A New CASTEP and ONETEP Geometry Optimiser

Jolyon Aarons
(Numerical Algorithms Group, HECToR CSE Team)

December 6, 2011

N102, Department of Physics, University of York, York, YO10 5DD, UK
jab3l@york.ac.uk

Abstract

This report presents the findings of a HECToR dCSE project aiming to improve the scalability of
geometry optimisations in CASTEP [4] and ONETEP [7], two popular Density Functional Theory
(DFT) codes on HECToR. Geometry optimisation is the minimisation of the entropy of a system
of atoms with respect to the ionic positions. It is the second most widely used task in both codes,
because for any results to be physically meaningful, they must be converged with respect to ionic
positions as well as electronic density distribution. The Broyden-Fletcher-Goldfarb-Shanno (BFGS)
method is used for solving non-linear optimisation problems, such as this and is employed as the
default scheme is both codes. Memory scaling is of particular concern, since the current BFGS
scheme scales O(N?) in system size, N; limiting the number of atoms in a geometry optimisation to
under 2000 for a 32GB node on phase 2b of HECToR. BFGS builds up a Hessian matrix, during
the course of a calculation which is why super-linear convergence is observed within the harmonic
limit. This Hessian matrix is the reason for the quadratic memory scaling. BFGS can, however be
performed without ever explicitly constructing this matrix, and just storing a set of position and
gradient update vectors. It was found that this limited-memory BFGS (LBFGS) scheme allowed for
O(N) scaling in memory and some modest performance improvements under certain conditions.

Contents
Introduction

BFGS Method
Newton’s Method
Quasi-Newton Methods e
BEGS . . e
Line Search e
Wolfe Conditions e

Limited Memory BFGS
Limited History e
Hessian Analysis« o o o i e
Extraction of Elastic Properties and Phonon Modes

Measurement
Implementation

Results and Comparisons
Conclusions

Project Evaluation
Further Work

Acknowledgements

11

11

16

20

20

20

20

Introduction

As computing hardware has become more powerful, computational science has largely kept pace with
the available resources, exploring larger; more complex and often more physically accurate systems.
An area of Physics and Chemistry where this is particularly true is in DFT where calculations have
always pushed the largest supercomputers to their limit; from the vector systems of the 80s, through the
bespoke and diverse distributed memory landscape of the 90s to the current situation of hybrid shared
and distributed memory, highly parallel supercomputers with relatively homogeneous architecture. DFT
calculations have scaled from 8 atom silicon unit-cell systems, up to thousands of atoms in bulk metallic
systems and tens of thousands of atoms in organic molecules.

These calculations are exploring single points in configuration space, however, and in order to have truly
converged, physical results one must minimise not only the energy of the electronic structure with fixed
ions, but also of ionic position. Computationally this is a much larger task; while the division of labour
between the geometry and electronic calculations burdens the electronic minimisation more heavily, each
iteration of a geometry minimisation must perform a single-point electronic minimisation in order to find
the forces with which to minimise the structural energy.

As it stands, CASTEP and ONETEP share BFGS geometry optimiser code which was written at a time
when it was not feasible to study systems larger than 1000 atoms with DFT. BFGS is a quasi-Newton
method which builds up an approximation to the Hessian with rank-2 updates in ionic position and
energy-gradient. Since the Hessian is a “degrees of freedom squared” object, the storage required in
a geometry optimisation is maximally of the order(6 + 3/N)2. This includes the 3 degrees of freedom
(DoF) of each ion in 3-dimensional space and the 6 DoF (excluding rotations, which ought to be energy
invariant) in the cell space, bearing in mind that DoF are reduced by constraints and that ONETEP
cannot currently do variable cell calculations.

Large systems will quickly consume all of the memory on a node, since the quadratically scaling Hessian
is duplicated on every MPI image and not distributed. The problem is compounded by the fact that the
Hessian needs to be frequently re-initialised to obtain good convergence characteristics and the process
of producing an initialisation, as outlined by Pfrommer et al, is implemented with 6 further Hessian-sized
matrices.

The original goals of the dCSE project were as follows:
1. Familiarisation with existing BFGS algorithm and implementation.
2. Optimisation of existing BFGS code in CASTEP (e.g. more efficient use of BLAS).
Implementation of basic L-BFGS algorithm in CASTEP.
Implementation of L-BFGS within SVD code in CASTEP (inverse Hessian).
5. Implementation of new algorithms into ONETEP.
6. Investigate performance (time and memory) of new algorithm on large benchmarks.

7. Finish documentation, integrate into main codebase and write final report.

BFGS Method

The Broyden, Goldfarb, Fletcher and Shanno (BFGS) method is an approximation to Newton’s method
for solving non-linear optimisation problems. It builds on earlier quasi-Newton methods such as the
Davidon, Fletcher, Powell (DFP) method, but provides superior convergence characteristics [3]. Fur-
thermore, when compared to steepest-descents and conjugate-gradients (CG) approaches, quasi-Newton
methods often present a more direct path to the stationary point, as a better model of the functional
geometry has been built through the knowledge and application of the curvature information [5]. Quasi-
Newton methods have a clear disadvantage compared with CG however, when it comes to memory use,
since BFGS builds up a Hessian which is O(N?).

Newton’s Method

A twice-differentiable scalar field f can be Taylor expanded about a point x,
1
P+ %) = f) + T O + 5 AXTHIF () Ax (1)

where J is the Jacobian and H is the Hessian.

Then, if the differential of this function with respect to/Ax is set to zero, the local stationary point of
this approximation may be found, with respect to the expansion point,

0=J([f(x)]) + H[f(x)]Ax. (2)

This process can be iterated in order that stationary points of f may be found, provided that the function
is Taylor expanded close enough to the minimum that it is well approximated,

Ax = —H[f (%)) T T (1f (x0)])- 3)

In order to satisfy the Wolfe conditions, the step size must be scaled by «,

Xpt1 = Xp — @AX,,, (4)

and the process is iterated until numerical convergence.

Quasi-Newton Methods

In the vicinity of the stationary point, the Newton method provides good convergence properties and
level of accuracy. Its drawback is primarily that it requires the calculation of a full Hessian, which is
computationally expensive and needs N2 memory. An alternative is to build up an approximation to the
Hessian from low-rank updates at each iteration, with the aim of reproducing some important properties
of the Hessian, which eases the first problem. This is known as a Quasi-Newton method, of which there
are many variations on this theme, however, decades of numerical experience has shown some updates
to the Hessian to have superior convergence characteristics.

BFGS

The most important property which the Hessian must imitate is that it obeys the secant equation, or
that the matrix can be used to transform between a change in position and a change in gradient,

H7L+187L = Yn, (5)
where s,, and y,, are the change in position and gradient vectors, respectively.

One of the most successful and widely used update formulae is BFGS, due to its stability, good conver-
gence with an inexact line-search and that it maintains the symmetry and positive-definiteness of the
Hessian approximation.

The update formula is given as:

Hitr = (I — pryisi)My (I — prynst) + prskst (6)

where pj, = yT%k It can be seen from eq.(6) that the BFGS formula updates the inverse of the Hessian
Tsk

matrix, 7' (which will be referred to as B from hereon in). This is especially useful when the scheme is
used in anger, as at each iteration, the Hessian is then used to find a search direction to minimise along,
and hence find the point at which to perform the next iteration. This is performed in the following way:

pn = =BV f(2n), (7)

so compared with a scheme such as DFP (Davidon-Fletcher-Powell), which updates the Hessian and
subsequently requires its inversion, this latter step might be avoided by updating the inverse Hessian
instead. It is worth noting that the Sherman-Morrison-Woodbury (SMW) formula states that the inverse
to a rank-n update to a matrix can equivalently be calculated as a rank-n update to the inverse of the
initial matrix

(A+BCD) ' =A"' - A'B(C™'+ DA™'B)"'DA™. (8)

This can be applied to either BEFGS or DFP, in order to update the Hessian and inverse Hessian matrices
instead, respectively.

Line Search

Because the quasi-Newton model is not necessarily accurate, especially where a small number of updates
have been used, or when in the anharmonic limit, a line search is often used to give a value for « (see
eq. 4 on the facing page). Specifically, this means that the quasi-Newton, parabolic model is used to
construct a search direction and the exact function is minimised along this line. It is often impractical
to perform a precise line-search, since this will only mean more minimisation cycles. For efficiency, the
precision of the line search must be balanced against the number of quasi-Newton steps so as to reduce
function (force) evaluations.

Tn+1 = Tn + QpPn (9)

Wolfe Conditions

Performing a line search in practice is a compromise; the idea is to find the minimum of the objective
function along the search direction. However in order to do this well, the correct step-length, a, must
be calculated. It follows that several points along the search direction must be explored and for each
point a function evaluation computed. The Wolfe conditions are a pair of conditions on the step-length
which ensure not that the global minimum has been found, but whether an arbitrarily defined reduction
has been found in the function for a particular o (and that « is not small, so that the process makes
reasonable progress). The first Wolfe condition, that sufficient decrease is seen in the objective function
is:

F@n + anpn) < f(@n) + w10V £ pu; (10)
and the second, that a large enough step-size is chosen is:
vf(xn + anpn)Tpn > w2vfgpn~ (11)

The coefficient scalars w; and ws are chosen arbitrarily, but through experience, the first should be small
and the second, “a bit” less than 1 (0.8 perhaps). In the CASTEP line-search, the second condition is
not necessary, as a backtracking line-search is used, which starts from a non-negligible fixed value.

Limited Memory BFGS

In order to improve the memory scaling of BFGS (and quasi-Newton updates, in general), the structure
of the update needs to be examined carefully. It has been shown [2] that the recursive representation

eq.(6) is equivalent to:

ST
B,, = By + [S B()Y] W |:(B()Y)T:| R (12)
where:
IR, T(D, +Y,IByY,)R,;} —R,T
W, = { _R- 0 . (13)
By is the initial inverse Hessian,
_ R\ —p,R7'ST
1 _ n Pnlyy "0, Yn
Rn-i—l - [0 Pn :|) (14)
D, 0
Dn+1 - |: 0 y;{snj|) (15)
1
= 1
Pn y{sn’ (16)
Sy = [SOa"anfl] s Y, = [y()v"'?ynfl] . (17)

s, and v, are the n* position and gradient update vectors, respectively. While this is a more complicated
representation than that in eq.(6), the advantage is that since the only operation we will ever perform
with the inverse Hessian once we have it is a multiplication by a vector, we can store the matrices of
position and gradient updates, only.

In reality much of the computation at the n'" step is duplicated from the previous step, so R, ! is stored
and updated in the fashion suggested by eq.(14) at each step. Then through careful manipulation, W,
is never stored, and we store only matrices of size m? (where m is the number of update pairs stored or
BFGS iterations), R, and (T, = D,, + Y,' ByY,,); and matrices of the size m x n, S,, and Y,,.

While in BFGS the Hessian can be applied to give a search direction by multiplication by a force vector
(see eq. 7), in LBFGS, the Hessian is never computed (or stored). For this reason an approach has to be
worked out to perform the operation without ever multiplying out the expression, so as to keep the process
linear scaling in memory. That algorithm is outlined as follows with the name of the corresponding BLAS
call required, where v is the vector to be multiplied by the inverse Hessian and p is the resultant vector:

Function f:R" = R", p+— B,v

p = Byv DSBMV

Wi = Y,Ip DGEMV

Wint1:2m = Sy v DGEMV

Wiam — By, YT By DTRSM

Wyt 1:9m — Ry 1St DTRSM
==1T, (1)

E— R,'E DTRSM

Wim > Wign — SWmt1.2m DGEMV

p—=p+STwim, DGEMV

t= =Y wmn 1.0m DGEMV

p— p+ Byt DSBMV

End Function

where w is a temporary 2m length vector, = is a temporary m x m dimensioned matrix, and t is a
temporary n length vector. With this routine, LBFGS can be performed in place of BFGS. Several new
small matrices need allocating and initialising.

Limited History

The LBFGS approach allows for a very important distinction from BFGS, which turns out to be its
most salient feature; the inverse Hessian approximation can be updated by removing a pair of updates
without reconstruction. In practice, this means that the last £ updates can be used for the construction
and hence the reason why LBFGS can be considered a linearly scaling approach, in memory. In fact,
if the number of updates is left unbounded, the amount of memory required will, possibly exceed that
used in BFGS.

In order to allow a limited history length, routines to delete the oldest update pairs are required, effec-
tively shifting of the end of the storage matrices.

é|:|

Figure 1: xxxx

Figure 2: Removing and adding an update vector to the middle matrix R. Removal would only be
necessary in the event of a fixed history length and a full set of updates.

There is, however, a further complication to using LBFGS in an atomic geometry optimiser:

Hessian Analysis

The very reason for LBFGS is to make the procedure linear in memory and as such re-initialisation or
final analysis (for a restart, perhaps) cannot be performed without violating this premise. A way to
extract elastic properties and phonon frequencies (at the centre of the Brillouin zone) was developed,
and is detailed in the following section. In the project proposal, this was termed the SVD part of the
project because a singular value decomposition was used to find a basis in the update space as part of
the procedure. This was performed differently in the implementation of LBFGS and has been termed
the “Hessian analysis” section, instead

This all hinges on the inverse Hessian initialisation scheme in Pfrommer et al [6]. This works on the
premise that the initial inverse Hessian is set up as follows:

(3QB,) ! 0 T

By = o1, - (18)
0

0 gglﬂ’lw()_Q

which is block-diagonal, but further to this, it is diagonal in the upper-left 9x9 quadrant and 3x3 block-
diagonal in the following block. is the cell volume, By the bulk modulus, M the average ionic mass,
wo 2 the average phonon frequency at the centre of the Brillouin zone, and the matrix go is the 3x3 metric
tensor.

The upper-left block represents cell-cell interaction and the lower- right, ion-ion interactions; this rep-
resentation does not, then model any inter-atomic blocks or acoustic modes in the cell-ion domain.
Each 3x3 block on the diagonal is also symmetric, so the entire matrix can be stored as a symmetric,
penta-diagonal band matrix. i.e.

; (19)

WO+

o .ooobobobomeo0o om0 00
o ...o0oocoidemem O Ee . .. 00N
| A B B E BB DR RN H N

B o+ *
HENE

where black squares represent elements of the blocks of the initial inverse Hessian, white squares are zero
and * represents elements which are never accessed.

Hence, the storage requirements for the initial, inverse Hessian become linear. There is the argument that
no initial inverse Hessian need ever be stored and instead only the scalars associated with its construction,
and invoking a bespoke multiplication routine whenever multiplication by the inverse Hessian is required.
This approach was rejected, however, since the scope for less homogeneous initialisations in the future
was desirable.

Whenever a multiplication of the initial inverse Hessian by a vector was required, the BLAS routine,
DGBMYV can be used, however whenever a general matrix needs to be multiplied by By, no routine is
available in BLAS or LAPACK, so one was created for the purpose. Only penta-diagonal matrices with
super-diagonal bandwidth of 2 were required, so the routine retains this limitation.

In the current CASTEP code for extracting phonon modes and elastic properties, the Pfrommer paper is
followed explicitly. Before the extraction begins, B, is corrected for finite strain, which enters the matrix
because of how the Pfrommer process augments the force vector:

B, =D 'B,D7!, (20)
where the D matrix is defined as:

[(1+e) 0
(1+¢)
(1+¢)

- 0 1_
In CASTEP, this matrix is allocated in full (ndim?), before it is inverted. Because the structure of
the matrix is block diagonal in the upper left quadrant and I, 4, in the remaining non-zero block, the
duplicated 3x3 block, e = (1 + €) can be stored, rather than the whole matrix, inverted and multiplied
by each of the 3x3 blocks along the cell-cell quadrant of B, in the following fashion:

-e?Bgl:3><1:3)€f .
€?B$L4:6X4:6)6f B»SLLQX 10:n)
E30“87(17:9><7:9) ¢

Bglo:nXI:Q) B%l():nxl():n)

Next in the routine, to get a basis which spans the sampled subspace of the Hessian, Pfrommer proposed
an SVD (singular value decomposition) of the update-space Hessian, that is all changes which have been
applied to it since the initial inverse Hessian was the latest representation. This is the way the scheme
is performed in CASTEP for BFGS:

B =VoW, (23)

where B’ is the update to the inverse Hessian, since the last initialisation of B,; V is an orthogonal matrix
of the singular vectors of B'; o is a matrix of its singular values along the diagonal and W is an orthogonal
matrix of the vectors of B’ spanning its null space. As it stood, LAPACK was used to compute the N?
matrix, V; while the singular values are packed into an N element vector and the right-hand vectors are
never computed.

To avoid having to multiply out (12), and perform the SVD, involving at least this and a further N2
objects, the structure of the decomposed LBFGS representation of B’ was examined carefully,

ST}

(BoY)T 24

B =[5 ByY]w [
we know that the update matrices are not necessarily orthogonal, however a QR factorisation fixes this.
The product is never multiplied out, but in principle this is what is implied at this point:

B = QRWRTQT, (25)

now, RW RT can be spectrally decomposed:

B = QPAPTQT, (26)

where A is the matrix of eigenvalues and P, the orthogonal matrix of eigenvectors of the decomposition.
Since @ and P are both orthogonal, it is plain that their product is also orthogonal and hence we have
extracted a basis in the update space of the inverse Hessian without ever forming it explicitly. We only
store the elements of QP which have a corresponding, non-zero singular value in A, this max(N*M)
matrix will be called Z.

An important ambiguity in the Pfrommer paper is the statement that the basis, Z should be comprised
of pure cell and pure ion vectors. The interpretation of this in the original CASTEP logic resulted in an
SVD on B’ and subsequently, a Householder transformation into the block-diagonal representation.

(cell — cell 0 \l
B (27)

k 0 ion—ion)

This works, however, the process needs a duplication of B’. An equivalent, but more efficient approach,
which may or may not have been the intended interpretation of the paper (Householder transformations
are never mentioned explicitly, but implied) is to perform the extraction of the basis vectors from the
cell-cell and ion-ion subspaces separately. These vectors can then be combined into one basis matrix
which, while a different basis than would be obtained in the former approach, still spans the complete
sampled subspace.

cell ndim 4 cell
number of updates
W .
A

cell

ion = on T ion
3 P \ P
\— $ o N [=F)5

/\/\/\ 0 eigenvalues | |
] 9 R W
_/—» = o~
Figure 3: The procedure for extracting the basis vectors, Z in linear memory. The numbered arrows
represent the 5 stages of this procedure. 1 QR-factorise the update matrix; 2) Form a matrix RW R”’;

3 Perform an eigenvalue decomposition of this matrix; 4 Extract the eigenvectors which have a corre-
sponding non-zero singular value; 5 Multiply these vectors by the update matrix to form Z [1].

A caveat is that typically there are fewer cell vectors than we have updates, for this reason it makes sense
to explicitly construct a temporary matrix of the cell-cell block of B’ and to perform an SVD on this
9 x 9 partition before proceeding to take the QR / SVD approach on the remaining ion-ion partition.

The next N? matrix to be eliminated from the routine is the mass scaling matrix, since this is a diagonal
matrix :

I 0
M,
M,

_ My 28
j M ; (28)

| 0 My |
it can be simply stored as a vector and each element multiplied by its corresponding row in Z, as the
Hessian matrix in reduced coordinates called for by Pfrommer needs to take the form:

A= (ZTp2BuM 2 z) 1, (29)

NB. Pfrommer uses Y in place of Z, which was prohibited by the use of Y for gradient updates in the
LBFGS formalism.

Although Z acts as a linear map from the full N x N space, to the reduced coordinate space of dimension
M x M (and so A and the multiplications involved in its construction can be performed in a linear-scaling
amount of memory), it is worth noting that since we have a rank-n correction to a matrix, By, we could
use the Woodbury formula mentioned earlier.

A=(Z"Bo+[S BeY]W [(Bf;)T)} VZ)~1, (30)

where the mass scaled basis, Z = u'/?2Z.

(cell — cell cell — ion\l
(31)

kion — cell ion — ion)

10

Extraction of Elastic Properties and Phonon Modes

At this point, all of the O(N 2)_matrices should have been eliminated. This is not the case, however. The
original geometry code stores A in an N2 matrix to be sure that it doesn’t overflow. With a fixed history

length, we shouldn’t have this problem, as we can guarantee that A < m because of the rank-nullity
theorem. With this simple change, the whole routine scales linearly in memory.

One further problem, unassociated with scaling but important from the perspective of implementation
of the Pfrommer scheme with LBFGS is that Pfrommer puts the cell-cell segment of B,, into Voigt-space.
That is, symmetry of the cell system is explicitly imposed; however, symmetry of the matrix is lost. For
the sake of reducing the size of B, by 3, this was not considered a good idea, since there is no mapping
between the symmetric product of LBFGS and the Voigt cell.

In switching from a 6 x 6 cell to a 9 x 9 cell, there is an important issue of stride, because the latter
case properly represents the rank-4 strain tensor and the elements to sum for the bulk-modulus are 1,5,9
rather than 1,2,3 for the rank-2 symmetrised strain tensor in Voigt notation.

Furthermore, it was found that in extraction of the Phonon-frequencies, a Cholesky decompostion could
be employed to improve the efficiency of the procedure.

Measurement

In order to measure the memory requirements of the old and new code, the Linux virtual file-system
in /proc was used to find the peak memory usage before and after calls to the geometry code. The
file /proc/self/status was read in, and the lines beginning "VmPeak’ and "VmExe’, were used to find
a peak memory estimate at that point in the calculation : total memory used = VmPeak — VmExe.
VmExe is the size of the executable and irrelevant to this exercise (including it will introduce error to
the measurement, since the binary with LBFGS is larger than that without).

Now that a way has been established to find the memory use of all the code, to find the memory used by
the geometry code only is a matter of performing the procedure at the beginning and end of the parent
geometry routine (geometry optimise) and then : geometry memory = final memory — initial memory.

Measuring the time taken by the code is a similar process. However, rather than using the proc vfs,
the MPI wall-time routine (MPI_Wtime) was used. The time taken in the function evaluation was
subtracted as this is disjoint from the amount of time spent in the geometry module. The number
of functions evaluations was recorded. For unbounded LBFGS runs, however, as this would effect the
overall time taken with respect to BFGS.

An important artefact of measurement was that systems even mildly perturbed could take different
routes though configuration-space and even to distinct minima. For this reason, it was important to be
careful what was compared directly. Different LBFGS history lengths will inevitably lead to different
paths, since the Hessians give unequal curvatures at each point in the space, which leads to differing
search directions.

Comparing the memory usage is a perfectly reasonable thing to do, however, since for a fixed history
length, the amount of memory required is independent of the path to convergence.

Implementation

Because the objective of the project was to improve memory scaling, this was kept in mind throughout
the work and affected every aspect of the implementation, but to keep performance good, BLAS and
LAPACK were employed wherever possible. In fact, the only significant operation which does not rely
on these libraries is “geom init_ H mul”, this is the bespoke multiplication routine for a symmetric,
penta-diagonal band matrix by a general matrix. It is only called 3 times in the code, however.

The first objective of the project was in fact to replace the Fortran 90 intrinsic matrix functions (matmul)
with their BLAS equivalent. As the Hessian (and its inverse) are symmetric, DSYMM and DSYMV
could be employed. These initial changes made some small but not insignificant improvements to the
performance:

11

The second objective was to implement 150 I
the basic LBFGS algorithm within - Y- .
CASTEP. This was achieved swiftly in - [r— .]
accordance with Byrd, et al. The orig- -]
inal code used intrinsic matmul func-
tions to transform from positions to
forces using a multiplication by the Hes-
sian matrix eq. (5) or backwards by
multiplying the force vector by the in-
verse Hessian matrix, for example in the
constraints section.

100 |~ —

50 — —

Percentage of BFGS before BLAS

The second important aspect of the
original code was in the construction of | |
the Hessian matrix. The changes in po- | . |
sition and force vectors at each iteration 0

through the main loop would be used to
form a rank-2 update matrix eq. (6),
which is known as the BFGS update
and is applied to the stored Hessian ma-

trix. This was all performed within one
subroutine.

In the implementation of basic LBFGS,

it was determined that a routine should be developed to perform the former operation, that is to multiply
the Hessian matrix by a vector without ever constructing it explicitly. This routine could be called
instead of a matmul whenever this operation was required and perform as a wrapper to the BLAS,
DSYMYV routine whenever BFGS was invoked. Two mutually exclusive logical variables were added to
the module global declarations: do_bfgs and do_1lbfgs which would determine which set of operations
to perform within this routine and also any others which were added or extended to offer both BFGS
and LBFGS functionality. The matrix-vector multiplication routine was implemented as in algorithm
(2), which performs the operation presented in eq. (6), with consideration of the 2 x 2 block diagonal
(with one block zero) structure of the middle matrix, W, for maximum efficiency.

7
System Size (Supercells of Quartz in 3 Coordinate Dimensions)

Figure 4: After converting the BFGS implementation to use
BLAS, it was found to be much faster, but also to use more
memory than before.

Since there was already a routine to perform the BFGS update, this was not re-written, but extended
for LBFGS using the global flags to identify when a full Hessian would be present and when only update
vector storage would be available (LBFGS). This just means appending the latest position and force
update vectors to the respective update history matrices, of dimension n x m. For the sake of efficiency,
the R matrix, eq. (14) is also stored, since this is only m x m dimensioned and can be updated efficiently
with one BLAS level 3 operation: the multiplication R by the m x n position update matrix, S” and a
further BLAS level 2 operation in the multiplication of this matrix by latest gradient update vector, to
give the latest, right-most column of the matrix. The final operation is to calculate the diagonal element
of this column, which is a BLAS level 1 operation and hence gives the right-triangular structure of R
with a new column.

In terms of computational efficiency, the BFGS update routine does O(N?) operations, whereas the
LBFGS equivalent does O(M?2N). Some speedup should be seen from this alone (assuming, as always,
an unbounded history length), however the BFGS update was performed with scalar operations and
hence the new vectorised LBFGS code should be further improved.

For the overall performance scaling of the scheme, there has to be some consideration for the scaling of
not just the BFGS update, but for the application of the matrix to a vector (the former point above),
since much of the operations have moved there from the update itself (BFGS was just a single O(N?)
matrix-vector operation). From the algorithm this presents an operation count of 2N M2 +2M N +3M?3+
2M? + 6N. Which is highly dependent of the number of stored vectors. The prefactor for BFGS was
determined from the original code to be 10, by counting the number of scalar operations in the loops, so
plotting 10N? versus the LBFGS count, we can compare the theoretical performance scaling, which as
with the memory, is linear, but this time with a much larger pre-factor. The result of which is that in
terms of performance, the scheme is beneficial for large systems, per iteration, but only for large systems
with relatively short history lengths (see fig. 5). Also, this does not take into account the difference in

12

the number of iterations to convergence which may be observed between BFGS and LBFGS with a fixed
history length. This will be far more significant to the net calculation time, since performing each step
requires an energy and force evaluation, which are vastly more intensive than the geometry code, with
the possible exception of the Hessian analysis (SVD).

le+09 E T T T T T T 1T T T T T T T 17T T T T T T =

1e+08 = —

1le+07 = =

¢]
g

£ 1e+06 -

o = 3

=3 E =

o C]

le+05 £ — BFGS =

E —— LBFGS (15 update history) | I

B LBFGS (30)]

10000 & — LBFGS (45) _

E — LBFGS (60) 3

C LBFGS (100)]

1000 | | | | | | | | | | | | | | | | | | 1 111
10 100 1000 10000

Number of Degrees of Freedom

Figure 5: A performance prediction of the original BFGS, versus LBFGS for varying number of degrees
of freedom. That is, not number of atoms, but the raw length of the vectors of position and force. This
is based on a count of the operations and prefactors involved from the code. NB note the scale of the
y-axis : these are not particularly taxing on modern CPUS.

In the Hessian analysis part of the code, there was vast scope for improvement. While the main aim of
the exercise was to make it linear scaling in memory, down from storing a further 6 N2 matrices, because
of how it was implemented, large performance gains could be possible due to the reduction in number of
operations.

Firstly the basis of the Hessian update had to be computed, as in fig. 3, which is detailed algorithmically
here:

13

Function f:R™ - R", Z— basis(B’)

Ul:nx1:2m = [Sn BOYTL]

[Qunxi2m Rizmxizm]| = qr(U) DGEQRF
Cramx1:2m = RW DTRMM
C—CR DTRMM
[Promxt:2m Avom]| = spectral(C) DSYEVD (2)
v = pivot(A) algor_sort

Vi <2m : A(i) — A(v(i))
Vi <2m A A(E) > 0: Pp,(i) = Pry,(v(i))
Zl:n><1:l = Ul:n><1:2mP1:2m><1:l DGEMM

End Function

Where “qr” represents a QR factorisation, spectral represents an eigenvalue decomposition and pivot
represents the sorting of the elements in a vector by magnitude, in ascending order and producing an
integer pivot vector. Sorting and forming a pivot vector is performed differently between CASTEP and
ONETEP. There is a routine “algor sort” in the algor module, in the former and in ONETEP, there is
a routine “utils _heapsort” in the utils module with the same functionality.

Following the extraction of a basis in the update space, it must be applied to the full Hessian to form
A, which is the Hessian in reduced coordinates, of which there are [< 2m, by the rank-nullity theorem.
There are two ways to perform this procedure. The naive way is simply to multiply out eq.(30) and
invert, the more sophisticated way is to use the Woodbury formula (eq.(8)), since we want the inverse
of a sequence of rank updates to a matrix. Either way, the procedure involves two parts, the change of
basis in the initial inverse Hessian (By) and in the update to it (B’). For the complete expression, we may
use the Woodbury formula, but for the first part of it, there is a general, dense n x [matrix multiplying
a symmetric, penta-diagonal band matrix. There is no BLAS or LAPACK routine to perform such an
operation, so one was written: fig. 6. NB: keep in mind the structure of the band matrix in storage is
as in (19).

For the whole expression, the Woodbury formula is implemented straightforwardly with a series of general
matrix multiplications (DGEMM), the above routine and the CASTEP and ONETEP wrappers to the
LAPACK general inversion routines (i.e. DGETRI).

Further changes to the code involve restart code which simply makes certain that all of the correct
arrays have been allocated and initialised, routines to remove and add updates to the decomposed
Hessian representation using eoshifts, as described in fig.1 and fig.2.

A further essential part of the new code was a routine for resizing all of the arrays in the decomposition
without losing any data. This was not for the normal use case where a fixed-history length would be
employed, but for an unbounded calculation, to maintain compatibility with the old BFGS. This is simply
a matter of allocating a temporary array with the old size, copying the data into it, deallocating the
array, reallocating it with the new size, copying it back from the temporary array and then deallocating
the temporary array. This was done for every array and works to up or down-scale arrays based on
arguments.

Since the codebase in ONETEP is based on that in CASTEP, there was very little extra to do and all
of the LBFGS and Hessian analysis is shared between them. The only difference is in the checkpointing
and restarts, where ONETEP uses a mock CASTEP “model” in the geometry optimisation module and
this had to be updated along with some small changes to the routines due to the different routines used
for inverses and sorting between the two codes, for instance.

14

X |la |+
X |b |+
J .X c |t + .
X |e |+ /
X[d| —T |
_~
B a ||e
b || d ece
c

Figure 6: To multiply a general matrix, A by a pentadiagonal band matrix, B and put the result in C,
this stencil is used, where a,b,c,d and e are elements from B. The corresponding elements are multiplied
and summed and then summed with the respective element in C. This is done over all i and j, being
careful of edge cases and dealing with them appropriately. The dots represent the current i and j in A
and C and the current column of B is aligned with that in A.

15

Results and Comparisons

A set of test cases of various numbers of atoms were run with the original BFGS code and with the
new LBFGS code under both CASTEP and ONETEP. Both castep and ONETEP use exactly the same
geometry optimisation code, differing only in the energy and force solvers. Therefore the code was tested
for a variety of supercells of quartz with noise in the ionic positions and cell degrees of freedom. This was
then regression tested against the CASTEP and ONETEP test-suites for geometry optimisation to make
certain that the same results were obtained pre and post LBFGS. The memory footprint was measured
as mentioned earlier in the report. This was performed for several LBFGS history lengths and averaged
over 3 runs.

The whole process was performed with and without the extraction of Physical information for reinitial-
isation (Bulk moduli and Phonon Frequencies), to highlight the particularly good improvement in this
area.

LBFGS shows linear scaling properties compared to the quadratic scaling of BFGS; figure 7. The LBFGS
line for 100 updates (the uppermost line) intersects with the BFGS line at roughly 100 atoms, as would
be expected.

For the largest system shown on the graph a 100 element history length LBFGS calculation requires
roughly 10 MB, whilst the BFGS run consumes more than 300MB.

1e+08

1le+07

Memory (Bytes)

1e+06

1e+05

1 1 1 1 1111 | 1 1 1 1 1111 | 1 1 1 1 L 111
10 100 1000 10000
System Size (Atoms)

Figure 7: Without the extraction of Physical information from the Hessian, the quadratic scaling of
BFGS, shown with + symbols contrasts with the linear scaling of LBFGS, shown with x symbols (for
history lengths of 15, 30, 45, 60 and 100, ascending up the graph), for a variety of systems. The lines
are straight line best fits for the LBFGS data and a quadratic best fit for the BEFGS. NB. log-log axes.

Similar characteristics are seen when the routines for extracting elastic properties and phonon modes
are switched on, in that the same quadratic to linear improvement in scaling is seen between BFGS and
LBFGS, however the raw difference in memory usage is much increased. For instance, taking the largest
(2300 atom) system, once again, that with a history length of 100, LBFGS peaks at under 60 MB, while
BFGS hits 2.5 GB.

16

It is worth mentioning at this point that with the original code, the N? arrays were duplicated on each
MPI image, so on a system like HECToR phase 2B with 24 cores per CPU, in the pathological case,
when each node is fully loaded, a geometry optimisation would require 2.5 x 24 = 60 GB. Which is
well outside of the 32 GB available per node, besides which, there is also the wavefunction overhead in
CASTEP which is outside the geometry module and that from the operating system, etc. As such, a
geometry optimisation with a Hessian analysis in the thousands of atoms is now feasible on HECToR
without seriously under-loading nodes and hence wasting AUs. There are other considerations, of course,

1e+09

1e+08

le+07

Memory (Bytes)

le+06

1e+05

100 1000 10000
System Size (Atoms)

1

(e

Figure 8: With the extraction of Physical information from the Hessian, the quadratic scaling of BFGS,
shown with + symbols is vastly poorer than the linear scaling of LBFGS, shown with x symbols (for
history lengths of 15, 30, 45, 60 and 100, ascending up the graph), for a variety of systems. The lines
are straight line best fits for the LBFGS data and a quadratic best fit for the BEFGS. NB. log-log axes.

such as the time to science. While new calculations are now possible; systems in the tens of thousands of
atoms are now entirely reasonable for geometry optimisation with CASTEP and an LBFGS calculation
with a history-length of 15 will only reach 2.5 GB of memory at 600,000 atoms, such a short history
length was found to converge slowly with respect to BFGS in practice (but always to converge).

History lengths of 30 or more were found to be good. 30 in particular was picked out as a good
compromise.

Time taken to convergence is a poor measurement for comparison, because altering the number of stored
updates to the Hessian will change the search directions and hence the path to convergence, which is
ultimately an unfair test. Instead, fixed history lengths were tested, followed by the Hessian analysis
procedure. This means that up to the point of analysis, the calculation followed the same trajectory and
at this point, the timing data for the analysis can be fairly compared.

17

10000 T T IIIIII| T T IIIIII| I T T T T T TT

2 n E

B —— BFGS 15 Updates]

B — LBFGS 100 7

1000 LBFGS 60 _

_ = — LBFGS 45 3

2z C — LBFGS 30 7

g B LBFGS 15 Updates]

S L i
Q

2 o0k E

(=] = =

.2 o 3

k5 C]

2 C]

g L i
3

s 1UF E

) - .

E C]

F — —

= =

i 1 1 1 1 111 | 1 1 1 1 | | | 1 1 1 1 11 I_

10 100 1000 10000

System Size (Atoms)

Figure 9: For a fixed number of updates followed by the Hessian analysis procedure, LBFGS is competitive
with BFGS for small system sizes and is far more efficient as the system size becomes larger. Best fit lines
of the form y = ax® have been shown to guide the eye. This is a good approximation to the behaviour
for larger systems, where the Hessian analysis dominates the calculation. However in small systems,
overheads including the update, skew the data away from the trend-line.

18

1000 T T T T T T 1T T T T T T T TT T T T T T 17T

100 = =
2z B]
= L i
5
3 i i
2
§ 10 = —
2 -]

B LBFGS (15 Updates)|]
- —— LBFGS (30) .
L — LBFGS (45) T
— LBFEGS (60)
1= LBFGS (100) =
- — BFGS equivalent .
B 1 1 1 111 | 1 1 1 1 111 | 1 1 1 1 111 I_
10 100 1000 10000

System Size (Atoms)

Figure 10: The performance scaling of the new scheme is very similar to BFGS before the Hessian
analysis procedure (or when it it explicitly disabled), however it is marginally quicker across the board.
NB This is BFGS after BLAS, the original was slower than this (see fig. 4).

19

Conclusions

All of the project goals were met; LBFGS was implemented in the Geometry module for both CASTEP
and ONETEP, the original code was altered to use BLAS instead of Fortran 90 intrinsic functions such
as matmul, the Pfrommer (re)initialisation was preserved in the LBFGS implementation and the process
to extract elastic properties and phonon modes from the Hessian for use in the Pfrommer initialisation
was upgraded to work with the LBFGS decomposition of the inverse Hessian and to perform the process
in O(N) memory compared with the quadratically scaling memory requirements of the original code.

Further to this, the memory associated with the geometry code in CASTEP is no longer duplicated
(along with all of the arrays), on every MPI image. The result is that while the current trend in HPC
is more cores per node and hence less memory per core, the geometry code in CASTEP will be able to
use all of the memory of a node.

It was found that for large systems, the new implementation allowed for BFGS cycles to be performed,
where previously they were infeasible due to the storage requirements of the Hessian sized objects.
Typically, storage was decreased by several GB for systems of the order of hundreds of atoms. Of course,
the number of BFGS steps stored is crucial both to good performance and to a reasonable memory
footprint. It is hoped that the memory estimate routine modifications will allow dry-run calculations to
find optimum values for production runs.

All of the project goals were met; LBFGS was implemented in the Geometry module for both CASTEP
and ONETEP (tasks 3,5), the original code was altered to use BLAS instead of Fortran 90 intrinsic
functions such as matmul (task 2), the Pfrommer (re)initialisation was preserved in the LBFGS imple-
mentation and the process to extract elastic properties and phonon modes from the Hessian for use in the
Pfrommer initialisation was upgraded to work with the LBFGS decomposition of the inverse Hessian and
to perform the process in O(N) memory compared with the quadratically scaling memory requirements
of the original code (an improvement on the goals of task 4).

Project Evaluation

The project proceeded at a fast pace initially, as the goals of adding BLAS instead of Fortran intrinsic
routines and basic LBFGS functionality were completed. At the beginning of the work on the elastic
properties and phonon mode extraction procedure for Pfrommer-style reinitialisation, it became clear
that the task would not be trivial. The work was finally completed, through concentrated effort a little
behind schedule. I hope that this work will be as beneficial to those doing geometry optimisation as it
was to myself.

Further Work

While outside the scope of this dCSE, potential further improvements were identified as a matter of
course. Firstly, in constrained cell minimisation there is scope for a better line-search. While the current
method of trial steps often works, it is believed that with further work, a better solution can be found
which could potentially save a large number of HECToR AUs for such calculations.

Acknowledgements

I would like to thank Matt Probert and Phil Hasnip of the University of York, and Craig Lucas and
Christopher Armstrong of NAG (UK) for their continuous encouragement, support and ideas throughout
the project, without which it would not have been possible.

This project was funded under the HECToR, Distributed Computational Science and Engineering (CSE)
Service operated by NAG Ltd. HECToR - A Research Councils UK High End Computing Service - is
the UK’s national supercomputing service, managed by EPSRC on behalf of the participating Research
Councils. Its mission is to support capability science and engineering in UK academia. The HECToR

20

supercomputers are managed by UoE HPCx Ltd and the CSE Support Service is provided by NAG Ltd.
http://www.hector.ac.uk

21

References

[1]

2]

[3]

[4]

[5]

[6]

[7]

AARONS, J., HAsNIP, P., AND PROBERT, M. An improved hessian initialisation in the Ibfgs formal-
ism. In preparation (2011).

BYrD, R., NOCEDAL, J., AND SCHNABEL, R. Representations of quasi-newton matrices and their
use in limited memory methods. Mathematical Programming 63, 1 (1994), 129-156.

BYRD, R., NOCEDAL, J., AND YUAN, Y. Global convergence of a class of quasi-newton methods on
convex problems. SIAM Journal on Numerical Analysis 24, 5 (1987), 1171-1190.

CLARK, S. J., SEcaLL, M. D., PickAarD, C. J., Hasnip, P. J., PROBERT, M. I. J., REFSON,
K., AND PAaYyNE, M. C. First principles methods using castep. Zeitschrift fiir Kristallographie 220,
5-6-2005 (May 2005), 567-570.

NAZARETH, L. A relationship between the bfgs and conjugate gradient algorithms and its implications
for new algorithms. SIAM Journal on Numerical Analysis 16, 5 (1979), 794-800.

PFROMMER, B. G., COTE, M., LOUIE, S. G., AND COHEN, M. L. Relaxation of crystals with the
quasi-newton method. Journal of Computational Physics 181, 1 (1997), 233 — 240.

SKYLARIS, C.-K., HAYNEs, P. D., MosTor1i, A. A., AND PayNE, M. C. Introducing onetep:
Linear-scaling density functional simulations on parallel computers. 084119.

22

