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1 Introduction

Time-dependent density functional theory (TDDFT) has become a well-estab-
lished technique for modelling excited state properties in molecular systems,
and has been implemented in several quantum-chemistry codes. An imple-
mentation of TDDFT in CASTEP [2] will give the UK electronic structure
community an opportunity to address cutting-edge scientific problems in ar-
eas such as inorganic and organic photovoltaic materials, catalytic reactions at
surfaces, light-emitting polymer materials for optical displays, and femtosec-
ond laser chemistry. Including the use of hybrid functionals promises to address
some of the limitations that have previously hindered the application of TDDFT
to extended systems. [3, 1, 7]

2 Testbed implementation of TDDFT

Milestone 1 - Implement a straightforward scheme based on the existing DFPT
module code in CASTEP to compute the electronic response to an external elec-
tric field of a set frequency. This will provide a reference calculation against
which the later, more sophisticated calculations may be benchmarked. Test re-
sults on small molecular systems will be compared against previous calculations
published in scientific literature. This work comprises stages 1 and 2 of the work
plan.

The above refers to equation 17 of Hutter’s paper [6], which describes the
first-order response1 of electrons to an electric field at a particular frequency.
The density functional perturbation theory implementation in CASTEP[9] al-
ready had much of the functionality required for this. Hutter’s equation 17
is: (

H(0) − εi
) ∣∣∣Φ(±)

i

〉
+ PcV

(1)(±ω)
∣∣∣Φ(0)

i

〉
= ∓ω

∣∣∣Φ(±)
i

〉
, (1)

where H(0) is the ground state (Kohn-Sham) Hamiltonian, εi are the ground
state Kohn-Sham eigenvalues for band index i, |Φ(±)

i 〉 are the response wave-
functions to a perturbation of frequency ω, Pc is the projector on the subspace

1Throughout this document when referring to the first-order (or linear) response, we will
simply use “response”, for brevity.
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of unperturbed unoccupied states, |Φ(0)
i 〉 are the ground state Kohn Sham or-

bitals and V (1)(±ω) is the response potential, containing contributions from
the Hartree, exchange-correlation, and electric field perterbation terms. In the
above we have neglected reference to electronic spin, for brevity. The reponse
wavefunctions throughout this report are taken to be orthogonal to the occupied
ground state, so there is an implied projector.

In the Tamm-Dancoff approximation[4], occupied–virtual contributions to
equation (1) are disregarded but the virtual–ocupied ones are kept, under the
assumption that the contribution from the former is small. This amounts to
setting |Φ(+)

i 〉 = 0, so Hutter’s equation 17 becomes(
H(0) − εi

) ∣∣∣Φ(−)
i

〉
+ PcV

(1)(−ω)
∣∣∣Φ(0)

i

〉
= ω

∣∣∣Φ(−)
i

〉
, (2)

which is the equation implemented for electric field response in CASTEP (with
the right hand side normally zero). A chosen frequency, ω, can be set through
the excited_state_scissors parameter.

In the secondd module, we have two different methods available for cal-
culating the response. Namely, a variational solver, and a Green’s function
solver. The variational solver is more stable than the Green’s function solver
when approaching the first excitation energy. However, the variational solver
cannot converge for values of ω above the first excitation energy, whether the
polarisability is negative or otherwise.

We chose an isolated methane molecule for our test system. To get the
energy of the excited states, we calculate the polarisability at a number of ω
values, and extrapolate for the divergence. Extensive tests were performed to
investigate convergence of the first excitation energy with respect to plane wave
cutoff energy and size of supercell. To get the excitation energy to two decimal
places, a cutoff energy of 750 eV2 and a cell 21 Å3 was required.

We found the first excitation energy to be 9.10 eV, using the LDA. This
compares well with a literature value of 9.053 eV [8], where they used GAUS-
SIAN 98. As we are using the Tamm-Dancoff approximation, this value for the
first excitation energy can be compared directly to that obtained by a direct
calculation of the poles, covered in the next section.

3 Initial demonstration implementation of Hut-
ter Solver

Milestone 2 - This will comprise much of the framework of a releasable imple-
mentation of TDDFT using Hutter’s published method. Issues of data distri-
bution and parallel efficiency will not be addressed at this stage and an ‘off-
the-shelf ’ eigensolver will be used. Initial testing and debugging. Code will be
benchmarked against a set of existing calculations on molecular systems chosen
from scientific literature. This work comprises stages 3-5 of the work plan.

Hutter reformulated the equations of time-dependent Hartree-Fock (TDHF)
theory (applied to TDDFT with pure density functionals) such that they could
be efficiently implemented in a plane-wave basis set. The TDHF equations are a

2The C 00 and H 00 norm-conserving pseudopotentials were used.
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non-Hermitian eigenvalue equation, which gives the excitation energies directly(
A B
B∗ A∗

)(
X
Y

)
= ω

(
1 0
0 −1

)(
X
Y

)
. (3)

In the Tamm-Dancoff approximation, the B matrices are set to zero, which leads
to a Hermitian eigenvalue problem AX = ωX. It is this Hermitian eigenvalue
problem that will be implemented for the “Hutter solver”.

In the context of a plane-wave code, the vectors X and Y are the plane-wave
coefficients of electronic wavefunctions, i.e. |Φ(±)

i 〉 from above. In CASTEP,
these are four-dimensional arrays, the dimensions being G-vectors (plane-waves),
k-points, bands and spin. For a TDDFT calculation, one typically has ∼
105 − 106 G-vectors, ∼ 100 − 1000 bands, a single k-point and spin of 1 or 2
dpending on whether the system is being treated as spin-degenerate. Of course,
storing and diagonalising a matrix of this size is innapropriate, especially as one
is only interested in the lowest few excited states. Instead we turn to iterative
methods, where only the result of the operator on a vector is required.

Hutter defines this operator in equation 35 of his paper, where he chooses to
separate it into two components, such that A = A + B. The first contribution
is from Kohn-Sham orbital energy differences

A
∣∣∣Φ(−)

i

〉
= (H(0) − εi)

∣∣∣Φ(−)
i

〉
. (4)

The action of this operator was already implemented for DFPT in CASTEP.
The second contribution is

B
∣∣∣Φ(−)

i

〉
= PcδVscf[n(−)]

∣∣∣Φ(0)
i

〉
, (5)

where δVscf[n(−)] is the self-consistent reponse potential for a change in electron
density

n(−)(r) =
N∑

i=1

Φ(0)∗
i (r)Φ(−)

i (r), (6)

and

δVscf[n(−)] =
∫
dr′
{

1
|r− r′|

+
δ2Exc

δn(r)δn(r′)

}
n(r′), (7)

which is the same as used in DFPT, but for a factor of 2 in the response density.
Given the effect of the A operator on a given wavefunction, an ‘off-the-

shelf’ iterative eigensolver with a reverse communication interface can be used.
By using a library routine, we can thoroughly test our implementation of the
operator. We used two different solvers, namely ARPACK3 and EA19, the latter
being from the HSL (formerly the Harwell Subroutine Library)4. ARPACK is
written in Fortran77 and implements the Arnoldi process. HSL-EA19 is written
in F95 + TR 15581 and implements a Jacobi-conjugate preconditioned gradients
scheme.

3http://www.caam.rice.edu/software/ARPACK/
4http://www.hsl.rl.ac.uk
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3.1 Results

At the end of section 2, we calculated the first excitation energy of methane to
be 9.10 eV by scanning through frequency. Calculating the lowest eigenvalue
directly on the same system, we get a value of 9.08 eV. Table 2 compares the
eigenvalues for a selection of molecules calculated using CASTEP and CPMD5,
where Hutter’s method was originally implemented.

Molecule State CASTEP CPMD
N2 1 9.282 9.283

2 9.282 9.283
3 9.692 9.692
4 10.259 10.251
5 10.270 10.269
6 10.270 10.269
7 11.495 11.488
8 11.495 11.488

H2 1 9.988 9.997
2 10.840 10.831
3 11.024 11.014
4 11.024 11.014
5 11.403 11.392

Table 1: Eigenvalue comparison

4 Implementation of parallel distribution solver
for true HPC use on HECToR

Milestone 3 - Port of code to HECToR. More extensive testing, debugging and
benchmarking against previous calculations. Demo calculations on larger sys-
tems than feasible in stage 2. This work comprises stages 6 and 7 of the work
plan.

While using stock serial eigensolvers was invaluable while developing the
code for the operator, a parallel solver is required. HSL-EA19 currently has no
parallel version available. ARPACK does have a parallel version, but it is not one
that can be used with the existing parallel distribution schemes in CASTEP. We
chose to implement two algorithms, a state-by-state conjugate gradients solver
and a block Davidson solver, with help from Phil Hasnip (University of York
and member of the CASTEP Development Group).

Hutter’s formulation assumes that the special k-point Γ is used.6 This means
that the real-space representation of the wavefunctions can always be real (as
opposed to complex). CASTEP already has Γ-point optimisations and we can
take advantage of these also. Using a single k-point restricts our choice of

5http://www.cpmd.org
6It is reasonably straightforward to extend Hutter’s derivation to a single arbitrary k-

point. The complex representation of the response density in equation 6 (above) allows for
this extension. The equations for multiple k-points are not trivial and would require further
research, and is therefore beyond the scope of this dCSE.
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existing parallel stategies to G-vector and bands. Our TDDFT code is currently
based on the v4.4 release, which does not contain the bands-parallel code.

4.1 Comparison of Solvers

At this point, it would be beneficial to compare the serial performance of the
four eigensolvers we have available. The table below gives the calculation time
and number of times the TDDFT operator is applied to converge the lowest 20
eigenvalues of our H2 test system, containing ∼10,000 plane-waves. This trend

Solver Time (s) # of operations
ARPACK 171 756
EA19 195 848
Conjugate Gradients 291 1290
Block Davidson 114 520

in the performance is as expected from Tretiak’s paper [10]. The state-by-state
CG solver is not without its benefits, however, as it has very modest memory
usage.

4.2 Parallel benchmark

For a parallel benchmark, we chose a larger molecular system in the form of
Buckminster-Fullerene, C60. We ran the calculations on HECToR (phase 2a)
for 5 iterations of the Davidson solver, and used 16 cores as a baseline. See
figure 1 below. We have used the prototype shared memory extension coded by
Chris Armstrong (NAG) under a core CSE call. With 4-way SMP, a parallel
efficiency of approximately 80% could be achieved with 256 processing elements.
Initial tests with HECToR phase 2b gave us comparable calculation times only
when using 4 cores per node (one per die), again with 4-way SMP.

Figure 1: Parallel speedup for the C60 benchmark on HECToR phase 2a.

We plan to merge our TDDFT code with the main CASTEP branch in the
near future. Minor modifications will be required for bands-parallel. Improve-
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ments to the parallel scaling can be expected to be inline with those for the
ground state calculation.

4.3 Demonstration calculation of an optical spectrum

Below is the optical spectrum produced from the first 100 eigenstates of C60.

Figure 2: Optical spectrum of C60 generated from the first 100 excited states.

5 Hybrid TDDFT

When a hybrid functional is used in TDDFT, the contribution to the eigenvalue
(excitation energy) is

−chf

occ∑
i

occ∑
j

∫ ∫
drdr′

φ
(−)∗
i (r)φ(−)

j (r)φ(0)∗
j (r′)φ(0)

i (r′)
|r− r′|

, (8)

where chf is the fraction of Hartree-Fock exchange prescribed by the approxi-
mation at hand. This expression is very similar to those already implemented
in the CASTEP nlxc module. Some minor modifications were made to include
the required response wavefunctions while keeping the number of FFTs at a
minimum, with a modest storage overhead. Even so, calculations including
Hartree-Fock exchange are often an order of magnitude more expensive than a
ground state calculation. In our case, the expense comes from the double loop
over bands. Such calculations will benefit greatly from parallel distribution over
bands. Note that the implementation of the Hartree-Fock response term should
also be applicable to DFPT, opening up the use of hybrid functionals in those
calculations.

The response kernel for the hybrid PBE0 approximation has been imple-
mented and tested. In doing so we came across a numerical instability that
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seems to occur only for systems with so-called ‘spurious’ excited states [5]. The
problem manifests in the production of negative eigenvalues.7 The instability
appears to arise from a subtle interplay or the Hartree-Fock response and the
PBE exchange-correlation response when the response density is very small,
but non-zero. The problem is circumvented by increasing the granularity of
CASTEP’s fine grid (to fine_grid_scale=4.0), which improves the quality of
the numerical derivatives in the GGA response term.

While preparing for the implementation of the response terms for the B3LYP
hybrid, it was discovered that the existing code used an incorrect calling se-
quence for the Becke 88 and LYP correlation routines. These routines are key
components for the B3LYP implementation. The code was fixed and will be
released in CASTEP version 5.5. The implementation of the B3LYP response
terms is in progress.

Using purely Hartree-Fock exchange for TDDFT in the Tamm-Dancoff ap-
proximation is equivalent to CIS (configuration interaction with single substi-
tutions). This function is also implemented.

5.1 Results

Below is a comparison of eigenvalues using the PBE0 functional.

Molecule State CASTEP CPMD
N2 1 9.342 9.343

2 9.483 9.460
3 9.483 9.460
4 9.897 9.897
5 9.897 9.897

Table 2: Eigenvalue comparison

6 Feature list of current code

• Calculation of singlet states in Tamm-Dancoff approximation

• ‘Pure’ and hybrid-DFT adiabatic XC kernel

• Solvers: Conjugate gradient and block Davidson (both with precondition-
ing)

• G-vector parallel

• Optimisations for Γ-point

• Calculation checkpointing and restart

• Oscillator strengths (for computing spectra)

• Characterisation of eigenvectors by decomposing into KS orbitals

7While this should never happen in the case of pure functionals, negative eigenvalues are
known to occur in TD Hartree-Fock theory. It is unclear whether they can occur in hybrid
TDDFT.
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