bottom and no internal heat source. However, when
run for long enough, that is, thousands of timesteps on a reasonably
coarse mesh, and even much more timesteps on a finer mesh, this will
produce a steady-state solution if Ra < 106. It reflects symmetry at
the side walls along the x-direction (i.e. ∂xT = 0) and zero shear
stress on all boundaries of the unit cube. The Rayleigh number is
Ra = αg∆Th3/κv = 104 [2] where h is of the order of hundreds to
thousands of kilometre for mantle convection. This 3D test problem is
an extension of the above simple 2D test problem where a square box
is stretched along the y-direction to make it a unit cube. It is referred
to as a “simple 3D test problem”.
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3. This “complex 2D test problem” is an extension of the simple 2D test
problem and it represents the important geodynamical process of sub-
duction (where two lithospheres, or plates meet, and one subducts be-
neath the other). This extension deals with large and sharp viscosity
contrast. To model this, a temperature-dependent viscosity (with cold
material being strong) of the form η = A(E∗/RT ) with E∗ the activation
energy of mantle material (around 400 kJ/mol), R is the gas constant,
and T the absolute temperature. This viscosity description increases
by many (30 or so) orders of magnitude when T goes from a mantle
temperature of 13500C down to 00C near the surface. As such large
viscosity contrast is impractical to model correctly, the maximum vis-
cosity is cut off to 103

− 105 times the hot mantle viscosity (the latter
being taken as the reference viscosity). The larger the η-contrast in
the calculation, the more difficult for the code to find convergence for
the Stokes equations 3.1 and 3.2. In addition, decoupling of the two
converging plates requires a thin, low viscosity zone. In this test prob-
lem, this low-viscosity zone is set to have a width of tens of kilometres
(compared to the full box size of thousands of kilometres), and has a
viscosity similar to that of the hot mantle (even though it sits within
the cold, much stronger lithosphere). This low-viscosity zone and the
surrounding lithosphere form a sharp viscosity contrast.

4. This “complex 3D test problem” has many of the same features as the
complex 2D test problem. It represents a subduction setting, but one
that has ceased to converge (a scenario that occurs when two conti-
nents collide, and neither of them is able to subduct). In this case the
previously subducted lithosphere hangs vertically in the mantle, and
eventually breaks off or diffuses away in the hot mantle. This setup is
now modelled in full 3D (which is computationally more demanding),
but doesn’t require the weak decoupling zone so that convergence is
expected to be somewhat better.

3.5 Results

This section consists of results for the test problems as described in section
3.4. Each of these test problems is solved using all four multigrid schemes
available at the end of the second phase of this project. The solution times
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are presented in seconds for the MG schemes and the number of MPI pro-
cesses used to get solution in that particular case. The times for MG schemes
and the corresponding number of MPI processes are then presented graphi-
cally followed by plot in log scale to reflect parallel performance and scaling.
Further interpretation of the results is provided with the help of charts rep-
resenting temperature and velocity fields. These charts are plotted in the
xz-plane for temperature and velocity fields for test problems in 2D. The
same is repeated in the xz-plane and yz-plane for the temperature field and
in the xy-plane and xz-plane for the velocity field, for test problems in 3D.
Solutions for test problems in 2D are obtained for 2, 4, 8, 16, 32 and 64
MPI processes. However, the quad core configuration of HECToR [9], that
is, four cores per node have some restrictions on fitting the data to the
available memory during run time. The available memory configuration of
8 GB per node or 2 GB per core on HECToR is not sufficient in the case
of 2 and 4 MPI process jobs for the 2D test problems under consideration
due to the increased size of sub problem per MPI process. This limits the
test runs for 2 MPI process jobs to use one core per node and test runs for
4 MPI processes jobs to use two cores per node only. In all other cases four
cores per node are used for test problems in 2D. Similarly, solutions for test
problems in 3D are obtained for 32, 64, 128 and 256 MPI processes. Again,
the memory configuration of 8 GB per node or 2 GB per core on HECToR is
not sufficient in case of 32 and 64 MPI process jobs for the 3D test problems
under consideration due to the increased size of sub problem per MPI process.
This limits the test runs for 32 MPI processes jobs to use one core per node
and test runs for 64 MPI processes jobs to use two cores per node only. In
all other cases four cores per node are used for test problems in 3D.
This way, jobs using one core per node become four times as expensive and
jobs using two cores per node become two times expensive as compared with
jobs using four cores per node if the run is for the same length of time. This
encourages us to make better use of compute resources by employing more
MPI processes per node in order to take full advantage of the facility.
Before discussion about the individual test problems and results, it should
be noted that first test problems in 2D and 3D are considered “simple” in
comparison to the following two test problems which are considered rela-
tively “complex”. This comparison is based on the physical nature and the
corresponding computational efforts required for the selected set of test prob-
lems. This selection of test problems is by choice and found to be helpful in
identifying strengths and weaknesses of the MG schemes.
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3.5.1 Simple 2D Test Problem

The time taken by each MG scheme to complete 100 timesteps in the case of
the simple 2D test problem is presented in table 3.1. These times are plotted
against the number of MPI processes in figure 3.4 (left) which shows that the
V-cycle scheme is performing better when compared to the other three MG
schemes for MPI processes between 2 and 32. The W-cycle scheme becomes
better for 64 MPI processes. However, it is to be noted that performance of
FMG(V) and W-cycle schemes are very close to each other.

Number of Processes
Time (in seconds)

V-cycle W-cycle FMG(V) FMG(W)

2 3902 4754 4487 5987
4 1851 2264 2104 2695
8 1026 1266 1177 1515
16 523 647 613 799
32 278 354 352 479
64 182 236 265 384

Table 3.1: Time comparison of MG schemes for a simple 2D test problem
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Figure 3.4: Parallel performance and scaling of MG schemes for a simple 2D
test problem

The FMG(W) scheme is slightly more expensive in comparison to the other
MG schemes but has the same pattern. This difference in performance is
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expected and is due to the nature of this MG scheme. Further, plots in
a log scale 3.4 (right) shows that, apart from small differences in time, all
schemes behave in the same way and scale well up to 32 MPI processes. A
slight deterioration in scaling for 64 MPI processes is noticeable however and
it is due to the size of sub problem which becomes too small for each MPI
process, just two elements per MPI process in any direction, and for this size
of sub problem per MPI process, performance and scaling is well within the
acceptable margins.
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Figure 3.5: Temperature and velocity field charts for a simple 2D test problem

Temperature and velocity fields after the completion of 100 timesteps are
shown in figure 3.5. As this is a two dimensional test problem, temperature
and velocity fields can only be drawn in the xz-plane as shown.

3.5.2 Simple 3D Test Problem

This section consists of results for the simple test problem in 3D. As previ-
ously mentioned in section 3.4, this simple test problem in 3D is an extension
of the simple test problem in 2D for which the results and discussion can be
found in section 3.5.1.
These results are for between 32 and 256 MPI processes. The time taken by
each MG scheme to complete 100 timesteps for this test problem in 3D is
presented in table 3.2 and is plotted against the number of MPI processes
in figure 3.6 (left). This graph shows that V-cycle and FMG(V) schemes
perform equally well and slightly better as expected then the corresponding
MG schemes based on the W-cycle, that is, W-cycle and FMG(W) schemes.
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Number of Processes
Time (in seconds)

V-cycle W-cycle FMG(V) FMG(W)

32 21826 24656 21935 25907
44 13548 16354 13194 16736
128 5851 6674 5869 7039
256 3635 4420 3586 4641

Table 3.2: Time comparison of MG schemes for a simple 3D test problem
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Figure 3.6: Parallel performance and scaling of MG schemes for a simple 3D
test problem

The same graph in a log scale 3.6 (right) makes it clear that, apart from
negligibly small differences in time, all schemes behave in the same way and
scale well for between 32 and 256 MPI processes. For this test problem in
3D, the sub problem size per process remains of reasonable size in each case
and shows no deterioration in scaling. In other words, all MG schemes scale
well as the number of MPI processes are increased or the sub problem size
per MPI process is reduced as long as it does not become too small as seen
in case of simple 2D test problem. However, the observed bends are thought
to be due to the variation in number of cores per node in use for particular
jobs for between 32 and 256 MPI processes.
The temperature and velocity fields after the completion of 100 timesteps
are shown in figure 3.7. Due to this being a three dimensional test problem,
it is possible to draw these charts for the temperature field in the yz-plane
and the xz-plane and for the velocity field in the xz-plane and the xy-plane.
These charts are drawn at the surface (zero kilometres), at 400 and 800
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kilometres away from the surface. As these are drawn just after completion
of 100 timesteps, due to the nature of the test problem, the difference in
charts is not easily distinguishable except for the velocity field charts in the
xy-plane.
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Figure 3.7: Temperature and velocity field charts for a simple 3D test problem
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3.5.3 Complex 2D Test Problem

This complex 2D test problem is very difficult to solve numerically and helped
in identifying the weakness of the V-cycle and W-cycle schemes as both of
these schemes failed to converge within 12 hours, the maximum allowed time
for any job on HECToR. However, FMG(V) and FMG(W) schemes managed
to converge for jobs comprising of between 4 and 64 MPI processes but failed
for 2 MPI process jobs.

Number of Processes
Time (in seconds)

V-cycle W-cycle FMG(V) FMG(W)

2 - - * *
4 - - 22883 23238
8 - - 14005 18396
16 - - 8934 12493
32 - - 5676 8286
64 - - 5815 7600

Table 3.3: Time comparison of MG schemes for a complex 2D test problem
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Figure 3.8: Parallel performance and scaling of MG schemes for a complex
2D test problem

The time taken by the FMG(V) and FMG(W) MG schemes to complete
100 timesteps in the case of this complex 2D test problem is presented in
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table 3.3 and plotted against the number of MPI processes in figure 3.8 (left)
which shows that the FMG(V) scheme is performing better as compared
to the FMG(W) scheme for between 8 and 64 MPI processes. The overall
performance pattern is almost similar in both cases. In particular, perfor-
mance for 4 MPI process jobs is nearly the same for both schemes but started
deteriorating for 64 MPI process jobs which is acceptable partly due the de-
creased sub problem size per MPI process. This deterioration is worse for
the FMG(V) scheme as it took more time for a 64 MPI process job than a
32 MPI process job and is elaborated in figure 3.8 (right). Apart from this,
scaling for up to 32 MPI process jobs is surprisingly very good for these MG
schemes.
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Figure 3.9: Temperature and velocity field charts for a complex 2D test
problem

Temperature and velocity fields after the completion of 100 timesteps are
shown in figure 3.9. Due to this being a two dimensional test problem,
temperature and velocity fields are drawn in the xz-plane only. These charts
show a sharp change in phase which might be the reason for the failure of
the V-cycle and W-cycle schemes to converge.

3.5.4 Complex 3D Test Problem

This complex 3D test problem is difficult to solve in comparison to the simple
3D test problem but is relatively easier to solve than the previously attempted
complex 2D test problem. This test problem also helped in identifying some
other aspects of the MG schemes.

30



Number of Processes
Time (in seconds)

V-cycle W-cycle FMG(V) FMG(W)

32 42960 31386 26940 34940
64 * 21205 16305 22440
128 13167 8147 7166 9306
256 12031 5469 4423 6150

Table 3.4: Time comparison of MG schemes for a complex 3D test problem

Time taken by all MG schemes to complete 100 timesteps is presented in
table 3.4. It should be noted that the V-cycle failed to complete 100 timesteps
within the permitted maximum time of 12 hours for any job on HECToR and
could complete only 88 timesteps for a 64 MPI process job. This run was
repeated more than once and each time it could only complete 88 timesteps in
contrast to the 32 MPI process job which managed to complete 100 timesteps.
This V-cycle scheme behaviour for 64 MPI process job is neither understood
nor logical but found consistent for many repeated runs.
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Figure 3.10: Parallel performance and scaling of MG schemes for a complex
3D test problem

These times are plotted against the number of MPI processes in figure 3.10
(left) and show that the FMG(V) scheme is performing better than any other
MG scheme for between 32 and 256 MPI processes followed by the W-cycle
and FMG(W) schemes leaving the V-cycle scheme at the last. Performance
patterns of all schemes are very similar to each other except for the V-cycle
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which could not complete 100 timesteps for the 64 MPI process job and
started deteriorating for the 256 MPI process job. The other three schemes
scale well in contrast to the V-cycle scheme as shown in figure 3.10 (right).
This scaling pattern is very similar to that of MG schemes for the simple 3D
test problem.
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Figure 3.11: Temperature and velocity field charts for a complex 3D test
problem
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The temperature and velocity fields after the completion of 100 timesteps
are shown in figure 3.11 in the yz-plane and xz-plane for the temperature
field and in the xz-plane and xy-plane for the velocity field. These charts are
drawn at the surface (zero kilometres), at 400 and 600 kilometres away from
the surface and show changes to the temperature and velocity fields there.

3.5.5 Summary

Analysis of these results for the four representative test problems in the
previous sections leads to a few observations summarised as:

• As a result of this dCSE work, CITCOM performs over 31% faster for
the V-cycle multigrid scheme, over 38% faster for the W-cycle multigrid
scheme in comparison to the corresponding FMG(V) and FMG(W)
schemes respectively for the simple 2D test problem and over 12% faster
for the W-cycle multigrid scheme in comparison to the corresponding
FMG(W) scheme for the complex 3D test problem. These figures are
based on best performance cases.

• V-cycle scheme is the fastest MG scheme for relatively simple and easy
to converge problems.

• FMG schemes perform well in contrast to the corresponding V-cycle
and W-cycle schemes for complex problems. Additionally, later men-
tioned MG schemes might fail to converge in such cases.

• V-cycle based MG schemes generally perform better than the corre-
sponding W-cycle based MG schemes

• Scaling of any MG scheme that manages to converge is generally excel-
lent. This is particularly true if the sub problem size per MPI process
is not reduced extremely to the minimum possible size, that is, just two
elements per MPI process in any direction.

• V-cycle scheme offers optimal choice for relatively simple problems and
FMG(V) offers optimal choice for relatively complex problems.

• Scaling might be slightly affected by the use of one or two cores per
node in comparison to the use of all four cores per node.
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3.6 Post Processing Tools

This section consists of three types of data processing tools or utilities used
in this dCSE project as described below.

3.6.1 CITCOM Tools

A brief description of CITCOM post processing tools followed by their usage
is given below.

3.6.1.1 combcoord

This program/tool combines the local coordinates information from each
partition to build the global coordinates of all nodal points at the finest level
of grid.
Syntax of combcoord:

combcoord <inputfile>

3.6.1.2 combany

This program/tool combines the first column from files
<basename>.temp.<procID>.<timestep> corresponding to each partition
and builds temperature field corresponding to global node points. In these
files, first column contains temperature field related data.
Syntax of combany:

combany <inputfile> temp <timestep>

The argument temp corresponds to the part of the file name containing data,
<timestep> is the output timestep appended at the end of each output data
file name.

3.6.1.3 combvel

This program/tool extracts the velocity field from files
<basename>.temp.<procID>.<timestep> corresponding to each partition
and builds a global velocity field that maps to the global set of nodal points.
In these files, columns 2, 3 (in 2D) and 4 (in 3D) represents the x, z, (in 2D)
and y (in 3D) components of the velocity field.
Syntax of combvel:
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combvel <inputfile> <timestep>

The tools combcoord, combany and combvel use the same order to store
values of coordinates, temperature and velocity fields so that the global nodal
points correspond to these values correctly. The command-line parameters
in all these cases have usual meanings as described:

1. inputfile obviously stands for the input file used to run CITCOM job.

2. temp is part of the data file name containing the information about a
specific field at node points, e.g. temp stands for temperature field.

3. timestep is the interval at which CITCOM writes data to output files.

3.6.1.4 reggrid

This program/tool reads in data processed with combcoord and one of the
other two programs/tools, namely combany or combvel, described above and
generates output data with all necessary information about temperature or
velocity for example to be used for drawing charts as shown in section 3.5
Syntax of reggrid:

reggrid <inputfile> <field> <snapshot> <orientation>
<coordinate> <discretization> <discretization>

3.6.1.5 regvector

This program/tool does the same job as reggrid except that it adds extra
directional arrows describing the direction of flow for temperature or velocity
for example.
Syntax of regvector:

regvector <inputfile> <field> <snapshot> <orientation>
<coordinate> <discretization> <vectorscaling>

In case of reggrid and regvector, most of the command-line parameters are
similar and can be described as:

1. inputfile stands for the input file used to run a CITCOM job.

2. field is part of the data file name containing the information about a
specific field at node points, e.g. temp for temperature field.
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3. snapshot stands for timestep.

4. orientation is in x-, z-, or y- coordinate (in 2D or 3D as appropriate)
which is kept fixed, so e.g. y means a plot in xz-plane.

5. coordinate is the value of the fixed coordinate, say y 0 or z 100.

It should be noted that in 2D the only possible option for orientation
and coordinate is y 0, that is, a plot in xz-plane only.

6. discretization: reggrid allows for separate discretizations in the two
directions of the plane, while regvector uses the same for both; the
value is dimensional and in kilometres.

7. vectorscaling is a non-dimensional scaling of the size of vector: the
smaller the value, the smaller the vector sizes. A typical value is 0.001.

3.6.2 Gnuplot

Gnuplot [13] is a copyrighted but freely distributed software, portable and
command-line driven, used for interactive data and function plotting on
UNIX, MS Windows, DOS, and many other platforms. Gnuplot supports
many types of plots in 2D and 3D. It can draw using lines, points, boxes,
contours, vector fields, surfaces, and various associated text. It also supports
various specialised plot types. Gnuplot supports many different types of out-
put: interactive screen terminals, direct output to pen plotters or modern
printers, and output to many file formats, for example, eps, fig, jpeg, LaTeX,
metafont, pbm, pdf, png, postscript, svg, etc. All graphs presented in this
report in section 3.5 are drawn using Gnuplot.

3.6.3 The Generic Mapping Tools (GMT)

The Generic Mapping Tools or GMT [14] is an open source collection of
more than 60 programs for manipulating geographic and Cartesian data sets
including filtering, trend fitting, gridding, projecting, etc. and producing
(encapsulated) postscript file illustrations ranging from simple xy plots via
contour maps to artificially illuminated surfaces and 3D perspective views.
GMT supports nearly 30 map projections and transformations and comes
with a variety of support data. Charts given in section 3.5 are generated
using a few of the GMT components which are described in table 3.5.
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Program Description

grdcontour Contouring of 2-D gridded data sets
grdimage Produce images from 2-D gridded data sets
makecpt Make color palette tables
psbasemap Create a basemap plot
psscale Plot gray scale or colour scale on maps
xyz2grd Convert an equidistant table xyz file to a 2-D grid file

Table 3.5: GMT programs and their description.

3.7 Next Phase

Next phase (phase 3) of this dCSE project consists of two tasks:

1. Mesh refinement near high viscosity gradients.

2. Improved prolongation and restriction

These tasks are explained briefly along with some questions on implementa-
tion feasibility within CITCOM code structure.

3.7.1 Mesh Refinement

Mesh refinement in MG methods is clearly distinct from the common pro-
cedure of smoothly decreasing the element size towards the location where
velocity or viscosity gradients are large. Such a method is very difficult to
combine with a structured mesh that requires a nested set of MG meshes.
However, MG naturally offers a different local mesh refinement method. By
locally adding one or more finer layers, the resolution can locally be improved
by a factor of 2 or powers of 2. One such possible scenario of uniform local
refinement is depicted in figure 3.12(left) where only the boundary elements
are refined.
The other scenario of non-uniform local refinement which is more complicated
and difficult to implement is depicted in figure 3.12(right). Since the grid
elements at the finer MG levels do not exist globally, these levels require some
special treatment, and introduce some complexity to the solution methods as
well. In order to handle this complexity there might be a need to introduce
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Figure 3.12: Examples of uniform (left) and non-uniform (right) refinement

an extra layer of “ghost nodal points” on the interior boundaries and/or
extra bookkeeping of the information at the finer grid levels which do not
exist everywhere. This would increase memory requirements significantly
and lead to load imbalance in most cases.
Due to importance of the local mesh refinement and the envisaged improve-
ment it can make to the rate of convergence, the implementation of this
scenario is the top priority in the next phase.

3.7.2 Improvements to Prolongation and Restriction

Restriction and prolongation operations may help to improve the rate of con-
vergence by adopting different averaging schemes [1] as suggested in the pro-
posal. However, studying the current implementations for restriction (based
on weighted averaging) and prolongation (based on weighted interpolation),
previous experience of the PI and outcome of the discussion with the PI on
this topic suggests that it is highly unlikely to gain any significant advantage
by implementing suggested averaging schemes over the existing implementa-
tion.
Therefore it is agreed that the work in phase 3 would concentrate on the
implementation of the local mesh refinement.
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Chapter 4

Refinement

This chapter covers two topics of interest as suggested in the project proposal:

1. Prolongation and Restriction
These operations may help improve the rate of convergence.

2. Local Mesh Refinement
For example a better convergence rate may be achieved by refining part
of the mesh in regions with high velocity gradients.

Each of these topics is discussed below.

4.1 Prolongation and Restriction

For the last phase (phase 3) of the project, two work packages are defined to
implement: (i) local mesh refinement and; (ii) improvements to prolongation
and restriction operations by way of implementing arithmetic, geometric and
harmonic averaging and matrix-dependent transfer. The topic of prolonga-
tion and restriction required investigation before it could be implemented in
the existing scenario so that it is of benefit to CITCOM. Prolongation and re-
striction operations help update the nodal values for the nodes at upper and
lower levels in the multigrid context with nodal values from lower and upper
levels respectively. An appropriate implementation of these operations, by
adopting different averaging schemes [1] is expected to help improve the rate
of convergence.
In this context, the study of current implementations for restriction (based
on weighted averaging) and prolongation (based on weighted interpolation)
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along with the previous experience and discussion with PI on this topic helped
in reaching the conclusion that it is unlikely to gain any significant advantage
by implementing suggested averaging schemes over the existing implementa-
tion. Therefore, it was agreed (with PI and NAG) that any implementation
of prolongation and restriction operations as suggested in the proposal may
not be of any advantage. Following on from this decision, the remaining
time of nearly four weeks for this current phase was allocated to local mesh
refinement. The initial part of it had been spent studying the current imple-
mentation, and on exploring ways to help the implementation as suggested
in the original proposal.

4.2 Local Mesh Refinement

Following on from the basic concepts introduced in section 3.7.1, the inten-
tion here is to extend the concept in the context of the adopted scheme for
implementation within CITCOM as detailed below.

4.2.1 Refinement Strategy

One way to express the challenge of local mesh refinement may be: to increase
the spatial resolution of some parts of the domain or sub-domain which are
dynamically selected following some specific criteria. Of course the choice
of these parts is not obvious, nevertheless, for the general description of
the method, we have assumed that a refinement criteria is available and the
refinement area is known before hand. In this particular case, this refinement
area is a certain fraction of the z-dimension covering at least two elements or
an even number of elements if there are more than two elements in the base
level (level 0) mesh. To avoid the load imbalance situation and to capture
most of the sharp gradients e.g. for velocity, which occur near the earth’s
surface where the lithosphere is located, all elements in x- and y-dimension
are refined. This yields the lower part of the mesh as unrefined or coarse
and the upper part of the mesh (near and at the earth’s surface) as refined
at base level. Once this local refinement of the mesh near the top of domain
is achieved at base level, which now consists of elements of two different
size: (i) coarse elements and (ii) refined elements achieved by bisecting a
coarse element in to two sub elements in each dimension yielding four refined
elements in two dimension and eight refined elements in three dimension, all
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of the mesh is refined for the higher level meshes in the nested mesh hierarchy.
For more information on this point a revisit to the sub section 2.2.1 would
be of help to understand the way the Cartesian coordinate system is used
within CITCOM.
Due to the fact that no specific local mesh refinement strategy for implemen-
tation is identified in the proposal. We have discussed the pointers to the
ways it can be achieved to a certain depth, detail and a number of possible
schemes for local mesh refinement in the context of the regular structured
mesh elements used in CITCOM. To conclude this we have decided to im-
plement the one-level-difference refinement rule as it fulfils the requirement
of only one level of refinement at the top of the domain without triggering
the load imbalance problem.

Level 0

Figure 4.1: A two element mesh in 2D at level 0

Here we describe the one-level-difference refinement rule based on local mesh
refinement in more detail. In order to illustrate the local mesh refinement we
have used, we shall show refinement of squares/rectangles in two dimension
and cubes/cuboids in three dimensions. Figure 4.1 consists of a two element
mesh in two dimensions and shall be used to explain the local mesh refinement
where all mesh elements and nodes are at level 0.
Let us assume that we wish to refine this mesh up to two levels with refine-
ment at and near the right-bottom corner of the mesh. This implies that
any element near the right-bottom corner of the mesh at level 0 is a candi-
date for refinement and the resulting new elements from the refinement of
that element form the mesh at level 1. Subsequently, any element at level
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Level 2

Level 1

Level 0

Figure 4.2: A local refinement without obeying one level difference rule

1 at or near the right-bottom corner is refined again and the new elements
are constructed to make up the mesh at level 2. This scenario is depicted
in figure 4.2 for elements in two dimensions where refined or sub elements
are obtained by bisecting a coarse level element in each dimension, in this
example along the x- and y-dimensions, to generate four new elements each
time an element is refined. After two levels of refinement of the elements near
the right-bottom corner, we get a total of eight elements; (i) one element at
level 0, (ii) three elements at level 1, and (iii) four elements at level 2. The
corresponding nodes at level 0 are marked with a black dot, at level 1 with
a small circle and at level 2 with a larger circle. Any node shared by two
elements which are at different levels are marked by a black dot and a small
circle or a small and a large circle accordingly. However we note that this
refinement strategy does not obey the one-level-difference refinement rule.
From the point of view of refinement although it is perfectly acceptable but
in the given multigrid context, it is not workable. It makes the mapping
between different mesh levels hard and it becomes harder and harder (if not
impossible) as the mesh is further refined to higher levels. Therefore, it is
not the most suitable refinement scheme for CITCOM.
Another possible scenario is to refine the element at or near the right-bottom
corner to the desired refinement level, which is level 2 in this case, as shown in
figure 4.3. This creates elements which are at the two extremes in the mesh;
(i) the largest elements at coarse level and (ii) elements which are 4n times
smaller in two dimensions and 8n times smaller in three dimensions than
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Level 2

Level 0

Figure 4.3: A local mesh refinement forbidden by one level difference rule

the coarse level elements where n is the highest level of refinement. This
refinement scheme is forbidden by the one-level-difference refinement rule.
Additionally, this creates a larger number of hanging nodes on the edge(s)
of coarser elements, this is an undesired situation as handling any hanging
nodes not only requires extra work but is hard to deal with too.
Let us again assume that we wish to refine the same two element mesh up
to two levels with refinement at or near the right-bottom corner of the mesh.
However, this time we obey the one-level-difference refinement rule, that is,
any two elements in the fully refined mesh (up to level 2 in this case) are at
levels which are immediately next to each other in the nested hierarchy of
the refined meshes. In other words, no element is at level 0 when this two
element mesh is refined to level 2 as shown in figure 4.4. This shows that
elements in the mesh after refinement are at the difference of a maximum
of one level from any other element in the mesh. Therefore, to refine the
elements at or near the right-bottom corner of the mesh to level 2, other
elements in the mesh, which would have not been refined otherwise, must be
refined at least up to level 1. This is an additional restriction to the one-
level-difference refinement rule described in [10] and [3]. This ensures that
all elements and nodes in the mesh are either at level 1 or level 2 avoiding
the complex situation of multilevel nesting of mesh elements which becomes
very hard to handle if not impossible in multigrid prolongation and restriction
operations.
We note that in order to achieve the mesh refinement shown in figure 4.4,
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Level 2

Level 1

Figure 4.4: A local refinement by one level difference rule

all elements at level 0 must be refined when an element at or near the right-
bottom corner is refined a second time. Elements whose nodes are marked
with blue circles represent those elements which are refined as a consequence
of refinement of other elements in the mesh. This can easily be generalised
so that all elements at level n-1 must be refined when any element at level
n is refined so that all elements in the resulting mesh are either at level n or
n+1.
Having described the strategy for local mesh refinement by following the one-
level-difference refinement rule, we setup some principals and restrictions in
the context of the current implementation in CITCOM. It is assumed that:

• Only part of the mesh along the z-axis, in two and three dimension, is
refined. Recall that Cartesian coordinates in CITCOM are defined as
(x,z,y) in contrast to the customary definition as (x,y,z ).

• Part of the mesh which is refined has elements at one level higher than
the level of elements which are not refined.

• After local refinement of the mesh at level 0, base level coarse elements
and new elements resulting from refinement are considered at level 0.
Refinement to the next higher level is carried out throughout the mesh
to maintain the similar mesh structure at each level.

• A node on a coarse element edge which is at the interface with refined
elements is dealt by the refined or higher level elements only. For the
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coarse element, any such node is treated as non existent.

• Each mesh level consists of elements of two sizes; coarser elements and
refined elements although both at the same level.

• A node on a coarse element edge which is shared by refined elements (at
least two or more) is accounted for the refined elements only. Therefore,
the overall mesh is considered as having no hanging nodes.

4.2.2 Refinement Setup

Following on from the strategy described in section 4.2.1, here we describe
the local mesh refinement implemented in CITCOM, with the help of an
example mesh in two dimensions. To start with, we have chosen a basic
mesh of a reasonably small size in two dimensions with eight elements in the
x-dimension and six elements in the z-dimension. It is distributed into four
sub-domains as shown by the dark lines in figure 4.5.

X−axis

O(0, 0)

Z−axis element 24

element 43

27  (1)

28  (2) 35  (3)

34  (4)

Figure 4.5: A coarse mesh of 48 elements in two dimension
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In order to solve each sub-domain problem, we employ one process per sub-
domain so that four processes are employed to solve the global problem; four
along the x-dimension and one along the z-dimension, that is, each process
covers the whole length along z-axis. Note that CITCOM does not allow
more than one process in the z-dimension. As a by product, this helps in
keeping the load of all processes reasonably balanced and no communication
is required in the z-direction. This is also one of the reasons for choosing this
one-level-difference refinement rule. The connectivity for a representative
finite element numbered as 24 is given by node numbers 27, 28, 35 and 34
corresponding to the local nodes numbers 1, 2, 3 and 4 respectively. This also
reveals that element numbering in the mesh starts from 1 near the origin (0, 0)
and is incremented in the z-direction followed by the x-direction. Similarly,
(global) node numbering follows the same pattern whereas local numbering
is anti-clockwise. This is extended to include the y-axis as a third dimension
in the case of three dimensions as shown in figure 4.6. For the sake of clarity
this is for a relatively smaller mesh size.

Y−axis

O(0, 0, 0)

Z−axis

X−axis

element 6

element 22

8(2)

7(1)

12(3)

11(4)

28(6)

27(5) 31(8)

32(7)

Figure 4.6: A coarse mesh of 24 elements in three dimension

Following the one-level-difference refinement rule and assumptions described
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in section 4.2.1, the mesh shown in figure 4.5 is refined at the top of the
domain covering two elements in the z-direction, all eight elements in the
x-direction and all two elements in the y-direction. This local refinement
replaces existing elements with the new elements which are half the size and
twice the number of the original elements in all dimensions. In other words,
each refined element is replaced by four smaller elements of one-fourth the
size of the original element in two dimensions as shown in figure 4.7 and
by eight smaller elements of one-eighth the size of original element in three
dimensions as shown in 4.8 (for a relatively smaller mesh size for the sake of
clarity) respectively.

X−axis

O(0, 0)

Z−axis element 48

element 89

65  (3)

64  (4)

51  (2)

50  (1)

Figure 4.7: Local refinement of the coarse mesh at top of the domain in two
dimension

However, it is important to note that these new elements are at the same
level as the parent elements, which is the base level or level 0. After the setup
of this base level mesh following the local mesh refinement, every next level
in the nested mesh hierarchy is obtained by refining all elements in the mesh
so that at any given mesh level, elements at the top of the domain are always
smaller than the other elements in the mesh at that level but all elements
are at the same level.
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Y−axis

O(0, 0, 0)

Z−axis

X−axis

element 77

element 20

13(2)

77(6)

84(8)

85(7)

21(3)

20(4)12(1)

76(5)

Figure 4.8: Local refinement of the coarse mesh at top of the domain in three
dimension (for a relatively smaller mesh)

In order to specify the refinement area at the base level mesh, a bounding
box is defined in the CITCOM input file and consists of two or three pairs
of values, namely, (xmin, xmax), (zmin, zmax) and (ymin, ymax) in two
dimensions or three dimensions respectively. As these values are defined
in the input file, the mesh refinement area is controlled at run time which
offers the extra flexibility of changing the refinement area for experimentation
without recompiling the whole source code.
The implementation of local mesh refinement in CITCOM required a major
rewrite of a large number of functions, particularly related to the setup of
C structures defined in CITCOM which provides the backbone to the func-
tionality and construction of elements, sub elements, nodes, surface nodes,
neighbouring nodes, node maps, coordinates, domain decomposition, neigh-
bouring sub domains, communication routes, boundary conditions, setup for
prolongation and restriction operations, etc. A brief description of a couple
of these structures, their setup and how to access these structure members,
modifications to the code, etc. are described in the following section.
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4.2.3 Refinement Implementation

In this section, we try to reflect on the C structures defined in CITCOM
source code by using snapshots of just two out of a total of 62 structures.
These are in addition to a large number of macros and look-up tables which
are used to construct and fill-up these and other structures and arrays used
for a variety of computational tasks. For example, populating of IEN struct

with global node numbers for a given mesh level and element number with
the help of a look-up table for the local node numbers of an element and
then using it to populate the NEI struct with the number of elements sur-
rounding any given node and mesh level and so on. One of these structures
is All variables, the top level structure is given below. It shows that a
large number of other structures are nested in it along with other variables.
The size of these nested structures vary ranging from having a few to a large
number of member variables.

struct All variables

struct All_variables { 1

struct TRACERS tracers; 2

struct HAVE Have; 3

struct BAVE Bulkave; 4

struct TOTAL Total; 5

struct MESH_DATA mesh; 6

struct MESH_DATA lmesh; 7

struct CONTROL control; 8

struct OUTPUT output; 9

struct MONITOR monitor; 10

struct DATA data; 11

struct SLICE slice; 12

struct Segment segment; 13

struct Slabs slabs; 14

struct Crust crust; 15

struct Parallel parallel; 16

struct INFO info; 17

struct Shape_function N; 18

struct Shape_function_dx Nx; 19

struct Shape_function1 M; 20

struct Shape_function1_dx Mx; 21

struct Shape_function1 L; 22

struct Shape_function1_dx Lx; 23

struct NEI NEI[MAX_LEVELS]; 24

struct COORD *eco; 25

struct IEN *ien; 26

struct SIEN *sien; 27

struct ID *id; 28

struct LM *lmd; 29

struct LM *lm; 30

struct Shape_function_dx *gNX; 31

struct Shape_function_dA *gDA; 32

struct COORD *ECO[MAX_LEVELS]; 33

struct IEN *IEN[MAX_LEVELS]; 34

struct ID *ID[MAX_LEVELS]; 35

struct SUBEL *EL[MAX_LEVELS]; 36

struct EG *elt_del[MAX_LEVELS]; 37

struct EK *elt_k[MAX_LEVELS]; 38

struct FNODE *TWW[MAX_LEVELS]; 39

struct LM *LMD[MAX_LEVELS]; 40

struct Shape_function_dx *GNX[MAX_LEVELS]; 41

struct Shape_function_dA *GDA[MAX_LEVELS]; 42

43

FILE *fp; 44
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FILE *filed[20]; 45

46

higher_precision *Eqn_k1[MAX_LEVELS]; 47

higher_precision *Eqn_k2[MAX_LEVELS]; 48

higher_precision *Eqn_k3[MAX_LEVELS]; 49

50

int *surf_node; 51

int *surf_element; 52

int *mat; 53

int *Node_map[MAX_LEVELS]; 54

int *Node_eqn[MAX_LEVELS]; 55

int *Node_k_id[MAX_LEVELS]; 56

57

unsigned int *node; 58

unsigned int *eqn; 59

unsigned int *NODE[MAX_LEVELS]; 60

unsigned int *EQN[MAX_LEVELS]; 61

62

float *stress; 63

float *Psi; 64

float *NP; 65

float *Mass; 66

float *tw; 67

float *Vi; 68

float *EVi; 69

float *Vielem; 70

float *T; 71

float *buoyancy; 72

float *Tdot; 73

float *EEDOTSQR; 74

float *dummy; 75

float *edummy; 76

float *C; 77

float *V[4]; 78

float *V1[4]; 79

float *Vest[4]; 80

float *X[4]; 81

float *XL[4]; 82

float *VB[4]; 83

float *TB[4]; 84

float *edot[4][4]; 85

float *MASS[MAX_LEVELS]; 86

float *VI[MAX_LEVELS]; 87

float *EVI[MAX_LEVELS]; 88

float *TW[MAX_LEVELS]; 89

float *XX[MAX_LEVELS][4]; 90

91

double *P; 92

double *F; 93

double *H; 94

double *S; 95

double *U; 96

double *temp; 97

double *global_F; 98

double *dudx[4][4]; 99

double *tau[4][4]; 100

double *dtau[4][4]; 101

double *spin[4][4]; 102

double *BI[MAX_LEVELS]; 103

double *BPI[MAX_LEVELS]; 104

double **global_K; 105

double **factor_K; 106

}; 107

struct All variables

In this All variables structure, amongst others, struct Parallel is a
nested structure at line 16 and consists of a few variables and other nested
structures as its members as shown below.
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struct Parallel
struct Parallel { 1

char machinename[160]; 2

int me; 3

int nproc; 4

int nprocx; 5

int nprocz; 6

int nprocy; 7

int nprocxy; 8

int nproczy; 9

int nprocxz; 10

int automa; 11

int idb; 12

int log; 13

int num_b; 14

int me_loc[4]; 15

int TNUM_PASS[MAX_LEVELS]; 16

int START_ELE[MAX_LEVELS]; 17

int START_NODE[MAX_LEVELS]; 18

int *IDD[MAX_LEVELS]; 19

int *ELE_ORDER[MAX_LEVELS]; 20

int *NODE_ORDER[MAX_LEVELS]; 21

22

struct BOUND NUM_NNO[MAX_LEVELS]; 23

struct BOUND NUM_PASS[MAX_LEVELS]; 24

struct BOUND NUM_ELE[MAX_LEVELS]; 25

struct PASS NUM_NEQ[MAX_LEVELS]; 26

struct PASS NUM_NODE[MAX_LEVELS]; 27

struct PASS PROCESSOR[MAX_LEVELS]; 28

struct BOUND *NODE[MAX_LEVELS]; 29

struct BOUND *IDPASS[MAX_LEVELS]; 30

struct PASS *EXCHANGE_ID[MAX_LEVELS]; 31

struct PASS *EXCHANGE_NODE[MAX_LEVELS]; 32

}; 33

struct Parallel

A code snapshot to find a (global) node number anywhere in the mesh prior to
implementing local mesh refinement is given below. A very simple procedure
is followed: loop over the number of nodes noy in the y-direction followed
by a nested loop over the number of nodes nox in the x-direction and finally
a third nested loop over the number of nodes noz in the z-direction which
is not unusual in any such situation. At this point, (global) node number
is determined using a simple formula given at line 4 of the code snapshot.
This becomes even more simple in the two dimension case when looping over
nodes in the y-direction has no affect and the first term on the right hand
side of the equation at line 4 in the code snapshot vanishes. Looking at
figure 4.5 in two dimension and figure 4.6 in three dimension, it is not hard
to find a (global) node number for any given value of ix, jz and ky, the
node numbers in the x-, z- and y-directions respectively.

Finding global node without local mesh refinement

for (ky=1; ky <= noy; ky++) { 1

for (ix=1; ix <= nox; ix++) { 2

for (jz=1; jz <= noz; jz++) { 3

node = (ky-1)*nox*noz + (ix-1)*noz + jz; 4

}/* end of for jz=1 */ 5

}/* end of for ix=1 */ 6

}/* end of for ky=1 */ 7

Finding global node without local mesh refinement
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Here the same is repeated for the local mesh refinement case. Loops over
noy, nox and noz, nodes in the y-, x- and z-directions respectively are the
same. However, we have to have additional checks in place to make sure that
we are accounting for refined and coarser parts of the mesh accordingly. For
this purpose we have defined extra variables (also members of struct INFO):

• znmax - maximum number of nodes in z-direction.

• znbnd - number of nodes in refined part of mesh (band) in z-direction.

• zxnd1 - number of nodes in zx-plan covering coarse and refined part of
mesh.

• zxnd2 - number of nodes in zx-plan covering only refined part of mesh.

A few other local variables such as ynodes, xnodes, xnalt and znalt are
also used. Looking at this code snapshot, figure 4.7 in two dimension and
figure 4.8 in three dimension, it is clear that for these loops over noy, nox and
noz, the number of nodes in the y-, x- and z-directions respectively, results in
accumulating node numbers which are used to determine the (global) node

number. The incremental contribution within each loop depends on these
loop counters being odd, even, or some other combination of these.

Finding global node with local mesh refinement

int znmax = E->info.znmax; 1

int znbnd = E->info.znbnd; 2

int zxnd1 = E->info.zxnd1; 3

int zxnd2 = E->info.zxnd2; 4

5

ynodes = 0; 6

for (ky=1; ky <= noy; ky++) { 7

( 1==(ky%2) ) ? (xnalt=zxnd1) : (xnalt=zxnd2); 8

xnodes = 0; 9

for (ix=1; ix <= nox; ix++) { 10

if ( ky%2 ) { 11

( 1==(ix%2) ) ? (znalt=znmax) : (znalt=znbnd); 12

} 13

else { 14

znalt = znbnd; 15

} 16

for (jz=1; jz <= znalt; jz++) { 17

node = ynodes + xnodes + jz; 18

}/* end of for jz=1 */ 19

xnodes += znalt; 20

}/* end of for ix=1 */ 21

ynodes += xnalt; 22

}/* end of for ky=1 */ 23

Finding global node with local mesh refinement

In the previous two paragraphs, with the help of code snapshots, we have
compared how to determine a (global) node number before and after the
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local mesh refinement. Here we would compare the differences in setting up
struct EL which determines sub elements for any given element and mesh
level in the prior and post local mesh refinement context. In the former
case, we have three nested loops (in three dimensions) over the number of
elements ely, elx and elz in the y-, x- and z-directions respectively. The
corresponding code snapshot is given below. Note that each element (being a
parent) has two sub elements in each dimension: a total of four sub elements
in two dimensions and eight elements in three dimensions. With the help of
simple formulae, as before for the (global) node numbers, the number of each
element and that of its first sub element is determined (see line number 11
and 12 in code snapshot). This and remaining sub elements are than fed to
struct EL utilising a pre-defined look-up table and loop over sub elements.
This procedure is repeated over all mesh levels, except the highest level, for
all elements so that on completion we are in a position to access any sub
element for any element at any mesh level except the top level.

Setup of struct EL prior to local mesh refinement

for (lev=E->mesh.levmax-1; lev >= E->mesh.levmin; lev--) { 1

elx = E->lmesh.ELX[lev]; 2

elz = E->lmesh.ELZ[lev]; 3

ely = E->lmesh.ELY[lev]; 4

elxu = 2*elx; 5

elzu = 2*elz; 6

7

for (ye=1; ye <= ely; ye++) { 8

for (xe=1; xe <= elx; xe++) { 9

for (ze=1; ze <= elz; ze++) { 10

element = (ye-1)*elz*elx + (xe-1)*elz + ze; 11

sub_element = 2*(ye-1)*elzu*elxu + 2*(xe-1)*elzu + (2*ze - 1); 12

13

for (el=1; el <= ENODES[E->mesh.nsd]; el++) { 14

E->EL[lev][element].sub[el] = ( sub_element + 15

offset[el].vector[z] + 16

offset[el].vector[x]*elzu + 17

offset[el].vector[y]*elzu*elxu ); 18

}/* end of for el=1 */ 19

} /* end of for ye=1 */ 20

} /* end of for ze=1 */ 21

} /* end of for xe=1 */ 22

}/* end of lev= ... */ 23

Setup of struct EL prior to local mesh refinement

The procedure to fill-up struct EL for sub elements in the post local mesh
refinement scenario is not as simple as without local mesh refinement. The
relevant code snapshot together with a brief dissection is given below.
In this case of local mesh refinement, we have, as previously, three nested
loops (in three dimensions) over a number of elements ely, elx and elz in
the y-, x- and z-directions respectively. We then determine the number of
each element using a simple formula shown on line 24 of the code snapshot.
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In two dimensions, the loop over ely becomes ineffective. Note that the mesh
elements in this case are of two different sizes: the refined part of the mesh
consists of elements of one-fourth in size of elements in the coarse part of the
mesh in two dimension and of one-eighth in size in three dimensions. The
element number is determined for the mesh which is not yet refined. At this
point, we need to differentiate between elements if they belong to the coarse
or the refined part of the mesh and treat accordingly. This is determined with
the help of a simple utility function. If an element belongs to refined part
of the mesh, its sub elements or, more appropriately, corresponding refined
elements which form the actual refined mesh are determined. These refined
elements are at the same level (i.e. the current one) as those which belong
to the coarse part of the mesh.
Before proceeding further, let us define some variables which are used in
filling-up the struct EL.

• (xemin, zemin, yemin) - number of elements at current mesh level with-
out refinement in x-, z- and y-directions respectively.

• (xebnd, zebnd) - number of elements at current mesh level in refined
part of mesh (band) in x- and z-directions respectively.

• (xeminN, zeminN, yeminN) - number of elements at next upper level
without refinement in x-, z- and y-directions respectively.

• (xebndN, zebndN) - number of elements at next upper level in refined
part of mesh (band) in x- and z-directions respectively.

The variables defined at the current level determine the element numbers
in the coarse and refined part of the mesh whereas the variables defined at
next upper level determine sub elements corresponding to each element at
the current level as long as the current level is not the highest level in the
nested mesh hierarchy.
In the code snapshot, lines from 24 to 60 and from 65 to 90 show how sub
elements corresponding to elements in the refined and coarse part of the mesh
are determined and then feed to struct EL utilising a pre-defined look-up
table and looping over sub elements respectively. This procedure, starts at
the second highest level, it is then repeated over all mesh levels in a downward
direction for all elements. On completion of this procedure, the setup of the
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struct EL is completed and sub elements of an element at any given mesh
level except the top level become accessible.

Setup of struct EL with local mesh refinement

for (lev=E->mesh.levmax-1; lev >= E->mesh.levmin; lev--) { 1

xemin = E->info.ELXP[lev]; 2

zemin = E->info.ELZP[lev]; 3

yemin = E->info.ELYP[lev]; 4

5

xebnd = E->info.XEBND[lev]; 6

zebnd = E->info.ZEBND[lev]; 7

8

next = lev+1; 9

xeminN = E->info.ELXP[next]; 10

zeminN = E->info.ELZP[next]; 11

yeminN = E->info.ELYP[next]; 12

13

xebndN = E->info.XEBND[next]; 14

zebndN = E->info.ZEBND[next]; 15

16

for (ye=1; ye <= yemin; ye++) { 17

for (xe=1; xe <= xemin; xe++) { 18

for (ze=1; ze <= zemin; ze++) { 19

element = (ye-1)*zemin*xemin + (xe-1)*zemin + ze; 20

21

/* for refined element corresponding to base mesh */ 22

if ( is_element_refined(E, lev, element) ) { 23

sub_element = 2*(ye-1)*zeminN*xeminN + 2*(xe-1)*zeminN + (2*ze-1); 24

25

for (elm=1; elm <= ends; elm++) { 26

element_count = ( element + 27

(ye-1)*(zebnd/2)*(xebnd/2)*(ends-1) + 28

(xe-1)*(zebnd/2)*(ends-1) + (ze-1) + 29

offset[elm].vector[z] + 30

offset[elm].vector[x]*zebnd + 31

offset[elm].vector[y]*zebnd*xebnd/xemin ); 32

33

sub_element_count = ( sub_element + 34

offset[elm].vector[z] + 35

offset[elm].vector[x]*zeminN + 36

offset[elm].vector[y]*zeminN*xeminN ); 37

38

for (yeN=1; yeN <= yeminN; yeN++) { 39

for (xeN=1; xeN <= xeminN; xeN++) { 40

for (zeN=1; zeN <= zeminN; zeN++) { 41

nxt_element_count = (yeN-1)*zeminN*xeminN + (xeN-1)*zeminN + zeN; 42

43

if ( nxt_element_count == sub_element_count ) { 44

for (el=1; el <= ends; el++) { 45

E->EL[lev][element_count].sub[el] = ( sub_element_count + 46

(yeN-1)*(zebndN/2)*(xebndN/2)*(ends-1) + 47

(xeN-1)*(zebndN/2)*(ends-1) + 48

(zeN-1) + 49

offset[el].vector[z] + 50

offset[el].vector[x]*zebndN + 51

offset[el].vector[y]*zebndN*xebndN/xeminN ); 52

}/* end of for el=1 */ 53

}/* end of if nxt_element_count */ 54

55

}/* end of for zeN=1 */ 56

}/* end of for xeN=1 */ 57

}/* end of for yeN=1 */ 58

59

}/* end of for elm=1 */ 60

}/* end of if ... */ 61

62

/* for coarse element corresponding to base mesh */ 63

else { 64

element_count = ( element + (ye-1)*(zebnd/2)*(xebnd/2)*(ends-1) + 65

(xe-1)*(zebnd/2)*(ends-1) + 66

(zebnd/2)*(ends-1) ); 67

for (el=1; el <= ends; el++) { 68

sub_element_count = ( sub_element + 69
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offset[el].vector[z] + 70

offset[el].vector[x]*zeminN + 71

offset[el].vector[y]*zeminN*xeminN ); 72

73

for (yeN=1; yeN <= yeminN; yeN++) { 74

for (xeN=1; xeN <= xeminN; xeN++) { 75

for (zeN=1; zeN <= zeminN; zeN++) { 76

nxt_element_count = (yeN-1)*zeminN*xeminN + (xeN-1)*zeminN + zeN; 77

78

if ( nxt_element_count == sub_element_count ) { 79

E->EL[lev][element_count].sub[el] = ( sub_element_count + 80

(yeN-1)*(zebndN/2)*(xebndN/2)*(ends-1) + 81

(xeN-1)*(zebndN/2)*(ends-1) + 82

(zebndN/2)*(ends-1) ); 83

}/* end of if nxt_element_count */ 84

85

}/* end of for zeN=1 */ 86

}/* end of for xeN=1 */ 87

}/* end of for yeN=1 */ 88

89

}/* end of for el=1 */ 90

}/* end of else */ 91

92

}/* end of for ze=1 */ 93

}/* end of for xe=1 */ 94

}/* end of for ye=1 */ 95

}/* end of for lev= ... */ 96

Setup of struct EL with local mesh refinement

Following on from the glimpse of a couple of C structures and a few code
snapshots, Table 4.1 provides listing of the functions which are substantially
modified to facilitate local mesh refinement. There is no intention to describe
these modifications here due to the complexity involved and it wouldn’t serve
any useful purpose for this project. It is to be noted that functions with minor
modifications are not included in this listing.

Source File Name Return
Type

Function Name

Advection diffusion.c void PG timestep()

Boundary conditions.c void velocity boundary conditions()

Boundary conditions.c void temperature boundary conditions()

Boundary conditions.c void velocity refl vert bc()

Boundary conditions.c void temperature refl vert bc()

Boundary conditions.c void temperature imposed botm bcs()

Boundary conditions.c void horizontal bc()

Construct arrays.c void construct id()

Construct arrays.c void construct lm()

Construct arrays.c void construct node maps()

Construct arrays.c void construct node ks()

. . . continue on page 57
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. . . continued from page 56

Source File Name Return
Type

Function Name

Construct arrays.c void construct masks()

Construct arrays.c void construct sub element()

Construct arrays.c void construct elt ks()

Construct arrays.c void construct elt gs()

Convection.c void convection initial temperature()

Convection.c void convection static composition()

Convection.c void setup plume problem()

General matrix functions.c int solve del2 u()

Global operations.c void remove horiz ave()

Global operations.c void return horiz ave()

Global operations.c float return bulk value()

Global operations.c float return bulk value e()

Instructions.c void common initial fields()

Instructions.c void read instructions()

Instructions.c void allocate common vars()

Instructions.c void global derived values()

Instructions.c void read initial settings()

Nodal mesh.c void node locations()

Parallel related.c void parallel domain decomp()

Parallel related.c void parallel shuffle ele and id()

Parallel related.c void parallel communication routs()

Process buoyancy.c void heat flux()

Process buoyancy.c void plume buoyancy flux()

Process buoyancy.c void onsetssc()

Solver multigrid.c void interp vector()

Solver multigrid.c void inject node fvector()

Tracers init.c void trac memalloc()

Viscosity structures.c void get system viscosity()

Table 4.1: List of substantially modified functions

In addition to the substantially modified functions, some new functions have
been added to the CITCOM source code as well. A few of these function were
added in phase 2 (previous phase) to add new functionality such as multi-
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grid schemes whereas others aimed at making CITCOM more user friendly.
However, most of these new functions, which are added here in phase 3, are
related to local mesh refinement and a listing of these functions is given in
Table 4.2 without any detail about implementation.

Source File Name Return Type Function Name

Construct arrays.c void construct nei()

Construct arrays.c void construct sien()

Construct arrays.c void construct info levmax()

Construct arrays.c void construct info()

Construct arrays.c int is element refined()

Construct arrays.c int int compare()

Instructions.c double multigrid()

Instructions.c double sawtooth1 multigrid()

Instructions.c double sawtooth2 multigrid()

Nodal mesh.c int inbox()

Output.c void date and time()

Output.c void data directory()

Parallel related.c int firstnode()

Table 4.2: List of new added functions

4.2.4 Outcome

Within the existing framework of CITCOM, local mesh refinement is a diffi-
cult option to try. Finite elements used in CITCOM are regular-structured
elements, squares or rectangles in two dimensions and cubes or cuboids in
three dimensions. Each element has four sub elements in two dimensions and
eight sub elements in three dimensions. A local refinement of one or more
elements always creates hanging nodes on the edges of neighbouring elements
which are not refined. In the case of three dimensions, these hanging nodes
are also created on faces of neighbouring elements which are not refined.
The number of element edges/faces with hanging nodes of non-refined ele-
ments depends on the surrounding number of neighbouring elements which
are refined, e.g. one or more elements along one or more dimensions.
We have opted for the approach of a one-level-difference refinement rule
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which is described in section 4.2.1. Due to the level of complexity involved
in the refinement of a regular structured grid in two dimensions generally,
and in three dimensions particularly, together with the complex structure of
CITCOM itself this was not an easy task. However, we have managed to
achieve partial success under these hard circumstances.
In CITCOM, there are a number of nested loops or cycles (not multigrid
cycles) and within these loops CITCOM solves the given problem for the
velocity field, temperature field, pressure field, viscosity field and tracers,
etc. The computations from within one loop have the potential to impact on
the computations within other loops. In other words, a specific part of the
CITCOM code where multigrid schemes are implemented solves any given
problem for the velocity field only but has the potential to get influenced by
the computations carried out elsewhere in the code.
CITCOM solves time dependent problems but has the option to solve for a
0 (zero) time step case only. This behaviour is controlled from within the
input file. For the case when CITCOM is restricted to the 0 (zero) time
step, it could achieve a solution for a few small test problems (a smaller
version of the test problems used in phase 2). We have tried this but it takes
more time than expected after local mesh refinement. This could be due
to the reason that elements of two different sizes, as a result of local mesh
refinement, interface with each other without any smooth transition. In the
case of time dependent problems, computations start deteriorating after only
a few time steps. This behaviour is not understood but suspicion is that the
advection-diffusion related computations may be the influencing factor. On
the other hand, it is also possible that the non-multigrid part of the code,
which performs advection-diffusion and tracers related computations may be
in need of some more modifications to adjust for local mesh refinement.
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Chapter 5

Conclusions

This chapter concludes the work undertaken under the dCSE project “Multi-
grid Improvements to CITCOM” presented in this report. A brief summary
of the work undertaken in each of the three phases of this project is described
in section 5.1 followed by achievements in section 5.2. This chapter is con-
cluded with some recommendations aimed at further improvements to the
CITCOM package.

5.1 Summary

After the introduction of this dCSE project in Chapter 1 describing the
project duration, work plan and background of the CITCOM package, Chap-
ter 2 describes the initial study undertaken towards understanding the CIT-
COM package and learning. Chapter 3 is dedicated to the description of
Multigrid methods, a model problem, test problems, computational results
and analysis of the results for representative test problems in two and three
dimensions. These results are obtained using four multigrid schemes showing
excellent scaling for each multigrid scheme. This is followed by a description
of post processing tools used in preparing these results. Local mesh refine-
ment strategy, setup and implementation followed by the outcome of this
implementation is presented in Chapter 4. Chapter 5 concludes this project
and report.
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5.2 Achievements

The work carried out as part of this dCSE project enabled CITCOM to
achieve faster convergence. For the best cases CITCOM performs over 31%
faster for the V-cycle multigrid scheme, over 38% faster for the W-cycle
multigrid scheme in comparison to the corresponding FMG(V) and FMG(W)
schemes respectively for the simple 2D test problem and over 12% faster for
the W-cycle multigrid scheme in comparison to the corresponding FMG(W)
scheme for the complex 3D test problem.
Other observations based on the analysis of the four multigrid schemes along
with tests problems and their results, in two and three dimensions, given in
chapter 3 are summarised below. These observations account for the four
multigrid schemes, namely, Multigrid V-cycle, Multigrid W-cycle, FMG(V)
and FMG(W).

• For relatively simple and fast converging problems the Multigrid V-
cycle scheme is the fastest scheme.

• Full Multigrid or FMG schemes perform well in contrast to the corre-
sponding basic Multigrid V-cycle and Multigrid W-cycle schemes for
complex and hard to solve problems. In these cases, basic schemes,
namely, the Multigrid V-cycle and Multigrid W-cycle might fail to con-
verge.

• V-cycle based multigrid schemes generally perform better than the cor-
responding W-cycle based multigrid schemes.

• The Multigrid V-cycle scheme offers optimal choice for relatively simple
and easy to solve problems and the FMG(V) scheme offers optimal
choice for relatively complex and hard to solve problems.

• Scaling of all multigrid schemes is generally excellent. This is partic-
ularly true if the sub problem size per MPI process is not reduced to
the extremely smallest possible size, that is, just two elements per MPI
process in any direction.

• The use of one or two cores per node instead of all four cores per node
may slightly affect scaling, that is, the use of all cores per node gives
best scaling. This is encouraging in the context of the efficient usage
of multi-core configurations.
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Local mesh refinement, within the existing framework of CITCOM, is a dif-
ficult option to try. In the presence of the high level of complexity involved
in the refinement of a regularly structured grid in two dimensions generally,
and in three dimensions particularly, together with the complex structure
of CITCOM itself, we have managed to achieve partial success under these
hard circumstances.
CITCOM solves time dependent problems but can be restricted to a 0 (zero)
time step only. In the later case, it can achieve a solution for a few small test
problems (smaller versions of the test problems used in phase 2). We have
tried this approach but it takes more time than expected after local mesh re-
finement. It is thought to be the case as a result of the local mesh refinement.
Here, there are elements of two different sizes which interface with each other
without any smooth transition. In the former case of time dependence, com-
putations start deteriorating after only a few time steps. This behaviour is
not understood but suspicion is that the advection-diffusion related compu-
tation may be the influencing factor. On the other hand, it is also possible
that the non-multigrid part of the code, which performs advection-diffusion
and tracers related computations may be in need of some more modifications
to adjust for the local mesh refinement.

5.3 Recommendations

This package has a potential for further improvements and a few of numerous
possible ways in which it can be improved and extended are suggested here.

• Local mesh refinement needs to be addressed in the context of temper-
ature field computations addressing advection-diffusion and convection
related issues.

• Implementation of tracers needs to be re-visited in order of address the
changes in the number of nodes and elements in the z-direction due to
local mesh refinement in comparison to the global refinement to achieve
the nested hierarchy of mesh levels.

• To get acceptable results for larger problems CITCOM requires a longer
run time than the maximum (12 hrs) allowed on HECToR. The current
option is to restart the CITCOM computation at the point of termi-
nation from last run where it had written information to the output
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files essential for restarting. However, a vast amount of computation
is performed again after restarting in some cases this may take up to
one-third of the total run time after restart. If this can be modified
to write the full information to the output files required for restarting
without the need of repeating part of the computations, it could save
a big chunk of time which is otherwise wasted in performing the same
computation after each restart.
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