
Bands-parallelism in Castep

A dCSE Project

Phil Hasnip

August 14, 2008

Declaration

This short report emphasising on CASTEP performance has been extracted from the

original report on Bands-parallelism is Castep, a dCSE project. In case of any kind

of ambiguity arising from the contents of this short report, the reader is advised to

consult the original full-length report on the subject.

Sarfraz Nadeem

Contents

1 Introduction 1
1.1 The dCSE Project . 1
1.2 Summary of Progress . 2

2 Castep Performance on HECToR
(Work Package 0) 4
2.1 General Castep Performance . 4
2.2 Benchmarks . 5

2.2.1 FFT . 5
2.2.2 Maths Libraries (BLAS) 6
2.2.3 Compiler . 6
2.2.4 Node Usage . 8

2.3 Baseline . 10
2.4 Analysis . 12

3 Band-Parallelism
(Work Package 1) 13
3.1 Introduction . 13
3.2 Programming . 13
3.3 Benchmarking and Performance 13

4 Distributed Diagonaliser and Inverter
(Work Package 2) 17
4.1 Introduction . 17
4.2 Programming . 17
4.3 ScaLAPACK Performance . 17
4.4 Castep Performance . 19

5 Independent Band Optimisation
(Work Package 3) 21
5.1 Introduction . 21
5.2 Performance . 21

i

6 Final Thoughts 24
6.1 HECToR as a Development Machine 24

ii

Chapter 1

Introduction

This Distributed Computational Science and Engineering (dCSE) project is to
implement a new parallelisation strategy in the density functional theory pro-
gram Castep[1], on top of the existing parallelisation if possible, in order to
extend the number of nodes that Castep can be run on efficiently. Although
benchmarking Castep performance is a part of this dCSE project, it is an-
ticipated that this will allow Castep to run efficiently on O(1000) processing
elements (PEs) of the HECToR national supercomputer.

Castep was included as one of the benchmark programs used in the HEC-
ToR procurement exercise. Increasing the efficiency of Castep’s parallelisation
strategies will not only enable HECToR to be used more productively, it will
enable considerably larger simulations to be performed and open up many new
avenues of research.

1.1 The dCSE Project

This dCSE project commenced 1st December 2007, and is scheduled to end on
the 31st July 2008. The Principal Investigator on the grant was Dr K. Refson
(RAL). Dr M.I.J. Probert (York) and Dr M. Plummer (STFC) also provided
help and support.

At the heart of a Castep calculation is the iterative solution of a large eigen-
value problem to find the lowest 1% or so of the eigenstates, called ‘bands’,
and this calculation is currently parallelised over the components of the bands.
The aim of this project was to implement an additional level of parallelism by
distributing the bands themselves. The project was to be comprised of four
phases:

1. Basic Band Parallelism Split the storage and workload of the dominant
parts of a Castep calculation over the ‘bands’, in addition to the current
parallelisation scheme.

2. Distributed Matrix Inversion and Diagonalisation At various points

1

of a Castep calculation large matrices need to be inverted or diagonalised,
and this is currently done in serial. In this phase we will distribute this
workload over as many processors as possible.

3. Band-Independent Optimiser The current optimisation of the bands
requires frequent, expensive orthonormalisation steps that will even more
expensive with the new bands-parallelism. Implementing a different, known
optimisation algorithm that does not require such frequent orthonormali-
sation should improve speed and scaling.

4. Parallelisation and Optimisation of New Band Optimiser To work
on making the new optimiser as fast and robust as possible, and parallelise
the new band optimisation algorithm.

The overall aim was to enable Castep to scale efficiently to at least eight times
more nodes on HECToR. An additional phase was introduced at the request of
NAG, to investigate Castep performance on HECToR in general to determine
the best compiler, compiler flags and libraries to use.

1.2 Summary of Progress

All three phases of the project have been completed successfully, based on
Castep 4.2 source code, though there remains some scope for optimisation and
several possible extensions. Basic Castep calculations can be parallelised over
bands in addition to the usual parallelisation schemes, and the large matrix
diagonalisation and inversion operations have also been parallelised. Two band-
independent optimisation schemes have been implemented and shown to work
under certain conditions.

The performance of Castep on HECToR has been improved dramatically
by this dCSE project. One example is the standard benchmark al3x3, which
now scales effectively to almost four times the number of cores compared to the
ordinary Castep 4.2 (see figure 1.1).

2

Figure 1.1: Graph showing the performance and scaling improvement achieved
by this dCSE project (using 8-way band-parallelism) compared to the ordinary
Castep 4.2 code for the standard al3x3 benchmark.

3

Chapter 2

Castep Performance on
HECToR
(Work Package 0)

2.1 General Castep Performance

Castep’s performance is usually limited by two things: orthogonalisation-like
operations, and FFTs. The orthogonalisation (and subspace diagonalisation)
are performed using standard BLAS and LAPACK subroutine calls, such as
those provided on HECToR by the ACML or Cray’s LibSci. Castep has a built-
in FFT algorithm for portability, but it is not competitive with tuned FFT
libraries such as FFTW and provides interfaces to both FFT versions 2 and 3.
ACML also provides FFT subroutines.

Castep is written entirely in Fortran 90, and HECToR has three Fortran 90
compilers available: Portland Group (pgf90), Pathscale (pathf90) and GNU’s
gfortran. Following the benchmarking carried out during the procurement exer-
cise, it was anticipated that Pathscale’s pathf90 compiler would be the compiler
of choice and Alan Simpson (EPCC) was kind enough to provide his flags for
the Pathscale compiler, based on the ones Cray used in the procurement:

-O3 -OPT:Ofast -OPT:recip=ON -OPT:malloc_algorithm=1

-inline -INLINE:preempt=ON

Note that this switches on fast-math. Unless otherwise noted, all program
development and benchmarking was performed with the Castep 4.2 codebase, as
shipped to the United Kingdom Car-Parinello (UKCP) consortium, which was
the most recent release of Castep at the commencement of this dCSE project
and was the version available on HECToR to end-users.

4

2.2 Benchmarks

The standard Castep benchmarks have not changed for several years, and many
are now too small to be useful for parallel scaling tests. The smallest benchmark,
al1x1, is a small slab of aluminium oxide and runs in less that 6 minutes on
8 PEs of HECToR. The larger titanium nitride benchmark, TiN (which also
contains a single hydrogen atom), only takes an hour on 16 PEs because the
DM algorithm converges slowly – its time per SCF cycle is little more than twice
the al1x1 benchmark. For this reason we settled on the al3x3 test system as the
main benchmark for the parallel scaling tests, since this was large enough to
take a reasonable amount of time per SCF cycle, yet small enough to run over
a wide range of nodes.

The al3x3 benchmark is essentially a 3x3 surface cell of the al1x1 system,
and has:

• 270 atoms (108 Al, 162 O)

• 88,184 G-vectors

• 778 bands (1296 electrons, non-spin-polarised, plus 130 conduction bands)

• 2 k-points (symmetrised 2×2×1 MP grid)

However the parameter files for this calculation do not specify Castep’s op-
timisation level. In general it is advisable to tell Castep how to bias it’s opti-
misation, e.g. opt strategy bias : 3 to optimise for speed (at the expense
of using more RAM). Since the default optimisation level is not appropriate
for HPC machines such as HECToR, most of our calculations were performed
with the addition of opt strategy bias : 3 to the Castep parameter file
al3x3.param.

2.2.1 FFT

The FFTW version 2 libraries on HECToR are only available for the Portland
Group compiler, so the full FFT comparison tests were performed exclusively
with pgf90. Cray’s LibSci (10.2.1) was used for BLAS and LAPACK. The
following compiler flags were used throughout the FFT tests:

-fastsse -O3 -Mipa

In order to measure the performance of the FFT routines specifically we used
Castep’s internal Trace module to profile the two subroutines wave recip to real slice

and wave real to recip slice. These subroutines take a group of eigenstates,
called a wavefunction slice, and Fourier transform them from reciprocal space
to real space, or vice versa.

As can be seen from figure 2.1 FFTW 3.1.1 was the fastest FFT library
available on HECToR.

5

Figure 2.1: Graph showing the relative performance of the four FFT subrou-
tines available to Castep on HECToR for the TiN benchmark. This benchmark
transforms wavefunction slices to real space 1634 times and back again.

2.2.2 Maths Libraries (BLAS)

Much of the time spent in Castep is in the double-precision complex matrix-
matrix multiplication subroutine ZGEMM. The orthogonalisation and subspace
rotation operations both use ZGEMM to apply unitary transformations to the
wavefunctions, and it is also used extensively when computing and applying
the so-called non-local projectors. Although the unitary transformations dom-
inate the asymptotic cost of large calculations, the requirement that bench-
marks run in a reasonable amount of time means that they are rarely in this
rotation-dominated regime. The orthogonalisation and diagonalisation subrou-
tines also include a reasonable amount of extra work, including a memory copy
and updating of meta-data, which can distort the timings for small systems. For
these reasons we chose to concentrate on the timings for the non-local projector
overlaps as a measure of ZGEMM performance, in particular the subroutine
ion beta add multi recip all which is almost exclusively a ZGEMM operation.

For the BLAS tests, the Pathscale compiler (version 3.0) was used through-
out with the compiler options:

-O3 -OPT:Ofast -OPT:recip=ON -OPT:malloc_algorithm=1 -inline

-INLINE:preempt=ON

As can be seen from figure 2.2 Cray’s LibSci 10.2.1 was by far the fastest
BLAS library available on HECToR, at least for ZGEMM.

2.2.3 Compiler

Much of the computational effort in a Castep calculation takes place in the FFT
or maths libraries, but there are still significant parts of the code for which no
standard library exists. It is the performance of these parts of code that changes
depending on the compiler used and the various flags associated with it.

6

Figure 2.2: Graph showing the relative performance of the ZGEMM provided by
the four maths libraries available to Castep on HECToR for the TiN benchmark.
This benchmark performs 4980 projector-projector overlaps using ZGEMM.
Castep’s internal Trace module was used to report the timings.

For the Pathscale compiler (3.0) we used the flags provided by Alan Simpson
(EPCC) as a base for our investigations,

-O3 -OPT:Ofast -OPT:recip=ON -OPT:malloc_algorithm=1

-inline -INLINE:preempt=ON

and created six compilation flagsets. The first set, which was used as a base for
all the other sets, just used -O3 -OPT:Ofast, and we named this the bare set.
The other five used this, plus:

malloc_inline -OPT:malloc_algorithm=1 -inline -INLINE:preempt=ON

recip -OPT:recip=ON

recip_malloc -OPT:recip=ON -OPT:malloc_algorithm=1

recip_malloc_inline -OPT:recip=ON -OPT:malloc_algorithm=1 -inline

-INLINE:preempt=ON

full -OPT:recip=ON -OPT:malloc_algorithm=1 -inline

-INLINE:preempt=ON -march=auto -m64 -msse3 -LNO:simd=2

The performance of the various Castep binaries can be seen in figure 2.3. It
is clear that the flags we were given by Alan Simpson are indeed the best of this
set.

For the Portland Group compiler we used the base flags from the standard
Castep pgf90 build as a starting point, -fastsse -O3. Unfortunately there
seemed to be a problem with the timing routine used in Castep when compiled
with pgf90, as the timings often gave numbers that were far too small and did
not tally with the actual walltime. Indeed the Castep output showed that the
SCF times were ‘wrapping round’ during a run, as in this sample output from
an al3x3 benchmark:

-- <-- SCF
SCF loop Energy Fermi Energy gain Timer <-- SCF

energy per atom (sec) <-- SCF
-- <-- SCF
Initial -5.94087234E+004 5.75816046E+001 71.40 <-- SCF

1 -7.38921628E+004 4.31787037E+000 5.36423678E+001 399.29 <-- SCF
2 -7.78877742E+004 1.96972918E+000 1.47985607E+001 689.06 <-- SCF

7

(a) TiN benchmark (16 PEs) (b) al3x3 benchmark (32 PEs)

Figure 2.3: Comparison of Castep performance for the Pathscale compiler with
various flags, using 39 SCF cycles of the TiN benchmark (2.3(a)) and 11 SCF
cycles of the al3x3 benchmark (2.3(b)).

3 -7.79878794E+004 1.79936064E+000 3.70760070E-001 954.04 <-- SCF

4 -7.78423468E+004 1.96558259E+000 -5.39009549E-001 1250.05 <-- SCF
5 -7.77212605E+004 1.34967844E+000 -4.48467894E-001 1544.50 <-- SCF

6 -7.77152926E+004 1.12424610E+000 -2.21032775E-002 1863.09 <-- SCF
7 -7.77129468E+004 1.05359411E+000 -8.68814103E-003 14.53 <-- SCF
8 -7.77104895E+004 1.02771272E+000 -9.10094481E-003 288.19 <-- SCF

9 -7.77084348E+004 9.96278161E-001 -7.60993336E-003 582.43 <-- SCF
10 -7.77059813E+004 1.11167947E+000 -9.08729795E-003 872.09 <-- SCF

11 -7.77052050E+004 1.16249354E+000 -2.87513162E-003 1162.86 <-- SCF
-- <-- SCF

Unfortunately this behaviour meant that we were forced to rely on the PBS
output file for the total walltime for each run, which includes set-up and finalisa-
tion time that we would have liked to omit. We experimented with various flags
to invoke interprocedural optimisation -Mipa, -Mipa=fast but the Castep tim-
ings remained constant to within one second. Figure 2.4 shows the run times
of both the Portland Group and Pathscale compiler as reported by the PBS
output for the TiN benchmark.

2.2.4 Node Usage

Each node on HECToR has two cores, or PEs, so we ran a series of Castep
calculations to see how the performance and scaling of a Castep calculation
depends on the number of PEs used per node. We also used these calculations
to double-check the results of our investigation into different libraries. The
results are shown in figure 2.5.

The best performance was achieved with the Goto BLAS in Cray’s libsci
version 10.2.0 coupled with the FFTW3 library, as can be seen in figure 2.5. The
best performance per core was achieved using only one core per node, though
the performance improvement over using both cores was not sufficient to justify
the expense (since jobs are charged per node not per core). Using Castep’s

8

Figure 2.4: Graph showing the relative performance of the Pathscale 3.0 com-
piler (recip malloc inline flags) with the Portland Group 7.1.4 compiler (-fastsse
-O3 -Mipa) for the TiN benchmark on 16 PEs. The PBS reported walltime was
used to report the timings.

(a) Execution time using 2 cores per node (b) Execution time using 1 core per node

Figure 2.5: Comparison of Castep performance for the ACML and LibSci (Goto)
BLAS libraries, and the generic GPFA and FFTW3 FFT libraries, run using
two cores per node (2.5(a)) and one core per node (2.5(b))

9

facility for optimising communications within an SMP node1 the scaling was
improved dramatically and rivals that of the one core per node runs.

2.3 Baseline

We decided to choose the Pathscale 3.0 binary, compiled with the recip malloc inline
flags (see section 2.2.3) and linked against Cray’s Libsci 10.2.1 and FFTW3 for
our baseline, as this seemed to offer the best performance with the 4.2 Castep
codebase.

Figure 2.6: Execution time for the 33 atom TiN benchmark. This calculation
is performed at 8 k-points.

(a) Execution time (b) Efficiency with respect to 16 cores

Figure 2.7: Scaling of execution time with cores for the 270 atom Al2O3 3x3
benchmark. This calculation is performed at 2 k-points.

1Using the num proc in smp and num proc in smp fine parameters

10

(a) CPU time for Castep on 256 cores (b) CPU time for Castep on 512 cores

Figure 2.8: Breakdown of CPU time for 256 (2.8(a)) and 512 (2.8(b)) cores
using 2 ppn, for Castep Al2O3 3x3 benchmark

(a) CPU time spent applying the Hamiltonian in
Castep

(b) CPU time spent preconditioning the search
direction in Castep

Figure 2.9: The CPU time spent in the two dominant user-level subroutines
and their children, for a 512-core (2 ppn) Castep calculation of the Al2O3 3x3
benchmark

11

2.4 Analysis

Both the Cray PAT and built-in Castep trace showed that a considerable amount
of the time in ZGEMM, as well as the non-library time, was spent in nlpot apply precon.
The non-library time was attributable to a packing routine which takes the un-
packed array beta phi, which contains the projections of the wavefunction bands
onto the nonlocal pseudopotential projectors, and packs them into a temporary
array. Unfortunately this operation was poorly written, and the innermost loop
was over the slowest index.

The ZGEMM time in nlpot apply precon could also be reduced because the
first matrix in the multiplication was in fact Hermitian, so the call could be
replaced by ZHEMM to do approximately half the work.

12

Chapter 3

Band-Parallelism
(Work Package 1)

3.1 Introduction

The first stage of the project is to implement the basic band-parallelism. This
involves distributing the wavefunction coefficients over the Nb bands, in addi-
tion to the NG G-vectors and Nk k-points, as well as distributing other data
such as the eigenvalues, band occupancies, and band-overlap matrices such as
the subspace Hamiltonian. Along with the data distribution, as much of the
workload as possible should also be distributed over the bands.

3.2 Programming

The main programming effort lies in the basic band-parallelism, and in par-
ticular the construction of band-overlap matrices which will now need to be
distributed. Most of this effort will be concentrated in the wave module, which
handles the vast majority of operations on wavefunctions and bands, but in-
evitably there are some changes required to other modules.

3.3 Benchmarking and Performance

The first reasonable simulation we performed with the new band-parallelism was
the al1x1 benchmark. The test simulations were restricted to small test cases
(8-atom silicon, and the al1x1 benchmark) and numbers of cores (≤8), where
the results could be compared in detail to known results and serial calculations,
but once testing was complete we were able to move to larger systems. Table
3.1 shows the performance improvement for the al1x1 benchmark using the new
band-parallel mode.

13

cores DM efficiency
2 65%
4 50%
8 35%

Table 3.1: Parallel scaling of the al1x1 benchmark in band-parallel mode.

cores Time (s) band-parallel efficiency
8 5085.04 (k-point parallel)
16 3506.66 72%
32 2469.84 51%

Table 3.2: Execution time and parallel efficiency for the 33-atom TiN benchmark
(8 k-points). Times are for 40 SCF cycles using the DM algorithm. The 8-core
calculation is running purely k-point parallel, the others are running with mixed
band and k-point parallelism.

The performance was analysed using Cray’s Performance Analysis Tool (PAT)
version 4.2. It was also necessary to create symbolic links to the Castep source
files in Source/Utility in Castep’s obj/linux x86 64 pathscale/Utility and simi-
larly for Fundamental and Functional.

pat_build -D trace-max=2048 -u -g mpi,blas,lapack,math castep

We profiled a Castep calculation on the al1x1 benchmark parallelised over
16 nodes (4-way band-parallel, 4-way gv-parallel). The subroutine with the
most overhead from the band-parallelism was wave rotate, the Trace output
of which was:

| o-> wave_orthonormalise_over_slice 1290 |

| o-> electronic_find_eigenslice 2580 |
| o-> wave_rotate_slice 3870 3870 40.06s |
| o-> wave_nullify_slice 3870 3870 0.01s |

| o-> wave_allocate_slice 3870 3870 0.01s |
| o-> wave_initialise_slice 3870 3870 1.75s |

| o-> comms_reduce_bnd_logical 3870 3870 0.28s |
| o-> comms_reduce_bnd_integer 3870 3870 0.10s |
| o-> comms_send_complex 23220 23220 6.48s |

| o-> comms_recv_complex 23220 23220 7.79s |
| o-> wave_copy_slice_slice 3870 3870 1.09s |

| o-> wave_deallocate_slice 3870 3870 0.00s |

This is to be expected, since these wavefunction rotations scale cubically
with system size, and also incur a communication cost when run band-parallel.
Some time was spent optimising this subroutine, and in the end we settled on a
refactoring of the communications whereby each node does log2nodes commu-
nication phases, the first phase involving an exchange of half the transformed
data, and each subsequent phase exchanging half the data of the previous one.
This scheme is illustrated in figure 3.1.

14

Figure 3.1: The new communication pattern, illustrated for seven nodes in the
band group. Nodes with work still to do are coloured blue, and nodes that have
finished are coloured yellow. At each of the three communication phases each
group of nodes is split to form two child groups. Each node in a child group
transforms its local data to produce its contribution to the nodes in the other
child group, the ‘sibling group’; it then sends this data to one of the nodes in
that group, and receives the sibling node’s contribution to all of the nodes in
the child group.

This communication pattern improved the speed of the wave rotate sub-
routine considerably, but at the cost of increased storage. Indeed the first phase
involves the exchange of half of the newly transformed data, so the send and
receive buffers constitute an entire non-distributed wavefunction. As the band-
parallelisation is only efficient over relatively small numbers of nodes (typically
≤ 16) this has not proved too much of a hindrance thus far, but it would be wise
to restrict this in future, perhaps to a low multiple of a single node’s storage, at
the cost of slightly more communication phases. Such a change could, of course,
be made contingent on the value of the opt strategy bias parameter.

Once wave rotate had been optimised, Castep’s performance was measured
on the al3x3 benchmark. As can be seen from figure 3.2, the basic band-
parallelism implemented in this stage of the project improved Castep’s scaling
considerably. Using linear interpolation of the data points we estimated that
the maximum number of PEs that can be used with 50% or greater efficiency
has been increased from about 221 to about 436 (without using the SMP opti-
misations).

15

(a) Castep performance (b) Castep parallel efficiency relative to 16 PE
Castep 4.2

Figure 3.2: Graphs showing the computational time (3.2(a)) and scaling (3.2(b))
of the band-parallel version of Castep, compared to ordinary Castep 4.2, for 10
SCF cycles of the standard al3x3 benchmark.

16

Chapter 4

Distributed Diagonaliser
and Inverter
(Work Package 2)

4.1 Introduction

The first stage of the project included the distribution over the band-group of
the calculation of the band-overlap matrices required for both orthonormalisa-
tion of the wavefunction and the subspace Hamiltonian. These matrices still
need to be diagonalised (or inverted) and Castep 4.2 does this in serial. These
operations scale as N3

b so as larger and larger systems are studied they will start
to dominate. For this reason the second stage of the project involves distributing
these operations over the nodes.

4.2 Programming

Because the aim of this stage of the project was to implement a parallel matrix
diagonaliser and inverter, which is independent of most of Castep, we created a
testbed program to streamline the development. The subspace diagonalisation
subroutine in Castep uses the LAPACK subroutine ZHEEV, so we concentrated on
that operation first. The testbed program creates a random Hermitian matrix,
and uses the parallel LAPACK variant ScaLAPACK to diagonalise it.

4.3 ScaLAPACK Performance

The performance of the distributed diagonaliser (PZHEEV) was compared to
that of the LAPACK routine ZHEEV for a range of matrix sizes.

17

time for various matrix sizes
cores 1200 1600 2000 2400 2800 3200

1 19.5s 46.5s 91.6s 162.7s
2 28.3s 65.9s 134.6s
4 15.8s 38.2s 54.7s 90.1s
8 7.9s 19.0s 37.6s 63.9s 81.6s
16 4.3s 10.5s 20.3s 32.5s 76.2s
32 2.7s 6.0s 11.6s 19.2s 43.1s

Table 4.1: Hermitian matrix diagonalisation times for the ScaLapack subroutine
PZHEEV.

An improved parallel matrix diagonalisation subroutine, PZHEEVR (The
‘R’ is because it uses the Multiple Relatively Robust Representations (MRRR)
method) , was made available to us by Christof Vömel (Zurich) and Edward
Smyth (NAG). This subroutine consistently out-performed PZHEEV, as can be
seen from figure 4.1.

Figure 4.1: A graph showing the scaling of the parallel matrix diagonalisers
PZHEEV (solid lines with squares) and PZHEEVR (dashed lines with dia-
monds) with matrix size, for various numbers of cores (colour-coded)

The ScaLAPACK subroutines are based on a block-cyclic distribution, which
allows the data to be distributed in a general way rather than just by row or col-
umn. The timings for different data-distributions for the PZHEEVR subroutine
are given in table 4.2.

The computational time t for diagonalisation of a N × N matrix scales as
O(N3), so we fitted a cubic of the form

t(N) = a + bN + cN2 + dN3 (4.1)

to these data for the 8-core runs. The results are shown in table 4.3. This
cubic fit reinforces the empirical evidence that the PZHEEVR subroutines have

18

Cores used for distribution of
Rows Columns Time

1 64 6.48s
2 32 6.45s
4 16 5.80s
8 8 5.92s

Table 4.2: PZHEEVR matrix diagonalisation times for a 2200x2200 Hermitian
matrix distributed in various ways over 64 cores of HECToR.

superior performance and scaling with matrix size, since the cubic coefficient for
PZHEEVR is around 20% smaller than that of the usual PZHEEV subroutine.

Coefficient PZHEEV PZHEEVR
a -1.43547 -0.492901
b 0.00137909 0.00107718
c 9.0013e-08 -7.22616e-07
d 4.31679e-09 3.53573e-09

Table 4.3: The best-fit cubic polynomials for the PZHEEV and PZHEEVR
matrix diagonalisation times for Hermitian matrices from 1000×1000 to 3600×
3600 distributed over 8 cores of HECToR.

4.4 Castep Performance

With the new distributed inversion and diagonalisation subroutines the per-
formance and scaling of Castep was improved noticeably. As expected, this
improvement was more significant when using larger number of cores. Figure
4.2 shows the improved performance of Castep due to the distribution of the
matrix inversion and diagonalisation in this work package.

The distributed diagonalisation, on top of the basic band-parallelism, enables
Castep calculations to scale effectively to between two and four times more cores
compared to Castep 4.2 (see figure 4.3). The standard al3x3 benchmark can
now be run on 1024 cores with almost 50% efficiency, which equates to over three
cores per atom, and it is expected that larger calculations will scale better. A
large demonstration calculation is being performed that should illustrate the
new Castep performance even better.

19

Figure 4.2: Graph showing the performance and scaling improvement achieved
by the distributed inversion and diagonalisation work in Work Package 2, com-
pared to the straight band-parallel work from Work Package 1. Each calculation
is using 8-way band-parallelism, and running the standard al3x3 benchmark.

(a) num proc in smp : 1 (b) num proc in smp : 2

Figure 4.3: Comparison of Castep scaling for Work Packages 1 and 2 and the
original Castep 4.2, for 10 SCF cycles of the al3x3 benchmark. Parallel efficien-
cies were measured relative to the 16 core calculation with Castep 4.2.

20

Chapter 5

Independent Band
Optimisation
(Work Package 3)

5.1 Introduction

The bottleneck in large Castep calculations is the explicit S-orthonormalisation
of the eigenstates. This orthonormalisation involves the calculation and in-
version of the band-overlap matrix, operations which scale as NpN

2

b and N3

b

respectively, where Np is the number of plane-wave basis states and Nb is the
number of bands (eigenstates). Furthermore, when operating in band-parallel
mode the former operation is also a communication bottleneck, as the individual
eigenstates reside on different processing elements.

Clearly it is desirable to implement an optimisation scheme which will allow
the approximate bands to be optimised without the need for an explicit S-
orthonormalisation.

5.2 Performance

Unfortunately neither the RMM-DIIS optimiser nor our variation proved to be
either robust or quick; the reduction in orthonormalisations reduced the SCF cy-
cle time considerably, but vastly more SCF cycles were needed for convergence.
The RMM-DIIS scheme in particular suffered from severe numerical instabilities
near convergence, since the residual matrix becomes more and more singular as
the trial eigenstates approach the true eigenstates.

In order to ensure only the direct changes to the optimiser were observed,
we ran Castep for a fixed density. Typical convergence for a simple magnesium
oxide test case using the usual Castep algorithm is:

-- <-- SCF

21

SCF loop Energy Fermi Energy gain Timer <-- SCF
energy per atom (sec) <-- SCF

-- <-- SCF
Initial -4.95078326E+003 5.20975146E+001 2.99 <-- SCF

1 -5.59753549E+003 7.89244217E+000 8.08440297E+001 3.90 <-- SCF
2 -5.66226988E+003 7.15740116E+000 8.09179761E+000 4.68 <-- SCF

3 -5.66301246E+003 7.16625993E+000 9.28225593E-002 5.76 <-- SCF
4 -5.66306881E+003 7.16423308E+000 7.04427727E-003 7.01 <-- SCF
5 -5.66306893E+003 7.16423173E+000 1.49140438E-005 8.41 <-- SCF

6 -5.66306893E+003 7.16423137E+000 4.02077714E-007 9.87 <-- SCF
7 -5.66306893E+003 7.16423137E+000 5.27220802E-008 11.01 <-- SCF

8 -5.66306893E+003 7.16423137E+000 1.76063159E-009 11.94 <-- SCF
9 -5.66306893E+003 7.16423137E+000 3.90757352E-010 12.61 <-- SCF

10 -5.66306893E+003 7.16423137E+000 1.33410476E-011 13.10 <-- SCF

11 -5.66306893E+003 7.16423137E+000 5.99380402E-012 13.53 <-- SCF
-- <-- SCF

Switching to the RMM-DIIS gave

-- <-- SCF

SCF loop Energy Fermi Energy gain Timer <-- SCF
energy per atom (sec) <-- SCF

-- <-- SCF
Initial -4.95078326E+003 5.20975146E+001 2.85 <-- SCF

1 -5.59753549E+003 7.89244217E+000 8.08440297E+001 3.69 <-- SCF

2 -5.66226988E+003 7.15740116E+000 8.09179761E+000 4.41 <-- SCF
3 -5.66301246E+003 7.16625993E+000 9.28225593E-002 5.39 <-- SCF

4 -5.66306881E+003 7.16423308E+000 7.04427727E-003 6.55 <-- SCF
5 -5.66306892E+003 7.16423445E+000 1.34939453E-005 7.66 <-- SCF

6 -5.66306891E+003 7.16423645E+000 -1.18066010E-006 8.76 <-- SCF
7 -5.66306893E+003 7.16423715E+000 2.90858466E-006 10.06 <-- SCF
8 -5.66306893E+003 7.16424036E+000 5.70679748E-008 11.11 <-- SCF

9 -5.66306893E+003 7.16424784E+000 -9.96659399E-008 12.21 <-- SCF
10 -5.66306890E+003 7.16426887E+000 -3.48059116E-006 12.98 <-- SCF

11 -5.66306893E+003 7.16499317E+000 3.20356934E-006 13.78 <-- SCF
12 -5.66306893E+003 7.16435180E+000 -1.03932948E-007 14.46 <-- SCF
13 -5.66306893E+003 7.16439686E+000 -1.62527990E-007 15.22 <-- SCF

14 -5.66306892E+003 7.16467568E+000 -2.95401151E-007 15.88 <-- SCF
15 -5.66306891E+003 7.16448445E+000 -1.60189845E-006 16.58 <-- SCF

16 -5.66306891E+003 7.16566473E+000 5.03725090E-008 17.30 <-- SCF
17 -5.66305809E+003 7.16892722E+000 -1.35318489E-003 17.94 <-- SCF

18 -5.66289950E+003 7.17878051E+000 -1.98232364E-002 18.59 <-- SCF
19 -5.66295014E+003 7.20703280E+000 6.33023123E-003 19.23 <-- SCF
20 -5.65353849E+003 7.27226034E+000 -1.17645706E+000 19.82 <-- SCF

-- <-- SCF

Even with this small test case there was a slight improvement in the SCF
cycle time, but the numerical instabilities caused the solution to diverge even-
tually. Our modified algorithm proved slightly more stable for this test case,
but slower and also showed signs of diverging:

-- <-- SCF
SCF loop Energy Fermi Energy gain Timer <-- SCF

energy per atom (sec) <-- SCF
-- <-- SCF
Initial -4.95078326E+003 5.20975146E+001 3.25 <-- SCF

1 -5.59753549E+003 7.89244217E+000 8.08440297E+001 5.65 <-- SCF
2 -5.66226988E+003 7.15740116E+000 8.09179761E+000 6.44 <-- SCF

3 -5.66301246E+003 7.16625993E+000 9.28225593E-002 7.51 <-- SCF
4 -5.66306881E+003 7.16423308E+000 7.04427727E-003 8.79 <-- SCF

5 -5.66306892E+003 7.16423445E+000 1.34668025E-005 10.08 <-- SCF
6 -5.66306891E+003 7.16423645E+000 -1.24884522E-006 11.33 <-- SCF
7 -5.66306825E+003 7.16423517E+000 -8.20412820E-005 12.79 <-- SCF

8 -5.66306852E+003 7.16424032E+000 3.31933376E-005 13.98 <-- SCF
9 -5.66306886E+003 7.16424765E+000 4.29159705E-005 15.26 <-- SCF

22

10 -5.66306888E+003 7.16426863E+000 2.20859478E-006 16.17 <-- SCF
11 -5.66306892E+003 7.16496512E+000 5.82997827E-006 17.23 <-- SCF

12 -5.66306892E+003 7.16434686E+000 -2.59482603E-007 17.99 <-- SCF
13 -5.66306892E+003 7.16439357E+000 -5.01087043E-007 18.80 <-- SCF

14 -5.66306891E+003 7.16466770E+000 -1.12797108E-006 19.56 <-- SCF
15 -5.66306890E+003 7.16447879E+000 -1.59632306E-006 20.42 <-- SCF

16 -5.66306886E+003 7.16561534E+000 -4.04882177E-006 21.16 <-- SCF
17 -5.66306881E+003 7.16881083E+000 -6.32000384E-006 21.89 <-- SCF
18 -5.66306867E+003 7.17899059E+000 -1.85164167E-005 22.64 <-- SCF

19 -5.66306845E+003 7.20738379E+000 -2.73264238E-005 23.33 <-- SCF
20 -5.66306769E+003 7.29973182E+000 -9.40002692E-005 24.05 <-- SCF

-- <-- SCF

These results were fairly typical of the performance of these optimisers–it
was relatively straightforward to get them close to the groundstate, but difficult
to get the accuracy we require. Imposing orthonormality on the updates en-
abled both methods to converge quickly and robustly, indicating that this poor
performance was not a bug, but inherent in the algorithms. We investigated re-
stricted orthonormalisation, whereby only certain directions are projected out,
but although this improved matters neither algorithm converged reliably.

23

Chapter 6

Final Thoughts

6.1 HECToR as a Development Machine

HECToR is clearly an excellent machine for running Castep, even without the
efficiency gains made in this project. However there are some features that have
made using it as a development machine rather difficult. Chief amongst these
are:

• Buffered I/O It is obviously important for performance to buffer I/O,
but HECToR does not flush these buffers when the system call flush
is invoked, or even on job termination. This made tracking bugs down
extremely difficult using Castep’s built-in Trace logging, or even adding
write statements.

• Out-of-Memory not logged for user When one of HECToR’s com-
pute nodes runs out of memory, the Linux OOM module kills a randomly
selected process. This may be any process including the Castep job, in
which case the job terminates. However the PBS output shows only ‘exit
code 137’, indicating that the job was killed, but not why.

• No dedicated benchmarking time In the process of developing and
testing the modified Castep, calculations had to be performed on a large
number of nodes. Many of these calculations were short–the al3x3 bench-
mark, for example, takes less than 15mins on 2000 PEs or more–and it
would have been very useful to have some time set aside for benchmarking.
Perhaps this time could be made available after scheduled downtime.

24

Bibliography

[1] S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.J. Probert, K. Refson
and M.C. Payne, “First principles methods using CASTEP”, Zeit. für Kryst.
220(5-6) (2004) 567–570

[2] P.J. Hasnip and C.J. Pickard, “Electronic energy minimisation with ultrasoft
pseudopotentials”. Comp. Phys. Comm. 174 (2006) 24–29

[3] P. Pulay, “Convergence acceleration of iterative sequences. The case of SCF
iteration”. Chem. Phys. Lett. 73 (1980) 393–398

25

