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Abstract

A task-farm parallel framework has been added to the ChemShell
computational chemistry environment to provide a facility for paral-
lelising common chemical calculations, including Hessian evaluation
and a number of geometry optimisation algorithms. As ChemShell
can already exploit the parallelisation of external programs for energy
and gradient evaluations, this results in a two-layer parallel approach
that gives efficient scaling up to at least 1000 cores. The task-farmed
methods will be used to run large-scale heterogeneous catalysis simu-
lations on HECToR.
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1 Background

The ChemShell computational chemistry environment [1,2] provides a means
of integrating quantum mechanical (QM) and molecular mechanical (MM)
software packages to perform combined QM/MM calculations. The external
packages are used solely for energy and gradient evaluations while ChemShell
routines are used to form the combined QM/MM gradient and to handle
higher-level tasks such as geometry optimisation or molecular dynamics.
ChemShell calculations are controlled using scripts written in the Tcl lan-
guage [3], with generic commands that hide as far as possible the details of
the external programs from the user.

The QM/MM approach is particularly useful in the study of heteroge-
neous catalysis. ChemShell supports embedded cluster calculations [2, 4] in
which the bulk material or surface is represented by a finite MM cluster
model, optionally with additional point charges to mimic the effect of bulk
electrostatics. The active site is modelled by a high-level QM calculation
with electrostatic embedding, where the cluster environment is represented
by point charges in the QM Hamiltonian. This setup is intended to give
an optimal balance between accuracy at the active site and computational
expense.

ChemShell may be built as a serial or parallel program, although the
current release (v3.3) does not contain any parallel algorithms of its own.
The parallel version instead is intended to exploit any parallelism contained
in the packages used to evaluate the energy and gradient. Usually the eval-
uation step of the calculation is by far the most computationally expensive,
and so parallelisation of this step should scale well. However, on large su-
percomputers such as HECToR, where calculations involving thousands of
cores are routine, the parallel algorithms in the external programs often do
not continue to scale efficiently. In this domain we expect there to be sig-
nificant gains from adding a second layer of parallelism at the ChemShell
level.

2 The dCSE project

The aim of this distributed Computational Science and Engineering (dCSE)
project is to add a task-farm parallel framework to ChemShell in order to
parallelise tasks that are commonly employed in materials cluster simula-
tions. The dCSE proposal was written by C. Richard A. Catlow, Alexey
Sokol and Fedor Goumans (University College London) and Paul Sherwood,
Huub van Dam and Johannes Kästner (STFC Daresbury Laboratory). The
project work was carried out by Thomas Keal (STFC Daresbury Labora-
tory).

9 months of development effort were deployed over an 18 month period
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from January 2009 to June 2010. The code development objectives for the
project were:

• ChemShell (and associated Tcl libraries) adapted to support task farmed
parallelism using split communicators. Commands can be executed
on specific workgroups by using conditional tests within the Tcl inter-
preter.

• Finite difference Hessian code within ChemShell re-written to allow
task-farmed execution. Speed-up factor of 2 on a test calculation (as
approved by PI) when comparing existing implementation (a single
parallel task running across a large HECToR partition of over 1000
processors) with the task farmed version.

• Interface with the parallel implementation of DL-FIND such that the
separate tasks within ChemShell are given independent work to per-
form. Demonstration of parallel NEB for transition-state determi-
nation in a surface chemistry problem, speed-up (existing relative to
running the points sequentially on a large parallel platform) of 2.

• DL-FIND parallel optimisation capabilities interfaced to task farmed
version of ChemShell. Demonstration of global minimum search using
stochastic search and genetic algorithms. The stochastic search can
also be run using the baseline code (the non-task farmed version of
ChemShell) code and will show speed-up of 3.

All the objectives were achieved, and the benchmark targets surpassed,
as detailed below.

The benchmark calculations in this report were performed on the XT4
component of HECToR in its Phase 2a configuration. This is a Cray ma-
chine with 2.3 GHz quad-core AMD opteron processors and 2 GB of memory
per core. Due to the simple nature of the parallelisation method employed,
we expect the new framework to run equally efficiently on the recently-
introduced Phase 2b configuration of HECToR and on other parallel plat-
forms. The test cases have been chosen to represent calculations that might
realistically be run by users on HECToR and so should give a good indication
of the performance gains expected from the new approach.

ChemShell, GAMESS-UK and GULP were compiled on HECToR using
the Cray compiler wrapper ftn with the PGI C and Fortran compilers (v9.0-
4).

3 Task-farm parallelisation

Task-farming parallelism is useful in situations where a set of independent
calculations have to be performed. The ‘task farm’ consists of all available
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Figure 1: The original and task-farming parallel frameworks in ChemShell. In the original
case (a) the Tcl input script is parsed by a single interpreter, with parallel ChemShell
commands executed across all processors. In the task-farming case (b) the input script is
parsed by one interpreter in each workgroup, with parallel commands executed on only
the processors within the workgroup (M = master, S = slave).

(a)

(b)

processors, which are then divided into subsets of processors called work-
groups. The tasks are split between the workgroups which work on them
in parallel. As the calculations are independent, no information needs to be
exchanged between workgroups during this time, and sharing of results can
be postponed until all the tasks have completed.

To implement task-farming in ChemShell a number of modifications to
the code and external programs were necessary.

3.1 ChemShell

ChemShell is implemented in parallel using MPI (message passing interface).
The parallel framework used before task-farming was added is illustrated in
Figure 1a. One node acts as a ‘master’, on which a Tcl interpreter runs and
executes the input script. The other nodes are ‘slaves’ that remain idle until
a parallel input command is executed. This would typically be a request
for a gradient evaluation using an external program. To achieve maximum
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efficiency the external program is linked into the ChemShell executable so
it can be called directly without spawning an additional process. The exter-
nal program therefore shares the same MPI environment as ChemShell and
can make use of all the nodes for its own parallel calculations. When the
command has completed control returns to the master node.

Task-farming parallelism adds an extra layer of organisation to the pro-
cessors, which are grouped into independent workgroups using MPI commu-
nicators. In the original parallel framework the nodes were grouped into the
default MPI_COMM_WORLD communicator. To create independent workgroups
MPI_COMM_WORLD is split into smaller sets of processors, each with their own
Workgroup communicator (named MPI_COMM_WORKGROUP). The user specifies
the number of workgroups to be created using the command-line argument
-nworkgroups when ChemShell is executed.

In each workgroup one node acts as a master and the rest are slaves
(Figure 1b). They operate in the same way as in the original parallel
framework, except that there are now multiple master nodes (if the number
of workgroups is set to one, the new framework reduces to the original).
Each master runs a copy of the Tcl interpreter and independently executes
the same ChemShell input script. A number of Tcl commands have been
implemented to report workgroup information, such as how many work-
groups exist (nworkgroups) and which workgroup the script is running in
(workgroupid). These commands may be used to make parts of the script
conditional on the workgroup ID and this provides a mechanism to distribute
tasks between workgroups, as in this simple input script:

set wid [ workgroupid ]

if { $wid == 2 } {

do_task

}

Although the input is parsed by all workgroups, the procedure do_task

would only be run on workgroup 2.
To prevent file conflicts, a scratch working directory is created for each

workgroup (workgroup[n]/). This is important for ChemShell data ob-
jects, which may be saved to disk. By default ChemShell objects will be
loaded from the working directory, but if not present the common parent
directory will also be searched. This makes it possible to create globally-
accessible objects. Local objects may be ‘globalised’ using a Tcl proce-
dure (taskfarm_globalise_objects). This command first synchronises
the workgroups using a call to MPI_Barrier to prevent data corruption.

The ChemShell standard output and standard error are also separated
out into the working directories, under the names workgroup[n].out and
workgroup[n].err, with the exception of the output of workgroup 0 which
is treated as the main output and not redirected.
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Figure 2: A DL-FIND calculation running under the task-farm parallel framework in
ChemShell. The DL-FIND command is executed on the master node of each workgroup
while energy and gradient evaluations may be run across all workgroup nodes. The mul-
tiple DL-FIND instances share gradient data with each other directly using MPI calls,
usually at the end of each optimisation cycle.

3.2 DL-FIND

DL-FIND is a geometry optimisation library [5, 6] that is included in the
ChemShell distribution as the standard optimisation driver. ChemShell and
DL-FIND communicate via a well-defined interface which is used for passing
options, geometries, energies and gradients between the two codes.

DL-FIND has its own implementation of task-farming parallelism [6].
The parallel facilities consist of a collection of wrapper functions around
MPI library calls to share data between processors and a parallel interface
to pass details of the task farm to or from the calling program. Two parallel
strategies have been implemented: in the first, the calling program sets up
the task farm and passes the setup information and MPI communicators to
DL-FIND, while in the second DL-FIND sets up the task farm and passes
the setup information in the opposite direction.

When linked to ChemShell the first strategy is the most appropriate as
ChemShell sets up a task-farmed environment when it is initialised and DL-
FIND must operate within this. This setup is illustrated in Figure 2. Note
that DL-FIND communicates directly between workgroups using MPI calls.
This usually occurs at the end of each optimisation cycle to share gradient
data. A communicator provided by ChemShell called MPI_COMM_COUNTERPARTS

is used for this purpose, which groups together the master nodes.
To make the ChemShell environment accessible to DL-FIND, interface

subroutines were added to ChemShell to provide the required information
about the task farm setup:

• dlf_get_params: additional parameters glob%ntasks (number of work-
groups) and tldf_farm (=0 to indicate that ChemShell sets up the
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task farm).

• dlf_get_procinfo: supplies the number of processors, node ID and
the MPI_COMM_WORLD communicator.

• dlf_get_taskfarm: supplies the number of workgroups, number of
processors per workgroup, the rank of the current processor in the
workgroup, the rank of the workgroup and two MPI communicators:
MPI_COMM_WORKGROUP and MPI_COMM_COUNTERPARTS.

Two other interface routines (dlf_put_procinfo and dlf_put_taskfarm)
are only used when DL-FIND sets up the taskfarm and are therefore not
required for the ChemShell interface. A number of ChemShell routines were
written to expose the above information to the interface.

There is a subtle difference between the ChemShell and DL-FIND task-
farming environments which has to be reconciled by the interface. On
the ChemShell side only the master nodes (one per workgroup) execute
ChemShell commands such as DL-FIND calls. However, the DL-FIND par-
allel routines assume that they are running on all processors. To work
around this ChemShell only provides information on the master nodes to DL-
FIND so that DL-FIND sees only one node per workgroup. DL-FIND’s par-
allel algorithms can then run unchanged in the ChemShell environment. In
practice this means that the ‘world’ communicator passed to DL-FIND is ac-
tually MPI_COMM_COUNTERPARTS, the total number of processors is set equal
to the number of workgroups and the number of processors per workgroup is
set equal to 1. A dummy value can then be sent for MPI_COMM_WORKGROUP.

3.3 External programs

All parallel work below the level of the ChemShell interpreter must be carried
out within a workgroup. Therefore if an external program is called for
an energy and gradient evaluation it must use MPI_COMM_WORKGROUP, not
MPI_COMM_WORLD. An interface function has been added to ChemShell to
pass the workgroup communicator to external programs.

We have modified the GAMESS-UK [7, 8] QM package and GULP [9]
MM package to accept the MPI_COMM_WORKGROUP communicator from ChemShell.
These programs can be compiled as libraries into the ChemShell executable
so a simple function call is used to pass the information.

In the case of GAMESS-UK, a significant amount of computational time
is spent evaluating matrix eigenvectors and eigenvalues and it is therefore
important to use a parallel diagonaliser such as PeIGS [10] in order to make
efficient use of a massively-parallel platform. As the PeIGS library also con-
tains MPI calls, these were modified so that PeIGS could work in the task-
farmed environment. This involved replacing instances of MPI_COMM_WORLD
with the workgroup communicator passed from ChemShell.
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The changes made to GULP have been incorporated into the released
version and are available as of v3.5.3 or later. The changes to GAMESS-UK
are in the development trunk code and will be incorporated into the next
release.

In principle any parallel external program that has been interfaced to
ChemShell can be used in a task-farmed calculation providing it can be mod-
ified to accept MPI_COMM_WORKGROUP and use it instead of MPI_COMM_WORLD.
Alternatively the parallelism at the ChemShell level could be exploited while
only using a serial program for energy and gradient evaluations. In this case
the task farm would be set up so that there is only one processor per work-
group. No modifications would be required for the external program but the
potential for scaling up the calculation would obviously be more limited.

4 Performance of parallel methods

Three types of chemical calculation in ChemShell were modified to take
advantage of the task-farming implementation. They each involve multiple
independent energy or gradient evaluations and should therefore benefit from
high-level parallelism.

4.1 Finite difference Hessian

An obvious choice for parallelisation is the calculation of a finite difference
Hessian. Each entry in the Hessian matrix is calculated using the difference
of two gradients. Using a forward difference algorithm an N -atom system
requires 3N +1 independent gradient evaluations. With a central difference
algorithm this rises to 6N evaluations.

In the original ChemShell implementation the gradient calculations and
Hessian evaluation are performed using a single Tcl command (force). In
the task-farmed version this command has been split up into three stages to
facilitate parallelisation. In the first stage (force_precalc), the required
set of gradients is calculated and stored on disk as ChemShell objects. This
work can be divided up among the workgroups to be carried out in parallel
using the option task_atoms with a list of atoms. In the second stage
the ChemShell gradient objects are made available to all workgroups using
the command taskfarm_globalise_forcegradients. Finally, the Hessian
matrix is evaluated using the pre-calculated gradients (using force with the
option precalc=yes). The Hessian calculation can be restricted to a single
workgroup if desired by a conditional test on the workgroup ID.

The 57-atom silicate-VO3 cluster shown in Figure 3 was used to assess
the performance of the task-farmed implementation. Energies and gradients
were calculated using GAMESS-UK with the B3LYP functional [11]. Two
basis sets were used: the LANL2 effective core potential basis [12] (giving
413 basis functions) and the TZVP [13, 14] all-electron basis (1032 basis

9



Figure 3: The silicate-VO3 cluster used for the Hessian benchmark calculations.
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Figure 4: Calculation time in wall clock seconds for a single point energy and gradient
evaluation of a 57-atom silicate-VO3 system using the LANL2 ECP and TZVP basis sets.
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functions). The larger basis test is present to fully assess the PeIGS build
of GAMESS-UK, as PeIGS is only used to diagonalize matrices larger than
the total number of processors.

To give an indication of the time required for the full Hessian calculation,
single-point calculations were carried out with differing numbers of proces-
sors. The results are shown in Figure 4. If perfect scaling were achieved the
calculation time would halve with each doubling of the number of processors
(and a second level of parallelism would be unnecessary). For both basis sets
reasonable scaling is achieved up to approximately 128 processors, but for
larger processor counts the gains are very small. This suggests that large
efficiency gains should be possible using task-farmed calculations.

The full forward difference Hessian was evaluated using a set of 1024-
processor calculations with differing numbers of workgroups. The tasks were
parallelised using a simple static load-balancing scheme where as far as pos-
sible an equal number of gradient calculations were assigned to each work-
group. As each gradient calculation should take approximately the same
amount of time (apart from the first where no wavefunction guess is pro-
vided), no major gains would be expected from a more sophisticated load-
balancing mechanism.

The results are shown as wall clock times in Table 1. To correctly in-
terpret the results it is important to keep in mind that all calculations run
with the same number of processors and only the division into workgroups is
changed. As the number of workgroups increases, the number of processors
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Table 1: Calculation time in wall clock seconds for a forward difference Hessian matrix
evaluation using 1024 processors divided into workgroups. Speed-up factor is compared
to the single workgroup calculation.

LANL2 ECP basis
Workgroups Procs/workgroup Time / s Speed-up

1 1024 7896
2 512 4354 1.8
4 256 2444 3.2
8 128 1665 4.7

16 64 1290 6.1
32 32 1176 6.7
64 16 1151 6.9

128 8 2165 3.7

TZVP basis
Workgroups Procs/workgroup Time / s Speed-up

1 1024 52762
64 16 7812 6.8

in each workgroup falls proportionally. The calculation with the highest
speed-up factor therefore gives the best balance between parallelisation of
individual gradient evaluations and parallelisation of the Hessian as a whole.
This is different to the benchmarking of single-level parallelism where scaling
of calculation time with number of processors is used to measure efficiency.
There is no scaling in this sense in Table 1, as the change in the the speed-up
with the number of workgroups approaches zero at peak efficiency. If the
number of workgroups is too high the speed-up will begin to fall again.

Speed-up factors are calculated by comparison with the single workgroup
calculation as it is the slowest. For the LANL2 ECP basis set substantial
speed-ups are seen up to a maximum of 64 workgroups (with 16 proces-
sors per workgroup), where a speed-up factor of almost 7 is achieved. The
task-farmed approach is therefore considerably more efficient than using the
parallel routines in GAMESS-UK alone. Further gains were not achieved
by going beyond 64 workgroups. This is firstly because a larger number of
workgroups means that a larger proportion of the calculations do not benefit
from an initial wavefunction guess (although for a non-benchmark calcula-
tion this could be provided using a preliminary single point evaluation step).
Secondly, only 172 gradient evaluations in total are required and therefore
the load is not efficiently balanced in the 128 workgroup calculation. For
larger systems it may be advantageous to use 128 or more workgroups.

For the TZVP basis set calculations were performed using a single work-
group and 64 workgroups. Similar results are seen, with the 64 workgroup
calculation again achieving a speed-up of approximately 7. This indicates
that the efficiency gains remain even when large matrix diagonalisations are
involved.
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4.2 Nudged elastic band optimisation

The nudged elastic band (NEB) algorithm is a method for finding a mini-
mum energy path between two structures. Typically it is used to characterise
a reaction path including an energy barrier. The improved-tangent variant
of NEB [15] is available in DL-FIND [6].

Each NEB optimisation cycle consists of energy and gradient evaluations
for a sequence of structures (images) with geometries that sit along a path
between the two endpoints. The final NEB gradient is constructed using
spring forces that connect the images. However, the gradient calculations
for the images are independent and therefore can be evaluated in parallel.

The NEB algorithm in DL-FIND has been parallelised using static load-
balancing. An image is assigned to a workgroup if the image number modulo
the number of workgroups is equal to the workgroup ID. This method en-
sures that a particular image is always assigned to the same workgroup,
which is important if the external program uses restart files (as is the case
for a GAMESS-UK calculation). At the end of each cycle the energies and
gradients are shared between all workgroups by an MPI call within DL-
FIND.

The first NEB cycle is different from the others in that the workgroups
each calculate the gradients in serial along the whole path. This is to help
convergence of the external QM program, as the wavefunction of the pre-
vious image can be used as a guess for the next. In subsequent cycles the
corresponding image from the previous iteration can be used as the guess.

The benchmark system for the NEB method is shown in Figure 5. It
is a 3207-atom QM/MM cluster consisting of CO2 and 2H2 adsorbed onto
an Al-doped zinc oxide surface. The NEB method was used to find the
barrier for the interchange of H in H-CO2 between two different sites. The
QM region consisted of 32 atoms with a PVDZ basis (except for Zn, where
a Stuttgart ECP was used [16]). This gives a total of 194 basis functions.
Following Ref. [4], this region is partitioned into an inner 19 atoms treated
fully by quantum mechanics and a surrounding QM/MM interface region
with pseudopotentials placed on 13 Zn atoms. The interface region provides
a localised embedding potential that prevents the electrons from the inner
region spilling out onto the positively charged centres in the MM region.

GAMESS-UK was used for the QM calculations with the B97-1 func-
tional. GULP was used to provide MM energies and gradients using the shell
model interatomic potential of Ref. [17]. 10 images are used to describe the
path, with the two endpoints frozen, giving 8 gradient evaluations in total
per cycle.

A single-point energy and gradient evaluation for the test system is actu-
ally an iterative cycle of QM and MM calculations. This is because the QM
region is polarised by the MM atoms as point charges and the shells of the
MM system are polarised in turn by the QM region. The QM/MM gradient
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Figure 5: The ZnO cluster used for the nudged elastic band benchmark calculations. The
small spheres on the outside of the cluster are the point charges used for approximating
the electrostatic effect of the bulk crystal.

must therefore be iterated until converged each time it is calculated.
Timings for the single point calculation are shown in Figure 6. For large

processor counts the scaling is very poor, with a 1024-processor calculation
actually taking a longer time to complete than a 256-processor calculation.
This means that the overhead of message passing between so many proces-
sors outweighs any advantage from the extra computing power. Although
the full iterated single-point calculation takes a significant amount of time,
the individual QM and MM calculations are quite modest and do not benefit
from such large processor counts. Increasing the size of the QM region would
make larger processor counts useful, but this would have made running a
full benchmark too computationally expensive. The results for this system
indicate that the number of workgroups should be set as high as possible
(i.e. to 8).

The NEB benchmark calculations were performed over 50 cycles. This
results in an effectively converged path. Continuing on to full convergence
was not desired as small numerical differences can lead to variation in the
total number of cycles for the optimisation and this would not reflect the
intrinsic performance of the parallelisation. The most basic form of the
NEB method was used, with no climbing image [18] and no freezing of
intermediate images during the optimisation.

The results are shown in Table 2. Speed-up factors are calculated rel-
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Figure 6: Calculation time in wall clock seconds for a single point energy and gradient
evaluation of an embedded cluster model of a ZnO surface reaction.
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Table 2: Calculation time in wall clock seconds for 50 cycles of a nudged elastic band
optimisation. Speed-up factors are compared to single workgroup calculations.

Procs Workgroups Procs/ Time / s Speed-up Speed-up
workgroup vs 1024 vs 256

1024 1 1024 26404
256 1 256 23536

1024 2 512 14673 1.8 1.6
1024 4 256 7089 3.7 3.3
1024 8 128 3110 8.5 7.6
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ative to the full single workgroup run of 1024 processors and also a run
of 256 processors. The 256 processor run represents the best performance
achievable using a single workgroup.

The improvement offered by the task-forming approach is significant,
and as expected using the maximum number of workgroups gives the highest
performance. When compared to a single workgroup 1024-processor run a
speed-up of over 8 is found, which is only possible because the single-point
128-processor calculation is faster than the 1024-processor equivalent. When
compared to the 256-processor NEB run, the speed-up is lower than 8 but
still very substantial.

4.3 Global optimisation methods

Two intrinsically parallel optimisation methods are available in DL-FIND [6],
namely a genetic algorithm and stochastic search. These methods are typ-
ically used for finding the global minimum on a potential energy surface.
Both methods involve calculations on a population of structures during each
cycle, which can be run in parallel.

The genetic algorithm and stochastic search methods use the same par-
allel DL-FIND interface that was used as the basis for parallelising the NEB
method. To support the new methods the interface was modified on the
ChemShell side to pass the relevant input options to DL-FIND.

A change to the handling of shell model systems in ChemShell was also
required to ensure that the parallel optimisations would work with these
systems if desired. The DL-FIND optimiser only uses atom positions and
ignores shells, which are a feature specific to ChemShell. Previously the
shell positions were stored in ChemShell as absolute coordinates and re-
laxed starting from the old positions when a new geometry was created.
This relaxation can be slow or difficult to converge if the geometry changes
radically, which is often the case for the global optimisation routines, where
a wide variety of geometries is considered at every step. The shell handling
in ChemShell was improved by storing shell positions as relative coordinates,
so they would stay near to their parent atoms even under a large change
of geometry. This change benefits all the other optimisation methods in
DL-FIND as well, but is most important for the global optimisers.

Following Ref. [19], benchmark calculations were performed on ZnO nan-
oclusters. In Ref. [19] rigid ion MM calculations were used but for the
purpose of benchmarking a much more demanding QM calculation was set
up using GAMESS-UK. Timing calculations were performed on a (ZnO)28
cluster. The B97-1 functional was again used with a PVDZ basis (560 ba-
sis functions) and the Stuttgart ECP for the Zn atoms. A population of
32 structures was used, which is a typical size for these methods and is an
efficient number for task-farm parallelisation.

The scaling properties of the genetic algorithm and stochastic search
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Figure 7: Calculation time in wall clock seconds for a single stochastic search cycle (32
energy and gradient evaluations) of a (ZnO)28 cluster.
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methods are expected to be identical. For the benchmark tests stochastic
search was used. A single energy and gradient evaluation is very quick and
so to obtain reliable preliminary timings a full cycle of 32 evaluations was
performed. The results are shown in Figure 7. Again, the best performance
is given by 256 processors with a slowdown observed for higher processor
counts. This again suggests that substantial gains can be made by splitting
the processors into workgroups.

Normally a genetic algorithm or stochastic search optimisation would
be run for hundreds or thousands of cycles in order to have a good chance
of finding the global minimum. However, due to computational expense it
was not feasible to run a baseline calculation of this length using a single
workgroup. To obtain a benchmark the stochastic search algorithm was run
for 20 cycles instead. This is expected to give a good representation of the
scaling behaviour as each cycle contains the same number of evaluations and
should therefore take approximately the same amount of time.

The results are shown in Table 3. Surprisingly, of the two single work-
group runs, the 1024-processor run is faster than 256 processors. This could
have been due to natural variation in SCF convergence due to the random
element to the geometries created. To test this the benchmark was run
twice, but the same trend was found in both runs. This implies that there
is some overhead to the large processor count in the first cycle that is not
present in subsequent cycles.

Speed-up factors for the task-farmed calculations are therefore given
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Table 3: Calculation time in wall clock seconds for 20 cycles of a stochastic search
optimisation. Speed-up factors are compared to single workgroup calculations.

Procs Workgroups Procs/ Time / s Speed-up
workgroup vs 1024

1024 1 1024 23535
256 1 256 26560

1024 2 512 14881 1.6
1024 4 256 8930 2.6
1024 8 128 5819 4.0
1024 16 64 4270 5.5
1024 32 32 4197 5.6

compared to the 1024-processor run. Gains in performance are again sub-
stantial, with the best performance as expected given by maximising the
number of workgroups, although the performance of the 16 workgroup cal-
culation is very nearly as good, with speed-ups of over 5 achieved in both
cases.

4.4 Overall performance

Substantial gains in performance were observed on implementing task-farming
for all three types of calculation. The highest gains were obtained by max-
imising the number of workgroups (up to the limit where the load becomes
unbalanced). This result is expected because the ChemShell level of paral-
lelism involves very little overhead compared to parallel evaluation of the
energy and gradient. Single point calculations were good predictors of the
final performance and this initial step is recommended as a method for de-
termining the optimal number of workgroups in advance.

5 Conclusion and outlook

The task-farming framework introduced into ChemShell has resulted in a
substantial increase in the scalability of the code for the types of calculation
considered. All three benchmarked cases (finite-difference Hessian, parallel
nudged elastic band, and stochastic search) showed performance gains in
excess of the targets set in the dCSE work program. All the programming
objectives have therefore been achieved.

The main aim of future work will be to use the task-farming approach
on HECToR for scientific applications. An ongoing collaboration with Prof.
Catlow’s group at UCL will use task-farmed calculations for the study of
heterogeneous catalysis, with systems similar to the QM/MM test cluster
that was used to benchmark the parallel NEB method. The task-farmed
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approach will also be useful in other areas where large-scale calculations are
required, such as biomolecular modelling.

There are also still opportunities for further technical developments.
First, the task-farming method could be extended to other types of chemical
calculation, such as multiple trajectory calculations in molecular dynamics.
We also plan to parallelise the finite-difference Hessian code in DL-FIND,
which is used by several optimisation algorithms (this is equivalent to the
force command in ChemShell and will benefit in the same way). Second,
further modifications to GAMESS-UK could be made to allow alternative
parallelisation methods (ScaLAPACK, global arrays) to work in the task-
farmed environment. This is expected to be more technically challenging
than the minor modifications required for PeIGS. Third, other codes could
be modified to accept the MPI_COMM_WORKGROUP communicator and so work
in task-farmed mode. The internal DL POLY code in ChemShell is an ob-
vious first candidate for this work, but collaborations with the developers of
other external software packages is also a possibility.

The task-farming implementation will be made generally available as
part of ChemShell version 3.4, which is scheduled for release in July 2010.
Until then the pre-release code is available on request.

The work detailed in this report will be submitted for publication to
Proceedings of the Royal Society A as part of a special issue on the activities
of the Materials Chemistry Consortium.

6 Acknowledgements

I would like to thank Paul Sherwood for his support during this work and
Alexey Sokol and Gargi Dutta (UCL) for their help with the QM/MM cluster
example. Huub van Dam (PNNL, USA) provided the silicate structure used
for the Hessian benchmark calculations.

19



References

[1] ChemShell, a computational chemistry shell. See www.chemshell.org

[2] Sherwood P, de Vries AH, Guest MF, Schreckenbach G, Catlow CRA,
French SA, Sokol AA, Bromley ST, Thiel W, Turner AJ, Billeter S,
Terstegen F, Thiel S, Kendrick J, Rogers SC, Casci J, Watson M, King
F, Karlsen E, Sjøvoll M, Fahmi A, Schäfer A, Lennartz C (2003) J Mol
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