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Chapter 1

Introduction

This Distributed Computational Science and Engineering (dCSE) project is
to implement a new parallelisation strategy in the density functional theory
program Castep|[1], on top of the existing parallelisation if possible, in order
to extend the number of nodes that Castep can be run on efficiently. Al-
though benchmarking Castep performance is a part of this dCSE project,
it is anticipated that this will allow Castep to run efficiently on O(1000)
processing elements (PEs) of the HECToR national supercomputer.

Castep is widely used in materials science, chemistry, physics, engineer-
ing and, increasingly, molecular biology research, in both industrial and aca-
demic research institutions, and for this reason it was included as one of the
benchmark programs used in the HECToR procurement exercise. It is mar-
keted worldwide by Accelrys, but is available free to UK academics under
the terms of the United Kingdom Car-Parrinello Consortium (UKCP), and
it is under the terms of this agreement that Castep is made available on
HECToR. Increasing the efficiency of Castep’s parallelisation strategies will
not only enable HECToR to be used more productively, it will enable con-
siderably larger simulations to be performed and open up many new avenues
of research.

This dCSE project commenced 1st December 2007, and is scheduled to
end on the 31st July 2008. The Principal Investigator on the grant was Dr
K. Refson (RAL). Dr M.I.J. Probert (York) and Dr M. Plummer (STFC)
also provided help and support.



1.1 The dCSE Project

At the heart of a Castep calculation is the iterative solution of a large
eigenvalue problem to find the lowest 1% or so of the eigenstates, called
‘bands’, and this calculation is currently parallelised over the components
of the bands. The aim of this project was to implement an additional level
of parallelism by distributing the bands themselves. The project was to be
comprised of four phases:

1. Basic Band Parallelism
Split the storage and workload of the dominant parts of a Castep calcu-
lation over the ‘bands’, in addition to the current parallelisation scheme.

2. Distributed Matrix Inversion and Diagonalisation
At various points of a Castep calculation large matrices need to be in-
verted or diagonalised, and this is currently done in serial. In this phase
we will distribute this workload over as many processors as possible.

3. Band-Independent Optimiser
The current optimisation of the bands requires frequent, expensive or-
thonormalisation steps that will even more expensive with the new
bands-parallelism. Implementing a different, known optimisation algo-
rithm that does not require such frequent orthonormalisation should
improve speed and scaling.

4. Parallelisation and Optimisation of New Band Optimiser
To work on making the new optimiser as fast and robust as possible,
and parallelise the new band optimisation algorithm.

The overall aim was to enable Castep to scale efficiently to at least eight
times more nodes on HECToR. Unfortunately only the first three phases of
the project were funded, but the aim remained to achieve as great an increase
in scaling as possible. An additional phase was introduced at the request of
NAG, to investigate Castep performance on HECToR in general to determine
the best compiler, compiler flags and libraries to use.

1.2 Summary of Progress

All three phases of the project have been completed successfully, based on
Castep 4.2 source code, though there remains some scope for optimisation
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and several possible extensions. Basic Castep calculations can be parallelised
over bands in addition to the usual parallelisation schemes, and the large
matrix diagonalisation and inversion operations have also been parallelised.
Two band-independent optimisation schemes have been implemented and
shown to work under certain conditions, but unfortunately neither is fast or
robust enough to be useful to a general Castep user, and neither have been
parallelised fully.

Despite the lack of an effective band-independent optimiser, the perfor-
mance of Castep on HECToR has been improved dramatically by this dCSE
project. One example is the standard benchmark al3x3, which now scales
effectively to almost four times the number of cores compared to the ordinary
Castep 4.2 (see figure 1.1).

100
= Castep 4.2

90 - B=dCSE Castep

70 -
60 -

50 -

Parallel % Efficiency

40 -
30
20
10

16 32 64 128 256 512 1024
Cores

Figure 1.1: Graph showing the performance and scaling improvement
achieved by this dCSE project (using 8-way band-parallelism) compared to
the ordinary Castep 4.2 code for the standard al3x3 benchmark.



The changes made in this dCSE project are expected to be merged into
the main Castep source code for version 4.4, due for release in the latter
quarter of 2008. It is hoped that many of the restrictions of the new scheme
will be lifted in time for Castep 4.5.



Chapter 2

Castep

Castep is a plane-wave, pseudopotential density-functional theory program
for calculating the groundstate electronic charge density of a periodic system
of electrons and nuclei.

The main computational effort is the search for the Kohn-Sham wave-
functions and groundstate electronic charge density for a fixed, 3D-periodic
configuration of ions. This requires the solution of a series of one-particle
Schrodinger equations:

Hippi(r) = Eytho(7) (2.1)

where H is the Hamiltonian, the index b labels different eigenstates, also
known as bands, and the index k labels different sampling points (‘k-points’)
in the reciprocal-space Brillouin zone of the periodic simulation cell. {iy(r)}
are the Kohn-Sham wavefunctions, the eigenstates of these Schrodinger equa-
tions, and {Ey} are the corresponding band-energies.

The equations for different k-points are not completely independent, but
interact via the electronic charge density n(r)

n(r) = Zfbk/|?/)bk(7’)|2d37’ (2.2)

where fy is the occupancy of band b at k-point k. For insulating systems
all bands below the Fermi energy are fully occupied (fy = 1) and all bands
above the Fermi energy are unoccupied (fyz = 0). For metals it is com-
mon to introduce a small thermal-like distribution function which smears
the occupancies in the vicinity of the Fermi level.



For the 3D periodic systems Castep is designed to simulate, the density
shares the same periodicity as the simulation system and so it is natural
to express it in a Fourier basis. The basis functions are plane-waves whose
wave-vectors are reciprocal lattice vectors of the simulation cell, the so-called
G-vectors. The bands themselves need not be quite periodic, but they can al-
ways be written as the product of a phase factor e’ and a periodic function.
It is these k-points that we sample, approximating the integral in equation
2.2 by a summation over discrete k-vectors drawn uniformly from the first
Brillouin zone.

The Hamiltonian consists of some terms which are diagonal, or near-
diagonal, in reciprocal space (e.g. the kinetic energy operator) and some
terms which are diagonal in real-space (e.g. the ionic potential operator).
This necessitates the use of Fourier transforms to transform the data from
reciprocal- to real-space and back again.

Diagonalising the Hamiltonian directly is too expensive to be practical,
and yields far more eigenstates than the lowest few we require; hence the
search for the groundstate is an iterative procedure to compute just the
lowest N, eigenstates, and in Castep this search can proceed in one of two
main modes: density mizing (DM) or ensemble density functional theory
(EDFT).

In the DM methodology the search proceeds by computing approximate
eigenstates for a fized trial charge density, computing a new density from
these eigenstates, and then employing a density mixer to produce a new
estimate for the true groundstate density.

In the EDFT method the density used is always that obtained from the
Kohn-Sham wavefunctions. A trial step is performed along the search direc-
tion and the density and energy recomputed. Castep then uses the data from
this sample point, along with the data at the initial point, to fit a quadratic
and estimate the so-called self-consistent minimum step, and hence find a
better trial wavefunction. For metallic systems the band-occupancies are de-
termined in a similar manner, updating the density and energy at each trial
step of an occupancy cycle and always aiming to take steps that lower the
total energy.

Because the EDFT method requires the construction of the density many
more times than the DM method, it performs many more Fourier transforms
of the wavefunction and is significantly slower per SCF cycle. However by
fixing the Hamiltonian in the DM wavefunction updates, the DM algorithm
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Figure 2.1: Diagram showing the basic Castep self-consistent field (SCF)
cycle for the density mixing (2.1(a)) and ensemble DFT (2.1(b)) algorithms

has a tendency to overshoot the true eigenstate and it is only the density
mixer itself that drives the algorithm to the correct groundstate. For this
reason it is common for DM calculations to take many more SCF cycles to
converge than corresponding EDFT calculations, though each DM cycle is
considerably faster.

2.1 Parallelisation

Since the eigenstates at different k-points are almost independent of each
other, interacting only via the density, it is natural to distribute the data over
the k-points. Unfortunately the number of k-points required decreases with
increasing system size, and for large systems N is O(1). This means that
on HPC machines it is rarely possible to distribute the data and workload
efficiently using k-point parallelism alone.

A further distribution strategy used by Castep is to distribute the data
by the Fourier components, i.e. the ‘G-vectors’. Since the number of plane-
waves is often large, and grows with simulation cell size, this enables efficient
data distribution and load-balancing.



By combining both k- and G-parallelism Castep has demonstrated excel-
lent scaling properties from 1 to O(100) nodes across many different computer
architectures.

2.2 Computational Costs

2.2.1 Orthogonalisation and Diagonalisation

In both the DM and EDFT methods the dominant costs for large systems
are the orthogonalisation of the trial wavefunctions to each other, and the
subspace rotations required to diagonalise the Hamiltonian in the subspace
of the current trial bands. Both of these operations scale as NgNZ Ny for a
system with Ng G-vectors, N, bands and N, k-points. As has been mentioned
already, the number of k-points required decreases with system size, and for
very large systems N = 1 so the asymptotic scaling is cubic.

The orthogonalisation proceeds by constructing the band-overlap matrix,
performing a Cholesky decomposition of this matrix to determine an orthog-
onalising transformation, and then applying this transformation. Both the
construction of the band-overlap matrix and the applications of the transform
are distributed over G-vectors and k-points, with very little communication
required. The Cholesky decomposition is performed on a single node per
k-point and the result broadcast, so is not distributed over G-vectors.

The subspace diagonalisation also requires a band-overlap matrix to be
constructed, though this time it is between bands drawn from two different
wavefunctions (1) and Hip). This matrix is then diagonalised to determine a
diagonalising rotation, and the rotation applied to both the input wavefunc-
tions. The first and last stages are distributed naturally over G- and k-points,
but the diagonalisation itself is performed on a single node per k-point.

2.2.2 Fourier Transforms

The Fourier Transforms are carried out using conventional Fast Fourier Trans-
form (FF'T) libraries, or a built-in FF'T written by Clive Temperton according
to his Generalised Prime Factor Algorithm (GPFA). Since the data are dis-
tributed over G-vectors, Castep transforms the data not as a single 3D FF'T
but as three 1D FF'Ts, with a transpose step in between each to reorder the
data. Although the cost of the FFTs is only NginNgN, Ny, this transpose
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requires all-to-all communications between all processor elements with the
same k-points. The data and workload is naturally distributed over k-points,
but as the G-vectors are distributed over more and more nodes these all-to-all
communications start to dominate.

The length of the FFTs in Castep is typically small, and even for large
simulation cells it will usually be O(100). However every band at every
k-point requires three 1D FFTs every time the potential is applied or the
density constructed so the total number of FFTs required in a simulation
can be extremely large. The vast number of messages coupled with their
short length means that in Castep the communication stages are usually
latency-bound, rather than bandwidth-bound.

In recent years Castep’s communication in the transpose stage has been
optimised by Martin Plummer (STFC) and Keith Refson (RAL) to allow
a two-phase communication pattern. In the first phase PEs within a node
exchange data, and then in the second phase the all-to-all communication is
performed over the nodes, not the individual PEs. For small numbers of nodes
the overhead of performing two communication phases is prohibitive, but as
the all-to-all communications start to dominate the improved scaling of this
method more than makes up for the additional cost. This optimisation was
of great benefit on HPCx, which has 16 cores per node, but is still expected
to be useful on HECToR for large numbers of nodes.
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Chapter 3

Castep Performance on

HECToR
(Work Package 0)

3.1 General Castep Performance

As was noted in the previous chapter, Castep’s performance is usually limited
by two things: orthogonalisation-like operations, and FFTs. The orthogonal-
isation (and subspace diagonalisation) are performed using standard BLAS
and LAPACK subroutine calls, such as those provided on HECToR by the
ACML or Cray’s LibSci. Castep has a built-in FFT algorithm for portabil-
ity, but it is not competitive with tuned FFT libraries such as FFTW and
provides interfaces to both FFT versions 2 and 3. ACML also provides FFT
subroutines.

Castep is written entirely in Fortran 90, and HECToR has three For-
tran 90 compilers available: Portland Group (pgf90), Pathscale (pathf90)
and GNU’s gfortran. Following the benchmarking carried out during the
procurement exercise, it was anticipated that Pathscale’s pathf90 compiler
would be the compiler of choice and Alan Simpson (EPCC) was kind enough
to provide his flags for the Pathscale compiler, based on the ones Cray used
in the procurement:

-03 -0PT:0fast -0PT:recip=0N -0PT:malloc_algorithm=1
-inline -INLINE:preempt=0N
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Note that this switches on fast-math.

Unless otherwise noted, all program development and benchmarking was
performed with the Castep 4.2 codebase, as shipped to the United King-
dom Car-Parinello (UKCP) consortium, which was the most recent release
of Castep at the commencement of this dCSE project and was the version
available on HECToR to end-users.

3.2 Benchmarks

The standard Castep benchmarks have not changed for several years, and
many are now too small to be useful for parallel scaling tests. The smallest
benchmark, allx1, is a small slab of aluminium oxide and runs in less that 6
minutes on 8 PEs of HECToR. The larger titanium nitride benchmark, TiN
(which also contains a single hydrogen atom), only takes an hour on 16 PEs
because the DM algorithm converges slowly — its time per SCF cycle is little
more than twice the allxl benchmark. For this reason we settled on the
al3x3 test system as the main benchmark for the parallel scaling tests, since
this was large enough to take a reasonable amount of time per SCF cycle,
yet small enough to run over a wide range of nodes.

The al3x3 benchmark is essentially a 3x3 surface cell of the allx1 system,
and has:

e 270 atoms (108 Al, 162 O)
e 88,184 G-vectors

e 778 bands (1296 electrons, non-spin-polarised, plus 130 conduction
bands)

e 2 k-points (symmetrised 2x2x1 MP grid)

However the parameter files for this calculation do not specify Castep’s
optimisation level. In general it is advisable to tell Castep how to bias it’s
optimisation, e.g. opt_strategy_bias : 3 to optimise for speed (at the
expense of using more RAM). Since the default optimisation level is not
appropriate for HPC machines such as HECToR, most of our calculations
were performed with the addition of opt_strategy_bias : 3 to the Castep
parameter file al3x3.param.
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3.2.1 FFT

The FFTW version 2 libraries on HECToR are only available for the Portland
Group compiler, so the full FF'T comparison tests were performed exclusively
with pgf90. Cray’s LibSci (10.2.1) was used for BLAS and LAPACK. The
following compiler flags were used throughout the FFT tests:

-fastsse -03 -Mipa

In order to measure the performance of the FF'T routines specifically we
used Castep’s internal Trace module to profile the two subroutines wave_recip_to_real slice
and wave_real to_recip_slice. These subroutines take a group of eigen-
states, called a wavefunction slice, and Fourier transform them from recipro-
cal space to real space, or vice versa.

500

® real->recip

450 M recip->real _
400 |
350 - !
300 ,
250 - |
200 - !
150 !
100 !
50— ,
0 ! |

GPFA FFTW 2.1.5 FFTW3.1.1 ACML

Time (s)

Figure 3.1: Graph showing the relative performance of the four FFT subrou-
tines available to Castep on HECToR for the TiN benchmark. This bench-
mark transforms wavefunction slices to real space 1634 times and back again.

As can be seen from figure 3.1 FFTW 3.1.1 was the fastest FFT library
available on HECToR.
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3.2.2 Maths Libraries (BLAS)

Much of the time spent in Castep is in the double-precision complex matrix-
matrix multiplication subroutine ZGEMM. The orthogonalisation and sub-
space rotation operations both use ZGEMM to apply unitary transforma-
tions to the wavefunctions, and it is also used extensively when computing
and applying the so-called non-local projectors. Although the unitary trans-
formations dominate the asymptotic cost of large calculations, the require-
ment that benchmarks run in a reasonable amount of time means that they
are rarely in this rotation-dominated regime. The orthogonalisation and di-
agonalisation subroutines also include a reasonable amount of extra work,
including a memory copy and updating of meta-data, which can distort the
timings for small systems. For these reasons we chose to concentrate on the
timings for the non-local projector overlaps as a measure of ZGEMM per-
formance, in particular the subroutine ion_beta_add_multi_recip_all which is
almost exclusively a ZGEMM operation.

For the BLAS tests, the Pathscale compiler (version 3.0) was used through-
out with the compiler options:

-03 -0PT:0fast -0OPT:recip=0N -0OPT:malloc_algorithm=1 -inline
—-INLINE:preempt=0N

As can be seen from figure 3.2 Cray’s LibSci 10.2.1 was by far the fastest
BLAS library available on HECToR, at least for ZGEMM.

3.2.3 Compiler

Much of the computational effort in a Castep calculation takes place in the
FFT or maths libraries, but there are still significant parts of the code for
which no standard library exists. It is the performance of these parts of code
that changes depending on the compiler used and the various flags associated
with it.

Unfortunately GNU’s gfortran compiler (4.2.4) is not capable of correctly
compiling the Castep 4.2 codebase, so our investigations on HECToR were
restricted to the Portland Group and Pathscale compilers. It should be noted
that versions 4.3.0 and later can compile Castep, but are not yet available
on HECToR.

For the Pathscale compiler (3.0) we used the flags provided by Alan Simp-
son (EPCC) as a base for our investigations,
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Figure 3.2: Graph showing the relative performance of the ZGEMM pro-
vided by the four maths libraries available to Castep on HECToR for the
TiN benchmark. This benchmark performs 4980 projector-projector over-
laps using ZGEMM. Castep’s internal Trace module was used to report the
timings.

-03 -0PT:0fast -0PT:recip=0N -0PT:malloc_algorithm=1
—-inline -INLINE:preempt=0N

and created six compilation flagsets. The first set, which was used as a base
for all the other sets, just used -03 -0PT:0fast, and we named this the bare
set. The other five used this, plus:

malloc_inline -0PT:malloc_algorithm=1 -inline -INLINE:preempt=0N
recip -0PT:recip=0N
recip_malloc -0PT:recip=0N -0PT:malloc_algorithm=1

recip_malloc_inline -0PT:recip=0N -0PT:malloc_algorithm=1 -inline
—-INLINE:preempt=0N

full -0PT:recip=0N -0PT:malloc_algorithm=1 -inline
-INLINE:preempt=0N -march=auto -m64 -msse3 -LNO:simd=2

The performance of the various Castep binaries can be seen in figure 3.3.
It is clear that the flags we were given by Alan Simpson are indeed the best
of this set.

16



For the Portland Group compiler we used the base flags from the stan-
dard Castep pgf90 build as a starting point, -fastsse -03. Unfortunately
there seemed to be a problem with the timing routine used in Castep when
compiled with pgf90, as the timings often gave numbers that were far too
small and did not tally with the actual walltime. Indeed the Castep output
showed that the SCF times were ‘wrapping round’ during a run, as in this
sample output from an al3x3 benchmark:

- - <-- SCF

SCF loop Energy Fermi Energy gain Timer  <-- SCF
energy per atom (sec) <-- SCF

-— - <-- SCF

Initial -5.94087234E+004 5.75816046E+001 71.40 <-- SCF
1 -7.38921628E+004 4.31787037E+000  5.36423678E+001 399.29 <-- SCF

2 -7.78877742E+004 1.96972918E+000  1.47985607E+001 689.06 <-- SCF

3 -T7.79878794E+004 1.79936064E+000  3.70760070E-001 9564.04 <-- SCF

4 -T7.78423468E+004 1.96558259E+000 -5.39009549E-001 1250.05 <-- SCF

5 -7.77212605E+004 1.34967844E+000 -4.48467894E-001 1544.50 <-- SCF

6 -7.77152926E+004 1.12424610E+000 -2.21032775E-002 1863.09 <-- SCF

7 -T.77129468E+004 1.05359411E+000 -8.68814103E-003 14.53 <-- SCF

8 -7.77104895E+004 1.02771272E+000 -9.10094481E-003 288.19 <-- SCF

9 -7.77084348E+004 9.96278161E-001 -7.60993336E-003 582.43 <-- SCF

10 -7.77059813E+004 1.11167947E+000 -9.08729795E-003 872.09 <-- SCF

11 -7.77052050E+004 1.16249354E+000 -2.87513162E-003 1162.86 <-- SCF

- - <-- SCF

This behaviour has not been seen on other machines to our knowledge,
was not reproduced on HECToR with the Pathscale compiler, where the
Castep timings agreed with the walltime reported in the PBS output file to
within a second. Unfortunately this behaviour meant that we were forced to
rely on the PBS output file for the total walltime for each run, which includes
set-up and finalisation time that we would have liked to omit.

We experimented with various flags to invoke interprocedural optimisa-
tion -Mipa, -Mipa=fast but the Castep timings remained constant to within
one second. Figure 3.4 shows the run times of both the Portland Group and
Pathscale compiler as reported by the PBS output for the TiN benchmark.

3.2.4 Node Usage

Each node on HECToR has two cores, or PEs, so we ran a series of Castep
calculations to see how the performance and scaling of a Castep calculation
depends on the number of PEs used per node. We also used these calculations
to double-check the results of our investigation into different libraries. The
results are shown in figure 3.5.
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The best performance was achieved with the Goto BLAS in Cray’s libsci
version 10.2.0 coupled with the FFTW3 library, as can be seen in figure 3.5.

The best performance per core was achieved using only one core per node,
though the performance improvement over using both cores was not sufficient
to justify the expense (since jobs are charged per node not per core). Using
Castep’s facility for optimising communications within an SMP node! the
scaling was improved dramatically and rivals that of the one core per node
runs.

It may be possible to run one MPI thread per core for the main Castep
calculation and use the other core for threaded BLAS, but this would be a
major project in itself and we do not propose to undertake it in this work.

3.3 Baseline

We decided to choose the Pathscale 3.0 binary, compiled with the recip_malloc_inline
flags (see section 3.2.3) and linked against Cray’s Libsci 10.2.1? and FFTW3

for our baseline, as this seemed to offer the best performance with the 4.2
Castep codebase.

3.4 Analysis

Both the Cray PAT and built-in Castep trace showed that a considerable
amount of the time in ZGEMM, as well as the non-library time, was spent in
nlpot_apply_precon. The non-library time was attributable to a packing rou-
tine which takes the unpacked array beta_phi, which contains the projections
of the wavefunction bands onto the nonlocal pseudopotential projectors, and
packs them into a temporary array. Unfortunately this operation was poorly
written, and the innermost loop was over the slowest index.

The ZGEMM time in nlpot_apply_precon could also be reduced because
the first matrix in the multiplication was in fact Hermitian, so the call could
be replaced by ZHEMM to do approximately half the work.

1Using the num_proc_in_smp and num_proc_in_smp_fine parameters
2In fact this library was only made available part-way through this project; the bench-
mark results were updated later to reflect this.
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Chapter 4

Band-Parallelism
(Work Package 1)

4.1 Introduction

The first stage of the project is to implement the basic band-parallelism.
This involves distributing the wavefunction coefficients over the NV, bands, in
addition to the Ng G-vectors and Ny k-points, as well as distributing other
data such as the eigenvalues, band occupancies, and band-overlap matrices
such as the subspace Hamiltonian. Along with the data distribution, as much
of the workload as possible should also be distributed over the bands.

4.2 Programming

The main programming effort lies in the basic band-parallelism, and in par-
ticular the construction of band-overlap matrices which will now need to be
distributed. Most of this effort will be concentrated in the wave module,
which handles the vast majority of operations on wavefunctions and bands,
but inevitably there are some changes required to other modules.

4.2.1 Comms

The comms module handles all of the communications in Castep, and comes
in two flavours at the moment: serial and MPI. The work in comms boils
down to:
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e (Create a new communicator for the new ‘band-groups’.

e Create new comms_reduce and comms_copy routines to support reduc-
tion/copying of data over the band-groups.

In particular the subroutines comms_parallel_strategy and comms_reassign_strategy
now need to know how many bands to parallelise over, and so has gained
an additional mandatory argument ‘nbands’. This has necessitated trivial
changes to model.F90 and castep.f90.

Work completed, tested and working.

4.2.2 Ion

In the density_augment subroutines, the augmentation charge and spin den-
sities now to be reduced over the band-group.

During later testing, it was discovered that a large proportion of both
the memory and computational time of Castep calculations were spent in
the subroutine ion_beta beta recip. The reason for both the memory and
time cost of this operation is that this subroutine has to construct a modified
overlap matrix between the so-called non-local projectors, often referred to
as the J-projectors. These projectors are arrays of plane-wave coefficients,
just like a wavefunction, but because they are independent of the bands they
are only distributed by plane-wave and k-point. The precise operation this
subroutine performs is the construction of the matrix B:

NP
Bij = Z ﬁ;z'Kppﬁpj (4.1)
p=1

where K, is a diagonal positive-definite matrix used for preconditioning.
The problem with memory is that in order to exploit the optimised BLAS
most efficiently, this is converted to

Np
Bij =Y it (4.2)
p=1

where v,; = MBpi. This allows the use of the BLAS subroutine ZHERK,
but at the cost of an extra copy of the non-local projectors.

Our solution to this problem was to distribute the y-projectors over the
band-group. In the first phase the local «-projectors are constructed, and
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a call to ZHERK computes the purely local contribution to the B matrix.
The second phase requires a computation of the local projectors with the
projectors on the other nodes via a call to ZGEMM. Rather than get the relevant
data via comms, we instead redefined the y-projectors at this point so that
they now contained the full effect of the diagonal matrix K, ie. 7, =
K,,08,. This allows us to compute the second contribution to the B by
simply computing the overlap between the local node’s v-projectors and the
non-distributed [-projectors.
Work completed, tested and working.

Optimisation

Clearly a better solution to the problem of the projector-overlaps in the Ion
module would be to distribute the 3-projectors as well as the ~-projectors.
However the G-projectors are used extensively throughout the ITon module, in-
cluding computing overlaps between wavefunctions and the projectors which
can be done without communication in the current code. Distributing the
(B-projectors would thus require extensive modifications and an extra com-
munication overhead, whereas the changes described above were localised to
the problematic subroutine.

4.2.3 Wave

The wavefunction module needs extensive modification. It is this module
which handles the actual distribution of data.

e Data distribution and associated meta-data.
e Band-overlap and dot-product matrices

e (S-)orthogonalisation

Band-overlaps and dot-product

The (S-)orthonormalisation and subspace diagonalisation operations both
require dot products between all pairs of bands. In the case of the (S-
Jorthonormalisation the overlaps are between all pairs of bands of a wave-
function, and so the result is Hermitian. For the subspace diagonalisation
the dot-product is between each band of a wavefunction with each band of
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a different wavefunction — in fact since the second wavefunction is the result
of a Hermitian operator applied to the first wavefunction the result should
also be Hermitian, though at the moment we do not exploit this'.

We distribute this by passing our data n places to the right, and receiving
data from n places to the left, and dotting the received data with our local
data. Then we increment n by 1 and repeat the process until n > N, /2.

Rotations

From time to time the wavefunctions need to be rotated by a band x band
matrix M, e.g.

Wy = > Upe My (4.3)
P

Clearly this transformation, in general, mixes data between all of the
nodes. Rather than storing an entire wavefunction we transform just the
parts needed for one node at a time.

! construct the data for node ‘node’

do node=1,bnd_nodes
transform local data to give contribution to ‘node’
reduce over bnd-group

end do

This is simplest if we encapsulate all such operations into a single subrou-
tine, overloaded for the various wavefunction types. In fact such a routine
already exists, wave_rotate.

There are also occasions when we wish to transform a wavefunction by
a matrix that is not square, so that the resulting number of bands is not
the same as the initial number of bands. This occurs when, for example, we
orthogonalise a slice to an existing wavefunction; we copy the wavefunction to
a temporary slice, transform the data by multiplying by the overlap matrix,
which changes the number of bands to the same as the slice, and then subtract
it from slice. This is not a ‘rotation’, and goes against the specification for
wave_rotate. For this reason we coded a new, more general subroutine
wave_transform which allows any linear transformation of the bands.

The orthogonalisation subroutines can now be coded compactly as:

'In fact the bands-parallel scheme makes it easier to exploit this property, should we
wish to do so
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node 1 node 2 node 3 node4

o—-> wave_rotate_slice 289.97s 296.95s 305.35s 310.88s
o—> wave_nullify_slice 0.00s 0.00s 0.00s 0.00s
o-> comms_reduce_bnd_integer 19.256s 13.22s 3.73s 0.04s
o—> wave_allocate_slice 0.01s 0.03s 0.02s 0.01s
o-> wave_initialise_slice 6.73s 6.67s 7.49s 7.76s
0-> comms_recv_integer 0.06s 45.13s 30.15s 10.71s
o—> comms_send_integer 45.14s 0.09s 0.10s 0.07s
0-> comms_recv_complex 61.95s 15.96s 32.17s  29.83s
0o-> comms_send_complex 15.64s 72.11s 72.45s 100.96s
o-> wave_copy_slice_slice 5.46s 6.30s 11.62s 7.58s
o—> wave_deallocate_slice 0.02s 0.00s 0.02s 0.00s

Table 4.1: Table showing the timings for the wave_rotate_slice operation on
each of the nodes in a 4-node calculation

I orthogonalise slice to all bands of wvfn
call wave_dot_all(wvfn,slice,overlap)

call wave_copy(wvfn,tmp_slice)
call wave_transform(tmp_slice,overlap)

I Subtract overlapping components
call wave_add(tmp_slice,slice,cl=-cmplx_1)

Communication pattern

The scheme outlined above works well for calculations over 2 or 3 nodes,
but as the number of nodes increases the time taken by the communication
calls also increases. If we look at the profiles from Castep’s internal trace for
wave_rotate_slice on a 4-node calculation (table 4.1) we can see that the
higher-numbered nodes are spending more time in the subroutine than the
lower-numbered ones.

The reason for this disparity is that by constructing all of the data for
a given node before moving onto the next node, we ‘serialise’ the communi-
cation calls-each communication phase is one-to-many or many-to-one, and
because Castep uses standard MPI_send and _recv calls every node has to
wait for all of the preceding nodes to finish their communications before it
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can begin. This process proved to be a severe bottleneck for calculations over
large numbers of nodes.

Removing this bottleneck is straightforward—we simply copy the commu-
nication pattern from the dot-all subroutines. The communication pattern
is now a cyclic one, where every node constructs the data for a node n hops
prior to it. For each n there are two sets of communications, each of two
phases. The first communication set consists of each node sending its ro-
tation matrix n places to the left, and receiving a rotation matrix from n
places to the right (there is also some exchange of meta-data). Each node
then applies the rotation matrix it received to its local data. In the second
communication phase each node passes the result of its rotation n places to
the right, and receives the contribution to its own transformed data from n
places to the left.

All of the communication phases are now point-to-point, and many such
communications can take place simultaneously.

Optimisation Note

The above changes assume a general transformation or rotation is required.
As the calculation proceeds, the approximate eigenstates should converge to
the true eigenstates and so many of the transformations will approach the
identity. It may be possible to exploit this anticipated sparsity to optimise
the communication pattern.

wave_(S)dot_lower

This is like wave_(S)dot_all but only takes the dot-product for bands lower
than the band with index nb. This argument refers to the global band index,
and so must be translated into a local value on each node.

There is a problem with the existing mechanism, because it call the
dot_all_many_one version of the dot_all routines, and passes it the slice re-
cip_coeffs(:,1:nb-1) and recip_coeffs(:,nb); now, however, band nb may or may
not be on the node and so one or both of these may be null.

In addition wave_(S)dot_lower slice_slice on different nodes may have dif-
ferent numbers of bands in the second slice and a different band to orthogo-
nalise below as well.

We created dedicated subroutines to perform these operations, rather
than attempting to reuse existing subroutines which were not designed for
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these circumstances.

Type issues

We assume wavefunctions are always distributed, and bands are never dis-
tributed, but groups of bands, called ‘slices’; are sometimes used as local store
(e.g. slice, slice_direction etc. in electronic) and sometimes global store (e.g.
S_wvfn_slice in electronic). Thus we add a new logical bands_distributed to
the wavefunction_slice type, set to ‘.false.” by default.

Work completed, tested and working.

4.2.4 wave_write

Castep writes its wavefunctions in a distribution-independent manner. The
basic scheme, updated for band-parallelism, is as follows:

e All of the I/O is done by the root-node
e The root node is a kp-master, bnd-master and gv-master

e The root node loops over all nodes that are both bnd- and gv-masters,
and receives their data

e Nodes that are both bnd- and gv-masters assemble the gv-distributed
data from across their gv-group (i.e. the group of bnd-masters) and
send the data to the root node, getting it where necessary from the
appropriate node in their bnd-group

e Nodes that are bnd-masters send the appropriate band data to their
gv-master, if necessary getting it from the appropriate node in their
band-group.

e General nodes send their local data to their band-master

Work completed, tested and working.

32



Band distribution

The initial implementation of the band-parallelism gave each node a con-
tiguous block of bands. Whilst this allowed greater optimisation on each
node, the load balancing was problematic. The two greatest problems for
load-balancing were:

e Construction of the charge density
The construction of the valence charge density can be a time-consuming
operation, but only occupied bands contribute. If bands are distributed
in contiguous blocks, most nodes will contain only occupied bands,
but a small number of nodes will have a much larger proportion of
conduction bands-indeed some nodes might have no occupied bands

e EDFT unoccupied bands update
The EDFT algorithm requires the unoccupied bands to be optimised
separately from the occupied bands. If the bands are assigned to nodes
in contiguous blocks, only a small number of nodes will have all of the
conduction bands and the rest will be idle in this phase.

There is a further issue with a distribution by contiguous blocks of bands
that is not related to load-balancing: traditional optimisation methods are
not band-local. This means that the nodes cannot optimise their own local
set of bands independently of the other nodes—in particular, higher bands
(i.e. more energetic bands) should not be optimised until the lower bands
have converged.

For all of these reasons, the decision was made to switch the band-
distribution to a round-robin scheme, whereby each of n nodes gets every
nth band. This improves the load-balancing greatly, and also allows the ex-
isting optimisation algorithm to be used with few changes. This distribution
is not ‘hard-wired’, and it is trivial to change to a different scheme.

It should be noted that the proposed optimisation scheme in Work Pack-
age 3 (see chapter 6) of this project is band-local, and the detail of the
band-distribution may be revisited in that stage of the project.

Known issues remaining

The wave_reassign and wave_read subroutines have not yet been updated for
the new parallelisation, neither has the wave_apply_symmetry subroutine.
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4.2.5 Density

In the density_calculate subroutines, the density needs now to be reduced
over the band-group.
Work completed, tested and working.

4.2.6 Ewald

Already parallelised over all active nodes, so just needed to add an extra
reduction over the band-group.
Work completed, tested and working.

4.2.7 Electronic
The following needed to be addressed:

e Eigenvalue sums are now reduced over the band-group as well as the
k-point group

e The Fermi level search and entropy correction are parallelised over the
band-group as well as the k-point group

e The eigenvalue finder was parallelised over the band-group

Also needed to change electronic_analyse_occupancies to map the local
band index to a global one, and then correctly determine the global highest
occupied and lowest unoccupied states.

Completed, tested and working.

4.2.8 Model

Trivial changes needed to handle change in comms_parallel_strategy argu-
ment list, which now needs to know the number of bands as well as k-points.

4.2.9 Secondd

Trivial changes needed to handle change in comms_reassign_strategy argu-
ment list, which now needs to know the number of bands as well as k-points.

34



4.2.10 Phonon

Trivial changes needed to handle change in comms_reassign_strategy argu-
ment list, which now needs to know the number of bands as well as k-points.

4.3 Testing

The changes to many of the Castep modules were trivial, and needed little
testing. The basic splitting of the MPI communicator to create a band-group
was tested with a modified version of Castep’s comms_test program.

The changes to the wave and electronic modules were rather more
extensive, and difficult to test in isolation. In order to test and debug these
modules, a short Castep calculation was run in serial to create a wavefunction
and density in a Castep .check file, and then the calculation was restarted
from that checkpoint file in serial and band-parallel modes. Because both
jobs started from the same known point the calculations could be compared
in detail, right down to individual wavefunction coefficients where necessary.
This, coupled with Castep’s in-built trace functionality, enabled bugs to be
found and fixed quickly.

The ability to compare data in detail, even mid-calculation, proved nec-
essary, since several bugs were found and fixed that did not affect the final,
converged result but either hindered convergence, or could give rise to incor-
rect answers in unusual circumstances.

For a small 8-atom silicon test calculation performed using the density
mixing (DM) method, the serial calculation produces

-— -— <-- SCF

SCF loop Energy Fermi Energy gain Timer <-- SCF
energy per atom (sec) <-- SCF

- -— <-- SCF

Initial 5.10476316E+002 4.62264099E+001 16.74 <-- SCF
1 -7.76802126E+002 2.64224391E+000 1.60909805E+002 25.28 <-- SCF

2 -8.50574887E+002 2.02770490E-001  9.22159500E+000 33.17 <-- SCF

3 -8.54801574E+002 3.79693598E-001  5.28335886E-001 44.40 <-- SCF

4 -8.52981743E+002 7.44988320E-001 -2.27478843E-001 52.26 <-- SCF

5 -8.52884167E+002 9.08590414E-001 -1.21969434E-002 60.13 <-- SCF

6 -8.52886334E+002 8.98636611E-001 2.70796284E-004 68.36 <-- SCF

7 -8.52887081E+002 9.06719344E-001  9.34638588E-005 76.22 <-- SCF

8 -8.52887250E+002 9.10591664E-001 2.11356795E-005 84.07 <-- SCF

9 -8.52887250E+002 9.11100143E-001 -3.08962712E-008 88.90 <-- SCF

10 -8.52887250E+002 9.11105407E-001 -4.65249702E-008 93.76 <-- SCF

11 -8.52887250E+002 9.11110563E-001 -1.77844141E-008 98.98 <-- SCF

-— -— <-- SCF
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and a two-core band-parallel calculation produces

-—= - <-- SCF

SCF loop Energy Fermi Energy gain Timer  <-- SCF
energy per atom (sec) <-- SCF

-—= - <-- SCF

Initial  5.10476316E+002 4.62264099E+001 16.67 <-- SCF
1 -7.76802126E+002 2.64224391E+000  1.60909805E+002 28.13 <-- SCF

2 -8.50574887E+002 2.02770490E-001  9.22159500E+000 38.62 <-- SCF

3 -8.54801574E+002 3.79693598E-001  5.28335886E-001 52.16 <-- SCF

4 -8.52981743E+002 7.44988320E-001 -2.27478843E-001 60.98 <-- SCF

5 -8.52884167E+002 9.08590414E-001 -1.21969434E-002 70.63 <-- SCF

6 -8.52886334E+002 8.98636611E-001  2.70796284E-004 79.96 <-- SCF

7 -8.52887081E+002 9.06719344E-001  9.34638588E-005 88.78 <-- SCF

8 -8.52887250E+002 9.10591664E-001  2.11356795E-005 97.65 <-- SCF

9 -8.52887250E+002 9.11100143E-001 -3.08962712E-008 102.84 <-- SCF

10 -8.52887250E+002 9.11105407E-001 -4.65248977E-008 108.05 <-- SCF

11 -8.52887250E+002 9.11110563E-001 -1.77844503E-008 113.57 <-- SCF

-—= - <-- SCF

Note that the results as reported are identical for the first 9 SCF cycles,
and only differ by O(107')eV/atom in the last two cycles, which is the
same order as € for double-precision arithmetic and so may be attributed to
different rounding errors for the serial and band-parallel calculations.

This calculation takes longer when run band-parallel compared to the
serial calculation, but this is not a cause for alarm — the test system is
very small, containing only 16 valence bands, so it is not surprising that the
communication overhead outweighs the gains.

The same calculation run using the ‘all-bands’ self-consistent code path

yields

-—= -—= <-- SCF

SCF loop Energy Energy gain Timer  <-- SCF
per atom (sec)  <-- SCF

-— -—- -- <-- SCF

Initial  6.83465549E+002 10.356 <-- SCF
1 -7.97053977E+002 1.85064941E+002 20.90 <-- SCF

2 -8.48247959E+002 6.39924773E+000 31.57 <-- SCF

3 -8.50914193E+002 3.33279207E-001 42.16 <-- SCF

4 -8.51618587E+002 8.80493249E-002 54.31 <-- SCF

5 -8.52080365E+002 5.77221874E-002 64.82 <-- SCF

6 -8.52436527E+002 4.45203123E-002 75.48 <-- SCF

7 -8.52663071E+002 2.83179709E-002 85.99 <-- SCF

8 -8.52769350E+002 1.32848145E-002 96.64 <-- SCF

9 -8.52812636E+002 5.41075552E-003 107.156 <-- SCF

10 -8.52829576E+002 2.11747553E-003 117.69 <-- SCF

11 -8.52836183E+002 8.25924796E-004 128.48 <-- SCF

- -—= <-- SCF

in serial, and
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—- — -- <-- SCF

SCF loop Energy Energy gain Timer <-- SCF
per atom (sec) <-- SCF

- -— <-- SCF

Initial  6.83465549E+002 7.04 <-- SCF
1 -7.97053977E+002 1.85064941E+002 15.95 <-- SCF

2 -8.48247959E+002 6.39924773E+000 24.90 <-- SCF

3 -8.50914193E+002 3.33279207E-001 33.79 <-- SCF

4 -8.51618587E+002 8.80493249E-002 43.01 <-- SCF

5 -8.52080365E+002 5.77221874E-002 51.94 <-- SCF

6 -8.52436527E+002 4.45203123E-002 61.04 <-- SCF

7 -8.52663071E+002 2.83179709E-002 69.93 <-- SCF

8 -8.52769350E+002 1.32848145E-002 79.12 <-- SCF

9 -8.52812636E+002 5.41075552E-003 87.98 <-- SCF

10 -8.52829576E+002 2.11747553E-003 96.76 <-- SCF

11 -8.52836183E+002 8.25924796E-004 107.40 <-- SCF

-— -— -- <-- SCF

in two-core band-parallel. Note that this time there is a small speed
improvement for the band-parallel run — this is because the ‘all-bands’ path
does more FFTs per SCF cycle than the DM path, and the FFTs distribute
trivially among the band-group.

With the basic band-parallelism tested and complete, Castep has been
demonstrated to work in band-parallel mode for the EDFT and DM algo-
rithms.

The only known problem outstanding is with the EDFT mode. In the
EDFT algorithm the empty bands are optimised non-self-consistently after
the full bands have been updated, but at the moment this does not use the
same algorithm as the DM code path and so is not band-parallel.

4.4 Benchmarking and Performance

The first reasonable simulation we performed with the new band-parallelism
was the allx1 benchmark.

The test simulations were restricted to small test cases (8-atom silicon,
and the allxl benchmark) and numbers of cores (<8), where the results
could be compared in detail to known results and serial calculations, but
once testing was complete we were able to move to larger systems. Table 4.2
shows the performance improvement for the allx1 benchmark using the new
band-parallel mode.

The performance was analysed using Cray’s Performance Analysis Tool
(PAT) version 4.2 (earlier versions had bugs which prevented them being
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cores DM efficiency

2 65%
4 50%
8 35%

Table 4.2: Parallel scaling of the allx1l benchmark in band-parallel mode.

cores Time (s) band-parallel efficiency
8 5085.04 (k-point parallel)
16 3506.66 2%
32 2469.84 51%

Table 4.3: Execution time and parallel efficiency for the 33-atom TiN bench-
mark (8 k-points). Times are for 40 SCF cycles using the DM algorithm. The
8-core calculation is running purely k-point parallel, the others are running
with mixed band and k-point parallelism.

used with the Pathscale compiler and/or Castep properly). It was also nec-
essary to create symbolic links to the Castep source files in Source/Utility in
Castep’s obj/linux_x86_64 pathscale/Utility and similarly for Fundamental
and Functional.

pat_build -D trace-max=2048 -u -g mpi,blas,lapack,math castep

We profiled a Castep calculation on the allx1 benchmark parallelised over
16 nodes (4-way band-parallel, 4-way gv-parallel). The subroutine with the
most overhead from the band-parallelism was wave_rotate, the Trace output
of which was:

| o—> wave_orthonormalise_over_slice 1290 |
| o—> electronic_find_eigenslice 2580 |
| o-> wave_rotate_slice 3870 3870 40.06s |
| o-> wave_nullify_slice 3870 3870 0.01s |
| o-> wave_allocate_slice 3870 3870 0.01s |
| o-> wave_initialise_slice 3870 3870 1.75s |
| o-> comms_reduce_bnd_logical 3870 3870 0.28s |
| o-> comms_reduce_bnd_integer 3870 3870 0.10s |
| o-> comms_send_complex 23220 23220 6.48s |
| o-> comms_recv_complex 23220 23220 7.79s |
| o-> wave_copy_slice_slice 3870 3870 1.09s |
| o-> wave_deallocate_slice 3870 3870 0.00s |
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This is to be expected, since these wavefunction rotations scale cubi-
cally with system size, and also incur a communication cost when run band-
parallel. Some time was spent optimising this subroutine, and in the end
we settled on a refactoring of the communications whereby each node does
loganodes communication phases, the first phase involving an exchange of
half the transformed data, and each subsequent phase exchanging half the
data of the previous one. This scheme is illustrated in figure 4.1.

Nodes 567— Nodes
1234 «—1234 567
Nodes| 34— [Nodes Nodes| 7— [Nodes
12 «—12 34 56 b6 4
Node |2— [ Node Node | 4— [ Node Node | 6— [ Node
2 ‘ ‘ 3 “'Q’{ 4 ] T g

Figure 4.1: The new communication pattern, illustrated for seven nodes in
the band group. Nodes with work still to do are coloured blue, and nodes
that have finished are coloured yellow. At each of the three communication
phases each group of nodes is split to form two child groups. Each node in a
child group transforms its local data to produce its contribution to the nodes
in the other child group, the ‘sibling group’; it then sends this data to one of
the nodes in that group, and receives the sibling node’s contribution to all
of the nodes in the child group.

This communication pattern improved the speed of the wave_rotate sub-
routine considerably, but at the cost of increased storage. Indeed the first
phase involves the exchange of half of the newly transformed data, so the
send and receive buffers constitute an entire non-distributed wavefunction.
As the band-parallelisation is only efficient over relatively small numbers of
nodes (typically < 16) this has not proved too much of a hindrance thus
far, but it would be wise to restrict this in future, perhaps to a low mul-
tiple of a single node’s storage, at the cost of slightly more communication
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phases. Such a change could, of course, be made contingent on the value of
the opt_strategy_bias parameter.

Once wave_rotate had been optimised, Castep’s performance was mea-
sured on the al3x3 benchmark. As can be seen from figure 4.2, the basic
band-parallelism implemented in this stage of the project improved Castep’s
scaling considerably. Using linear interpolation of the data points we es-
timated that the maximum number of PEs that can be used with 50% or
greater efficiency has been increased from about 221 to about 436 (without
using the SMP optimisations).

4.5 Scope of Parallelism and Integration with
main Castep Codebase

The current implementation of band-parallelism has been restricted to the
groundstate calculation. Geometry optimisation and molecular dynamics
calculations have not been tested, but it should be trivial to get them to work
if they do not already. However EDFT with conduction bands, real space
representations of #-projectors, and band-structure calculations all currently
use an older, obsolete subroutine to obtain their eigenstates and this has not
been parallelised over bands. The reason for this omission is simply that
the correct course of action is to change these code paths to use the newer
subroutine instead, which is already parallelised over bands.

The band-parallel version of Castep writes a standard Castep checkpoint
file, so users wishing to perform operations that are not supported in band-
parallel mode can still benefit from the band-parallel code by using it for
their groundstate calculation, and then continuing their calculation with a
normal Castep run.

An alpha-release of the band-parallel code was made to selected collab-
orators in June 2008. The aim is to integrate the band-parallelism and the
main Castep code base for Castep release 4.4. This release is due in the last
quarter of 2008, and will open up the band-parallelism to the whole Castep
community. In addition to the groundstate calculations, geometry optimisa-
tions and molecular dynamics will be supported, as will EDFT. It is hoped
that band-structure calculations and the use of real space (-projectors will
also be supported, but depending on time this may need to wait until version
4.5.
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Figure 4.2: Graphs showing the computational time (4.2(a)) and scaling
(4.2(b)) of the band-parallel version of Castep, compared to ordinary Castep
4.2, for 10 SCF cycles of the standard al3x3 benchmark.



Chapter 5

Distributed Diagonaliser and

Inverter
(Work Package 2)

5.1 Introduction

The first stage of the project included the distribution over the band-group of
the calculation of the band-overlap matrices required for both orthonormal-
isation of the wavefunction and the subspace Hamiltonian. These matrices
still need to be diagonalised (or inverted) and Castep 4.2 does this in serial.
These operations scale as NP so as larger and larger systems are studied
they will start to dominate. For this reason the second stage of the project
involves distributing these operations over the nodes.

5.2 Programming

5.2.1 Development

Because the aim of this stage of the project was to implement a parallel
matrix diagonaliser and inverter, which is independent of most of Castep, we
created a testbed program to streamline the development.

The subspace diagonalisation subroutine in Castep uses the LAPACK
subroutine ZHEEV, so we concentrated on that operation first. The testbed
program creates a random Hermitian matrix, and uses the parallel LAPACK
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time for various matrix sizes

cores | 1200 1600 2000 2400 2800 3200
1 19.58 46.5s 91.6s 162.7s

2 28.3s 65.9s 134.6s

4 15.8s 38.2s 54.7s  90.1s

8 79s 19.0s 37.6s 63.9s 81.6s

16 43s 10.5s 20.3s 32.5s 76.2s

32 2.7s  6.0s 11.6s 19.2s 43.1s

Table 5.1: Hermitian matrix diagonalisation times for the ScaLapack sub-
routine PZHEEV.

variant ScaLAPACK to diagonalise it.

5.2.2 ScaLAPACK Performance

The performance of the distributed diagonaliser (PZHEEV) was compared
to that of the LAPACK routine ZHEEV for a range of matrix sizes.

An improved parallel matrix diagonalisation subroutine, PZHEEVR!, was
made available to us by Christof Vomel (Zurich) and Edward Smyth (NAG).
This subroutine consistently out-performed PZHEEV, as can be seen from
figure 5.1.

The ScaLAPACK subroutines are based on a block-cyclic distribution,
which allows the data to be distributed in a general way rather than just by
row or column. The timings for different data-distributions for the PZHEEVR
subroutine are given in table 5.2.

The computational time ¢ for diagonalisation of a N x N matrix scales
as O(N?), so we fitted a cubic of the form

t(N) = a+ bN + cN? + dN? (5.1)

to these data for the 8-core runs. The results are shown in table 5.3. This
cubic fit reinforces the empirical evidence that the PZHEEVR subroutines
have superior performance and scaling with matrix size, since the cubic coef-
ficient for PZHEEVR is around 20% smaller than that of the usual PZHEEV

subroutine.

IThe ‘R’ is because it uses the Multiple Relatively Robust Representations (MRRR)
method
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Figure 5.1: A graph showing the scaling of the parallel matrix diagonalis-
ers PZHEEV (solid lines with squares) and PZHEEVR (dashed lines with

diamonds) with matrix size, for various numbers of cores (colour-coded)

Cores used for distribution of

Rows Columns Time
1 64 6.48s
2 32 6.45s
4 16 5.80s
8 8 5.92s

Table 5.2: PZHEEVR matrix diagonalisation times for a 2200x2200 Hermi-
tian matrix distributed in various ways over 64 cores of HECToR.
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Coefficient | PZHEEV PZHEEVR
a -1.43547 -0.492901
b 0.00137909  0.00107718
c 9.0013e-08 -7.22616e-07
d 4.31679e-09  3.53573e-09

Table 5.3: The best-fit cubic polynomials for the PZHEEV and PZHEEVR
matrix diagonalisation times for Hermitian matrices from 1000 x 1000 to
3600 x 3600 distributed over 8 cores of HECToR.

5.2.3 Castep Implementation

In order to encapsulate the changes to the diagonalisation and inversion rou-
tines, we moved the operations from Castep’s wave module to its general
algorithm module algor. The existing subroutine algor_invert was over-
loaded to work with complex matrices as well as double-precision real ones,
and also gained optional arguments to specify the symmetry of the matrix
(e.g. Hermitian).

A new subroutine algor_diagonalise was created to handle matrix di-
agonalisation. This subroutine takes a complex matrix and returns its eigen-
vectors and eigenvalues. Optional arguments specify the symmetry of the
matrix (e.g. Hermitian).

The initialisation of the Basic Linear Algebra Communication Subrou-
tines (BLACS) that are used by ScaLAPACK for its communication is done
in the comms module, inside comms_parallel_strategy. Because BLACS
libraries are not commonplace, all of the BLACS and ScaLAPACK calls are
wrapped inside conditional compilation sections — only if Castep is compiled
with -DBLACS will the parallel matrix diagonalisers and inverters be used.

As has already been mentioned (e.g. sections 3.2.2 and 4.2.2), in testing
it was found that in fact the largest matrix Castep diagonalises in the al3x3
benchmark is not a band-overlap matrix at all, but a projector-projector
overlap matrix. Rewriting this to take advantage of the distributed inverter
gave the single greatest performance benefit in this phase of the project.
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5.2.4 Castep Performance

With the new distributed inversion and diagonalisation subroutines the per-
formance and scaling of Castep was improved noticeably. As expected, this
improvement was more significant when using larger number of cores. Figure
5.2 shows the improved performance of Castep due to the distribution of the
matrix inversion and diagonalisation in this work package.

100
== Work Package 1

(SMP 1)

= Work Package 2
(SMP 1)

Parallel % Efficiency

20+

10 -

64 128 256 512 1024
Cores

Figure 5.2: Graph showing the performance and scaling improvement
achieved by the distributed inversion and diagonalisation work in Work Pack-
age 2, compared to the straight band-parallel work from Work Package 1.
Each calculation is using 8-way band-parallelism, and running the standard
al3x3 benchmark.

The distributed diagonalisation, on top of the basic band-parallelism, en-
ables Castep calculations to scale effectively to between two and four times
more cores compared to Castep 4.2 (see figure 5.3). The standard al3x3
benchmark can now be run on 1024 cores with almost 50% efficiency, which
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equates to over three cores per atom, and it is expected that larger calcula-
tions will scale better. A large demonstration calculation is being performed
that should illustrate the new Castep performance even better.

5.2.5 Limitations

Although the interfaces to the algor_invert and algor_diagonalise sub-
routines allow general matrices and those of specific symmetries, the actual
implementation has been restricted to Hermitian matrices. Hermitian matri-
ces are by far the most common large matrices in Castep so this restriction
has not been problematic so far, but it is straightforward to implement the
operations for other matrices and this should be done at the earliest oppor-
tunity.

The current BLACS processor grid assumes that all nodes in the band-
and gv-groups are available to participate in any ScaLAPACK operation. Al-
though this is true for the matrices we have discussed so far, it would be better
to define several BLACS grids and add optional arguments to algor_invert
and algor_diagonalise to define the distribution. This would also aid op-
timisation, as at the moment the matrix that is passed into the algor sub-
routines must be the global, non-distributed matrix which often requires
the calling routine to do an otherwise unnecessary reduction over the band-
and/or gvector-groups.

Finally, at the time of writing there are two limitations inherent in the
BLACS and ScaLAPACK libraries. Firstly, ScaLAPACK lacks a Hermitian
matrix inverter, and so we have to use a general complex matrix inverter
(PZGETRF and PZGETRI); for this reason it may be better to use the serial
version of the subroutine when parallelising over only two PEs. The second
limitation is that many of the diagonalisation and inversion routines require a
so-called ‘square’ distribution of the matrices, i.e. the row and column block
sizes are the same. This is unfortunate as the natural distribution in Castep
is to distribute one over the band-group and the other over the gvector-group
and these will not usually have the same number of nodes in them.
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Chapter 6

Independent Band
Optimisation
(Work Package 3)

6.1 Introduction

As we have seen, the bottleneck in large Castep calculations is the explicit
S-orthonormalisation of the eigenstates. This orthonormalisation involves
the calculation and inversion of the band-overlap matrix, operations which
scale as N,N? and N respectively, where N, is the number of plane-wave
basis states and NV, is the number of bands (eigenstates). Furthermore, when
operating in band-parallel mode the former operation is also a communica-
tion bottleneck, as the individual eigenstates reside on different processing
elements.

Clearly it is desirable to implement an optimisation scheme which will
allow the approximate bands to be optimised without the need for an explicit
S-orthonormalisation.

6.2 Castep Eigensolver

When using ultrasoft pseudopotentials, the DFT Schrodinger-like equation
becomes a generalised eigenvalue problem,
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where H and S are N, x N, matrices in a plane-wave basis set of N,
plane-waves, and we seek the lowest IV, eigenstates (where N, << N,).

Direct construction and diagonalisation of the Hamiltonian H is imprac-
tical, but there are a variety of methods available to solve for the lowest
eigenstate iteratively. Typically Castep employs a Krylov subspace method:

1.

The current (S-orthonormal) set of trial eigenstates is split into blocks,
each block spanning a small subspace and update sequentially

For each ); in the current block, K (f[ W — e,-gwi) is computed (where
K is a preconditioning matrix[2]) and added to the block subspace.

The augmented subspace is S-orthogonalised to the existing approxi-
mate eigenstates

The augmented subspace Hamiltonian is constructed and diagonalised,
i.e. we solve

HY, = 50, (6.2
where

Hij = (sl H[5)

Siy = (il S{ey) (6.3)

The new lowest eigenstates of the subspace are accepted as improved
approximations to the true eigenstates, and the convergence criteria
are checked. If they are not satisfied the algorithm repeats from step 2
with further augmentations of the subspace.

It is step 3 of this algorithm that we wish to avoid, but without it the
eigenstates of each block would always tend to converge to those of the lowest

block.

6.3 Proposed Eigensolver

Consider the following:
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A

Hyy = &S
= (H=A\S)t; = (e~ XSt

= (I -28) (B -AS) v = (NS, (6.4)

Equation 6.4 is simply a modified eigenvalue equation that shares the
same eigenstates as the original Schrodinger-like equation but with modified
eigenvalues. However the lowest eigenvalue of this modified equation is not
the lowest energy eigenvalue ¢j, but the eigenstate whose eigenvalue is clos-
est to A\. Furthermore, the eigenstate with eigenvalue \ is now at a local
minimum, regardless of whether it has the globally lowest eigenvalue or not.

Consider now the usual Castep algorithm outlined in section 6.2, for the
special case where each block contains only a single eigenstate. If we omit the
orthonormalisation step then every approximate eigenstate will tend to con-
verge to the lowest eigenstate, but if we first replace the augmented subspace
matrix

Hyy = (4] H |¥;) (6.5)
with the modified matrix,
N T /o A
My = (il (H=XS) (H = \S) |vy)
= ((H = X8) | (H = AS) ;)
then by varying the value of A we can select which of the modified eigenvalues
is lowest.
If we choose A = ¢; then this algorithm will automatically choose the best

approximate eigenstate closest to the initial approximation. In this case the
states in the inner product are the band residuals R,

and the algorithm is very similar to the Residual Minimisation Method by
Direct Inversion in an Iterative Subspace algorithm (RMM-DIIS)[3].

The only difference between our scheme and the usual RMM-DIIS method
is the choice of state to add to our block’s subspace. In the usual Castep
scheme we add a state ¢ given by

=K (ﬁ% - EiS@Di) - (6.7)
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In the RMM-DIIS scheme we search along this direction for the minimal
residual norm, i.e. find a new trial eigenstate along the direction ¢, and add
that trial eigenstate to the subspace instead of ¢. The schemes are so similar
that we implemented both in Castep.

After all of the eigenstates have been updated, a global orthonormali-
sation is still necessary before a new density can be constructed. However
this single orthonormalisation per SCF cycles is considerably fewer than the
usual Castep scheme where three or four orthonormalisations are per SCF
cycle are common.

Both schemes converge to the closest eigenstate to the current trial eigen-
state, so it is important that we have a reasonable set of trial eigenstates
before using these schemes. We opted to use the usual Castep optimisation
for four SCF cycles before switching to one of the new schemes.

6.4 Performance

Unfortunately neither the RMM-DIIS optimiser nor our variation proved
to be either robust or quick; the reduction in orthonormalisations reduced
the SCF cycle time considerably, but vastly more SCF cycles were needed
for convergence. The RMM-DIIS scheme in particular suffered from severe
numerical instabilities near convergence, since the residual matrix becomes
more and more singular as the trial eigenstates approach the true eigenstates.

In order to ensure only the direct changes to the optimiser were observed,
we ran Castep for a fized density. Typical convergence for a simple magne-
sium oxide test case using the usual Castep algorithm is:

-— -— <-- SCF

SCF loop Energy Fermi Energy gain Timer <-- SCF
energy per atom (sec) <-- SCF

- -— <-- SCF

Initial -4.95078326E+003 5.20975146E+001 2.99 <-- SCF
1 -5.59753549E+003 7.89244217E+000  8.08440297E+001 3.90 <-- SCF

2 -5.66226988E+003 7.15740116E+000  8.09179761E+000 4.68 <-- SCF

3 -5.66301246E+003 7.16625993E+000  9.28225593E-002 5.76 <-- SCF

4 -5.66306881E+003 7.16423308E+000  7.04427727E-003 7.01 <-- SCF

5 -5.66306893E+003 7.16423173E+000 1.49140438E-005 8.41 <-- SCF

6 -5.66306893E+003 7.16423137E+000  4.02077714E-007 9.87 <-- SCF

7 -5.66306893E+003 7.16423137E+000  5.27220802E-008 11.01 <-- SCF

8 -5.66306893E+003 7.16423137E+000 1.76063159E-009 11.94 <-- SCF

9 -5.66306893E+003 7.16423137E+000  3.90757352E-010 12.61 <-- SCF

10 -5.66306893E+003 7.16423137E+000 1.33410476E-011 13.10 <-- SCF

11 -5.66306893E+003 7.16423137E+000  5.99380402E-012 13.563 <-- SCF

-— -— <-- SCF
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Switching to the RMM-DIIS gave

-—= - <-- SCF

SCF loop Energy Fermi Energy gain Timer  <-- SCF
energy per atom (sec) <-- SCF

-—= - <-- SCF

Initial -4.95078326E+003 5.20975146E+001 2.85 <-- SCF
1 -5.59753549E+003 7.89244217E+000  8.08440297E+001 3.69 <-- SCF
2 -5.66226988E+003 7.15740116E+000  8.09179761E+000 4.41 <-- SCF
3 -5.66301246E+003 7.16625993E+000  9.28225593E-002 5.39 <-- SCF
4 -5.66306881E+003 7.16423308E+000  7.04427727E-003 6.55 <-- SCF
5 -5.66306892E+003 7.16423445E+000  1.34939453E-005 7.66 <-- SCF
6 -5.66306891E+003 7.16423645E+000 -1.18066010E-006 8.76 <-- SCF
7 -5.66306893E+003 7.16423715E+000  2.90858466E-006 10.06 <-- SCF
8 -5.66306893E+003 7.16424036E+000  5.70679748E-008 11.11 <-- SCF
9 -5.66306893E+003 7.16424784E+000 -9.96659399E-008 12.21 <-- SCF
10 -5.66306890E+003 7.16426887E+000 -3.48059116E-006 12.98 <-- SCF
11 -5.66306893E+003 7.16499317E+000  3.20356934E-006 13.78 <-- SCF
12 -5.66306893E+003 7.16435180E+000 -1.03932948E-007 14.46 <-- SCF
13 -5.66306893E+003 7.16439686E+000 -1.62527990E-007 156.22 <-- SCF
14 -5.66306892E+003 7.16467568E+000 -2.95401151E-007 15.88 <-- SCF
15 -5.66306891E+003 7.16448445E+000 -1.60189845E-006 16.58 <-- SCF
16 -5.66306891E+003 7.16566473E+000  5.03725090E-008 17.30 <-- SCF
17 -5.66305809E+003 7.16892722E+000 -1.35318489E-003 17.94 <-- SCF
18 -5.66289950E+003 7.17878051E+000 -1.98232364E-002 18.59 <-- SCF
19 -5.66295014E+003 7.20703280E+000  6.33023123E-003 19.23 <-- SCF
20 -5.65353849E+003 7.27226034E+000 -1.17645706E+000 19.82 <-- SCF
-—= - <-- SCF

Even with this small test case there was a slight improvement in the SCF
cycle time, but the numerical instabilities caused the solution to diverge
eventually. Our modified algorithm proved slightly more stable for this test
case, but slower and also showed signs of diverging:

-—= - <-- SCF

SCF loop Energy Fermi Energy gain Timer  <-- SCF
energy per atom (sec) <-- SCF

-—= - <-- SCF

Initial -4.95078326E+003 5.20975146E+001 3.256 <-- SCF
1 -5.59753549E+003 7.89244217E+000  8.08440297E+001 5.656 <-- SCF

2 -5.66226988E+003 7.15740116E+000  8.09179761E+000 6.44 <-- SCF

3 -5.66301246E+003 7.16625993E+000  9.28225593E-002 7.51 <-- SCF

4 -5.66306881E+003 7.16423308E+000  7.04427727E-003 8.79 <-- SCF

5 -5.66306892E+003 7.16423445E+000  1.34668025E-005 10.08 <-- SCF

6 -5.66306891E+003 7.16423645E+000 -1.24884522E-006 11.33 <-- SCF

7 -5.66306825E+003 7.16423517E+000 -8.20412820E-005 12.79 <-- SCF

8 -5.66306852E+003 7.16424032E+000  3.31933376E-005 13.98 <-- SCF

9 -5.66306886E+003 7.16424765E+000  4.29159705E-005 15.26 <-- SCF

10 -5.66306888E+003 7.16426863E+000  2.20859478E-006 16.17 <-- SCF

11 -5.66306892E+003 7.16496512E+000  5.82997827E-006 17.23 <-- SCF

12 -5.66306892E+003 7.16434686E+000 -2.59482603E-007 17.99 <-- SCF

13 -5.66306892E+003 7.16439357E+000 -5.01087043E-007 18.80 <-- SCF

14 -5.66306891E+003 7.16466770E+000 -1.12797108E-006 19.56 <-- SCF

15 -5.66306890E+003 7.16447879E+000 -1.59632306E-006 20.42 <-- SCF
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16 -5.66306886E+003 7.16561534E+000 -4.04882177E-006 21.16 <-- SCF

17 -5.66306881E+003 7.16881083E+000 -6.32000384E-006 21.89 <-- SCF
18 -5.66306867E+003 7.17899059E+000 -1.85164167E-005 22.64 <-- SCF
19 -5.66306845E+003 7.20738379E+000 -2.73264238E-005 23.33 <-- SCF
20 -5.66306769E+003 7.29973182E+000 -9.40002692E-005 24.05 <-- SCF

-—= -—= <-- SCF

These results were fairly typical of the performance of these optimisers—
it was relatively straightforward to get them close to the groundstate, but
difficult to get the accuracy we require. Imposing orthonormality on the
updates enabled both methods to converge quickly and robustly, indicating
that this poor performance was not a bug, but inherent in the algorithms. We
investigated restricted orthonormalisation, whereby only certain directions
are projected out, but although this improved matters neither algorithm
converged reliably.

There are several improvements that could be made to try to improve
the new optimisers, and of course it would be trivial to alternate the new
and old optimisers in some way, but unfortunately we did not have time to
investigate further. For the moment we shall have to content ourselves with
the tried-and-trusted Castep optimiser.
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Chapter 7

Other Developments and
Future Work

7.1 ['-Point

During this dCSE project NAG has generously allowed the author to partic-
ipate in two Castep Developer Group (CDG) workshops, one in St Andrews
in January 2008, and one in York in July 2008. These workshops gathered
together all of the Castep Developers to work on an optimisation known as
[-point.

As has already been noted in section 2.1, the number of k-points required
for a Castep calculation decreases as the system size increases, so that for
most HPC Castep calculations only O(1) k-points are required. If the simu-
lation system is large enough, it can be described well by sampling only at
the so-called I'-point, k=(0,0,0). This is important because at the I'-point
the eigenstates can be chosen to be explicitly real, rather than complex. Not
only does this halve the storage requirements for the wavefunctions, it also
doubles the speed of many of the operations on the wavefunctions, including
the FFTs.

Over the course of the two CDG workshops this optimisation has been
implemented in the Castep 4.4 codebase, and has already been tested and
shown to be working on HECToR. Switching on the I'-point optimisations, a
Castep groundstate calculation on a 1230 atom polypeptide, running on 512
cores of HECToR, went from a computational time of 27,523s to 14,261s, a
speed-up of over 1.9.
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In principle the orthogonalisation and subspace rotations can be quadru-
pled in speed, since all the complex-complex operations become real-real.
However in reciprocal-space the wavefunctions are still complex, and it is
only their dot-products that are real-this is not straightforward to exploit
using standard BLAS calls and has not yet been implemented fully in Castep.

7.2 Distributing S-Projectors and (3] ¢)

As noted in section 4.2.2, the G-projectors are not currently distributed over
the band-group. This is a problem for large systems as the number of pro-
jectors is proportional to the number of atoms. For the al3x3 benchmark
there are 88,184 plane-waves and 2,160 (-projectors, so their total storage
comes to almost 3GB per k-point—there is no way a purely band- or mixed
k-point /band-parallel calculation can run on HECToR under these circum-
stances simply because of insufficient RAM. Distributing the associated work-
load over the band-group should also improve the run-time, provided the
extra communications can be kept to a minimum.

In addition to the B-projectors themselves, the inner products of the pro-
jectors with the wavefunction bands are also non-distributed. These so-called
(B| ¢) data are computed and stored in the wavefunction, wavefunction_slice
and band data types for efficiency. For ease of use the array is stored in un-
packed form, but this is undesirable for large systems since the addition of a
single new species of ion can increase the size of the array dramatically.

Because the (3| ¢) array has data for each band, it is naturally distributed
over the band-group, as implemented in this dCSE project. However the
projector dimension is not distributed, and it is not distributed over the
gvector-group; thus the array could be distributed by projector index over the
gvector-group to further reduce the memory overhead and improve scaling.

Both of these proposed distributions would save memory and improve run-
time. However care must be taken in the implementation, as projector data
would be distributed differently depending on whether it was the projectors
themselves (which are currently distributed over the gvector-group and would
be then distributed over the band-group too), or the (3| ¢) arrays (which
are already distributed over the bands, and would now be distributed over
gvector-group as well).

56



7.3 Mpitrace

The development, debugging and profiling of Castep was made substantially
easier by the presence of a built-in Trace module. This module logs almost
all of the subroutine and function entries and exits, and keeps track of their
parents and children. In addition to this there are optional facilities to time
the calls, and also to log each entry and exit—all on a per-PE basis.

By switching on the subroutine logging, it is possible to see which routine
each PE is in on any machine at any point of a Castep calculation. This can
aid the programmer in tracking down possible parallel node-desynchronisation,
especially if Castep hangs, but the root cause is often a long way back up
the call-tree and can prove very difficult to locate. Furthermore, the Trace
module needs to be lightweight enough (in terms of time and memory) that
it can always be used without undue penalty and so it lacks the facility to
store or log variables etc.

A possible extension has been proposed by Dr K. Refson, which is essen-
tially MPI-Trace. This would contain its own, independent communication
layer, communicators etc. to enable it to verify the state of a parallel Castep
calculation. Calls to this module could check whether the nodes are synchro-
nised at this point across the gvector-, band- or k-point groups, compare key
variables, or even check MPI collectives, or trap mismatched point-to-point
communications.
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Chapter 8

Final Thoughts

8.1 This Project

The project as a whole has gone smoothly, and broadly to plan. The main
problem with the project was a lack of time. When the project was proposed,
the work was split into four phases with the first phase estimated to take two
months, the next four, the third two and the fourth phase four months for a
total of a year. Because the fourth phase was not funded, the project as a
whole was shortened to eight months. Unfortunately it has been anticipated
that much of the general optimisation work would be carried out during this
fourth phase, since only then would the full performance implications be
clear. The omission of this phase from the project meant that the optimi-
sation of the band-scheme had to be squeezed into the other eight months,
with the result that the workload was rather more intense than expected and
the final result not quite as polished as had been hoped. It also meant that
the third phase of the project, the band-independent optimisation algorithm,
was never likely to be generally useful.

The problems with time outlined above were exacerbated by the inclu-
sion of a ‘work package 0’, without a corresponding extension to the overall
timeline. Whilst a general analysis of Castep performance was necessary, the
detailed option-by-option study requested by NAG was unexpected and it
would have been better to set aside an extra month for this work rather than
try to fit it into the existing timeframe.

One final frustration with the general schedule of the project was the holi-
day allowance. Due to various negotiations between NAG and the University
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of York regarding the precise financial arrangements, the holiday allowance
was set at seven weeks, which was of course extremely generous. Unfortu-
nately at nearly 20% of the project time it was completely impractical to
actually use most of this allowance and still expect to get the work done.

Despite these misgivings, the project has been very successful. The orig-
inal goal of the project was to improve the scaling of Castep with cores by ‘a
factor of 8 or more to over 2000’. Despite the lack of the fourth phase’s par-
allel band-independent optimiser, the scaling of Castep has been improved
by about a factor of four, and with the extra work on I'-point optimisations
the target factor of eight or more in performance awaits only the integration
of the band-parallel developments with the latest Castep source.

The considerable computational resources of HECToR, coupled with the
developments in Castep detailed in this dCSE project report, should enable
accurate DFT calculations on a far greater scale than has been possible to
this point.

8.2 HECToR as a Development Machine

HECToR is clearly an excellent machine for running Castep, even without
the efficiency gains made in this project. However there are some features
that have made using it as a development machine rather difficult. Chief
amongst these are:

e Buffered I/0
It is obviously important for performance to buffer I/O, but HECToR
does not flush these buffers when the system call flush is invoked, or
even on job termination. This made tracking bugs down extremely
difficult using Castep’s built-in Trace logging, or even adding write
statements.

e Out-of-Memory not logged for user
When one of HECToR’s compute nodes runs out of memory, the Linux
OOM module kills a randomly selected process. This may be the
Castep job, in which case the job terminates. However the PBS output
shows only ‘exit code 137, indicating that the job was killed, but not
why. The OOM module may also kill any Totalview process, rendering
the debugger useless in such cases.
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e No dedicated benchmarking time
In the process of developing and testing the modified Castep, calcula-
tions had to be performed on a large number of nodes. Many of these
calculations were short—the al3x3 benchmark, for example, takes less
than 15mins on 2000 PEs or more—and it would have been very useful
to have some time set aside for benchmarking. Perhaps this time could
be made available after scheduled downtime.
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