Improving the parallelisation and adding
functionality to the quantum Monte Carlo

code CASINO

Lucian Anton
Numerical Algorithms Group Ltd,
Walkinson House, Jordan Hill Road,
Ozford, OX2 8DR, UK,

email: lucian.anton@nag.co.uk

September 28, 2009

Abstract

This report presents the results of a one year distributed Com-
puter Science and Engineering (dCSE) support project for the code
CASINO which has been focused on three main issues: i) better mem-
ory utilisation using shared data between tasks belonging to the same
processor, ii) acceleration of the computation speed by implementing
second level parallelism and iii) improved input reading speed for large
sets of initial data.



Contents

1 Introduction 2
1.1 Background . . .. ... ... ... .. ... ..... 2
1.2 Variational Monte Carlo (VMC) . ... ... ... .. 3
1.3 Diffusion Monte Carlo (DMC) . . . ... ... ... .. 4
1.4 A survey of CASINO and of the dCSE problems 4
2 Sharing large data sets 6
2.1 Shared memory on a processor or node (SHM) . . . . 7
2.2 MPI two-sided data transfers (MPI-2S) . . . ... .. 7
2.3 One-sided data transfers (MPI-1S, SHMEM) . . . . . 8
24 Testresults . . .. .. ... .. ... 8
3 Second level of parallelism with MPI 9
4 Second parallelism level with OpenMP 11
5 Data input optimisations 14
6 Conclusions 14

1 Introduction

1.1 Background

Quantum Monte Carlo(QMC) methods are accurate numerical tools
used for computing the properties of physical models that contain a
relatively large number of atoms, e.g.: crystals, nanoclusters or macro-
molecules. Although QMC computing time has the advantage of scal-
ing with second or third powers of the system size, very precise results
require the need to process large samples of phase space configurations
and therefore the most challenging QMC problems require use of the
most performant hardware and available algorithms [1].

In order to set the terminology we shall briefly describe the ba-
sic mathematical concepts that provide the foundation of QMC al-
gorithms, for a more detailed presentation we direct the reader to
Refs [3, 4].

A typical quantum many-body system has N, electrons with posi-
tions R = {7%}, of which N} have spins up N| = N, — N; have spins
down, and Ny ions with positions Ry = {77}. The particle interaction



is described by the quantum Hamiltonian

2

h
H=- > %v,%i +V(R,R;),
i=1,N,

from whose eigenstates and eigenvalues one can compute in principle
all physical quantities describing the system. For realistic Hamiltoni-
ans exact solutions are not available but good physical results can be
obtained with approximate one particle solutions, the most success-
ful technique in this class being that of Density Functional Theory
(DFT).

QMC calculations can further improve a one particle solution by
providing particle correlation contributions with the help of the fol-
lowing two QMC methods:

1.2 Variational Monte Carlo (VMC)

VCM calculations use a trial function ¥(a, R, R;) whose parameters
« are determined from the minimisation of the average energy or its
variance:

(0 (o) |H| 0 () "
(W(a)|¥(a))

A typical trial function for an electronic system is the product be-
tween the Slater determinants of one particle orbitals (OPO), obtained
from a DFT calculation, multiplied by a function that describes the
particle correlations.

\Il(aa R, RI) = eJ(a7R7RI)DT (1‘17 cee 7rNT) (2)
X Di(rN+1..rn,) (3)

E(a) =

where D | are the Slater determinants of the electrons with spin up(T)
or down(]). The simplest Jastrow factor J(a, R,Ry) is a sum of two-
electron functions

J(@,R,Ry) = = Y tg, oy, |ri = 75]) (4)

i>j

04,0
where u is taken from the homogeneous electron gas. Over the years
more elaborate extensions of J(«, R, Ry) have been developed in order
to include three electron correlations and electron ion correlations [4].
Many studies have shown that VMC calculations recover up to
70—90% of the correlation energy but the remaining contributions are
hard to conquer because the results cannot be improved systematically
in the VMC framework. As a matter of fact the main use of VMC
calculations in CASINO is to generate the configuration set needed

for the Diffusion Monte Carlo calculation.



1.3 Diffusion Monte Carlo (DMC)

The DMC method is based on the observation that the Schrodinger
equation in imaginary time (t = i7),

—({NIE;:’T) = —%VQ\I/(R,T) +(V(R) — Er)V(R,7) . (5)
is a diffusion equation plus a branching/annihilation term given by the
potential. If the parameter Er is tuned to the groundstate energy the
trial wavefunction is projected to the ground state of the Hamiltonian.
The anti-symmetric nature of the electronic wavefunction poses serious
problems for the numerical solution of Eq (5). A way out of to this
difficulty is to introduce the so called fixed-node approximation, in
which a modification of Eq (5) is used, that projects the wavefunction
onto the ground state wavefunction which has the same nodal surface
of a trial wavefunction. Practical computations show that this is a
very good approximation.

1.4 A survey of CASINO and of the dCSE
problems

CASINO is a QMC software package developed and maintained over
the last 10 years at Cavendish Laboratory, Cambridge University,
UK [2, 3].

In its core CASINO’s QMC algorithm uses configurations of N,
three dimensional random walkers (RW) which evolve according to
the distribution probability associated to the trial wavefunction for
the VMC calculation, Eq (1), or to the Schrodinger equation for the
DMC calculation, Eq (5).

A typical calculation involves the following main steps:

e read the input parameters and the input data such as orbital
data coefficients, Jastrow parameters,

e run a VMC calculation to generate the RW configurations needed
for DMC,

e run a DMC calculation: propose a change of a configuration,
compute the local energy and decide on branching, accumulate
statistics of the physical quantities.

e if the computation is done in parallel a redistribution of the
configurations amongst tasks is needed in order to keep the work
evenly distributed.

Two main factors determine CASINO’s performance for the func-
tion of the number of electrons in a given model: i)the memory needed

4



MPI‘I\S‘,w
i

Figure 1: Illustration of the BC data access patterns for two tasks in vari-
ous algorithms. Each task computes in serial mode a list of configurations
Cy...Cy, using the stored BC: a) The standard version, each task has it
own BC data set, b) BC are located on a sector of shared memory, ¢) MPI
two-sided version: the BC data are transferred using MPI two-sided commu-
nication, d) one-sided data transfers that can be implemented with MPI or
SHMEM.

to store orbitals values for the Monte Carlo algorithm and ii) the scal-
ing of the computation time with the electron number [2].

Besides these problems it was found in practice that for parallel
computation of models containing more than 1000 electrons and for
computations with or on more that 5000 tasks there is an extremely
long reading time of the orbitals’ data or of the previously stored
configurations (30 to 60 minutes).

In the following sections of this dCSE report we shall present in
detail the proposed solutions for the above problems and discuss the
performance gains they bring to the code. Section 2 describes the al-
gorithms used for shared OPO data and the results of the performance
measurements for each algorithm. Sections 3, 4 presents the second
level parallelism algorithms and their performance is analysed. Sec-
tion 5 presents the improvements for the reading of initial data. The
benchmark tests were done on the dual core AMD Opteron which were
used in phase I of HECToR and on the quad core AMD Opteron that
are currently in use in phase II of HECToR. The dual core processor
has the following technical specifications: 2.8 GHz clock rate, 6 GB of
RAM, 64KB L1 cache, IMB L2 cache, peak performance 11.2 Gflops
in double precision. The quad core processor has the following tech-
nical specifications: 2.3 GHz clock rate, 8 GB of RAM, 64 L1 cache,
512 KB L2 cache, 2 MB L3 cache(shared), peak performance close
to 40 Gflops in double precision. The code was compiled with PGI
v8.0.{2,6}.



2 Sharing large data sets

In this section we present the main features of three solutions proposed
for orbitals’ data sharing which are schematically illustrated in Fig 1.

A CASINO computation proceeds by moving one walker at a time,
the transition probability at each step depends on the current values
of the Jastrow factor and OPO at the current position of all random
walkers. The orbitals can be represented using various basis sets, in-
cluding plane waves, Gaussian, or B-splines. In this report we are
concerned with the representation in B-Splines [5], which are localised
third order polynomials sitting on a three-dimensional grid in real
space which spans the whole physical system. They share the same
properties of plane-waves as being systematically improvable and un-
biased, but they are localised, and as such a factor 1/N, more efficient
than plane waves: for each point in space there are always only 64
B-Splines that have non-zero values. Therefore the evaluation of each
orbital requires only the computation of 64 B-splines, which is much
less than the total number of plane wave functions for a system with a
large number of electrons (the number of plane wave functions scales
with the N).

In the program the B-Splines coefficients (BC) are stored in a rank
five array a(1 : Np,0 : Ngp — 1,0 : Ngyy — 1,0 : Ny, — 1, N,), where
Ny, Ny, Ngy, Ngy., Ny are the number of orbitals, the number of
the of grid points in three spatial directions and the number of spins,
respectively.

The amount of BC needed in computation is determined by two
factors: i) For each spin value the number of orbitals must be equal
to the number of electrons with that spin, ii) the grid spacing is de-
termined by the precision of the DFT calculation used to obtain the
OPO, the higher the precision the finer the grid must be.

The above requirements conspire to create a large amount of BC.
For example, if we consider a system with 1000 electrons, split in half
spin up, half spin down, we need at least 500 one-particle orbitals
for a non-magnetic system since in this case one can use the same
set of BC for both spins. The spatial grid can reach or exceed 80
points in each direction, hence, for the previous quoted numbers one
needs approximately 2 GB of memory, if the values of BC are stored
in double precision, which is close to the maximum available memory
per core for the processors used on HECToR.

In the initial algorithm of CASINO each task has a copy of the BC
needed to compute the orbitals values. Since the BC sets are identical
on each task and their values do not change during computation the
obvious solution to the memory problem is to share the data among



groups of tasks, especially when the hardware provides shared mem-
ory.

2.1 Shared memory on a processor or node
(SHM)

At the time of writing the MPI standard does not offer the possi-
bility to address a common memory segment for a group of tasks
on shared memory systems. Nevertheless shared memory can be used
with the help of the Unix System V inter-process communication func-
tions shmget, shmat [7], which allocate a memory segment and attach
it to the memory space of each calling task.

The main steps to this algorithm are as follows:

1. find the tasks belonging to the same processor or node (multiple
processors that share memory) with ”mpi_get_processor_name”
procedure,

2. allocate the memory needed to store the BC and attach it to the
tasks memory space with shmget and shmat,

3. pass the reference of the shared memory segment to the FOR-
TRAN program via a Cray pointer.

The implementation uses a set of functions written in C which
group the tasks that can use shared memory and create the shared
memory segment for them. The subroutines that make available the
shared memory to a FORTRAN pointer using Cray pointers are pro-
vided in a FORTRAN module [6].

There are two non-portable components in this implementation
according to the CASINO coding standard (FORTRAN95+MPI), al-
though widely available on currently used parallel computers: the
shared memory subroutines, which are not portable on a all oper-
ating systems, and the Cray pointers, which are not FORTRAN 95
compliant.

In order to conform with CASINO portability requirements or for
use in cases that do not need shared memory an alternative FOR-
TRAN module is provided that implements the initial algorithm, that
is, each task has a full copy of the BC. The user can switch between
the two modules with the help of a makefile variable (CASINO does
not use code preprocessing).

2.2 MPI two-sided data transfers (MPI-2S)

This algorithm was implemented in CASINO by Randolf Hood of
LLNL in 2008. We have presented its main features in this report

7



because it was used in the performance tests. The algorithm uses
two-sided MPI calls for BC transfers between tasks, its main steps are
as follow:

1. The total number of tasks of a given computation is split in
groups of size ng.

2. The BC are distributed among each group of tasks in the fol-
lowing manner: each task has the full spatial grid and N, /ng
orbitals picked with a periodic rule.

3. When a task needs to compute the orbitals’ values for a given
electron it broadcasts the electron’s coordinates to its group
members and waits for them to return the orbitals’ values whose
BC are stored on each of them.

Because each task evolves its configurations randomly a synchro-
nisation mechanism must be provided. In the current implementation
it consists of additional ’sentinel calls’ in the inner loop of the config-
uration computation that answer the requests of orbital computations
from the associated tasks.

2.3 One-sided data transfers (MPI-1S, SHMEM)

This is a variation study of MPI-2S that tries to avoid the synchroni-
sation delays of the previous algorithm using one-sided data transfer
provided by MPI or SHMEM libraries. In this case the task that
reaches the orbitals computation sector can access the set of BC it
needs from the memory of the associated tasks without the need of a
matching call on their side. This algorithm has two drawbacks: i)the
amount of data to transfer between two tasks is 64 times larger than
in the case of the orbital transfer, ii) the data set to be transferred
has non-contiguous memory addresses because it is a 4 x 4 x 4 block
of the spatial grid.

2.4 Test results

Table 1 presents the execution times of the orbital computing sub-
routine for the discussed algorithms. The data were collected from
a short run ( 12 time steps), but which yields more than 103 timing
points, inside the DMC section using the internal timer of the code.
The total time taken by the DMC computation is also presented. The
electronic system has 1024 electrons and the BC size is approximately
2.4 GB.

As expected, the results show that the SHM algorithm is by far the
most efficient since it avoids unnecessary data transfers between tasks.



CPU 9DC ADC 4QC

OPO DMC OPO DMC OPO DMC
SHM 130 921 - 139 882
MPI-2S 371 1184 806 1458 546 1249
MPI-1S 562 1380 1669 2565 1430 2210
SHMEM 210 975 771 1759 536 1271

Table 1: Execution times in seconds for BC sharing algorithms described in
Sec 2. The columns are organised as follow: 2DC shows data for runs done
on 2 tasks using one dual core processors, 4DC is for runs of 4 tasks on 2 dual
core processors and 4QC for 4 tasks using one quadcore processor. The OPO
column shows the time spent for one particle orbital computation, DMC is
the time for the whole diffusion Monte Carlo computation.

MPI-2S appears to be an acceptable alternative when the amount
of data surpasses the available shared memory (this may happen in
the case of some disordered models). The weak performance of the
MPI one-sided algorithm deserves some further comments provided by
David Tanqueray: ” Although at first sight the one-sided MPI features
would seem to be asynchronous, there is no requirement in the MPI
specifications that they should be implemented as such, and indeed
in the MPICH implementation they are all saved up and performed
together at the next collective or sync call, where they are handled
internally as part of the underlying 2-sided MPI communications de-
sign. The SHMEM calls on the other hand are usually performed
asynchronously being built directly on top of the XT Portals library
which does provide some degree of asynchronous support, and in fact
the results show that SHMEM algorithm performance is slightly better
than the MPI-2S algorithm”.

3 Second level of parallelism with MP1

The second level parallelism (SLP) algorithm seeks to increase the
computation speed by employing more than one task to move one
RW configuration to its next state. As the computation time of a
configuration in CASINO scales with N?, with p = 2, 3, the computa-
tion time per configuration for a system with O(10%) electrons could
be more 100 times longer than a for a system with O(103) electrons,
which is the maximum size reached by the current calculations. As
byproducts SLP solves the large size BC problem because it distributes
the BC data among the group of task that perform the computation
for one configuration and improves the load balance of the parallel



computation because the relative difference between the number of
configurations on different pools decreases with the pool size (for a
calculation with a fixed number of configurations per task or pool of
tasks).

As in the case of MPI-2S algorithm SLP divides the tasks in groups,
named pools, of given size (typically 2 or 4). At start the program
reads the BC and distribute them among the pool members similar
to MPI-2S algorithm. The difference is that only one configuration
is computed at a time by all the tasks belonging to a pool. One of
the tasks, named ”pool head”, controls the computation and sends
signals to the other tasks about the next step of the computation.
In this manner the synchronisation problem of MPI-2S algorithm is
removed and the pool’s tasks can be used to compute in parallel more
quantities beside the orbitals: sums that appear in the Jastrow fac-
tor, the potential energy and linear algebra operations needed for the
Slater matrices.

We analyse the efficiency of SLP algorithm in the following way:
in the ideal case for a pool of size n the computation time of one
configuration would be t,, = t;/n. However the communication time
between tasks is not negligible and the work is not equally distributed
over the pool’s tasks because there are computations done only on the
pool’s head. We can measure the efficiency of a pool usage with the
following parameter:

_ t1 7/1 ti : 1 (6)
where 7 takes value 1 in the ideal case, 0 if the use of SLP does not
increase the computation speed and becomes negative if the compu-
tation time increases with the pool size.

In Table 2 we present the computation times for three sections
that are done in parallel over the pool: one particle orbitals (OPO),
Jastrow function, Ewald sum and also for the whole (DMC) section;
the pool sizes are 1,2,4. The input file is identical to that used for
shared memory measurements, see Table 1. The efficiency parameter
shows that the best efficiency is obtained for pools of size 2 for OPO
computation. In the case of pool of size 4 the OPO computation is
clearly more efficient on quadcore processor but the other quantities
have similar performance, though slightly better on quadcore. We
note also that the efficiency of the calculation OPO increases for the
larger system.

The overall efficiency in DMC sector of the current implementa-
tion is rather small as the computations of the Slater determinant
and of the associated matrices are done on the pool’s head. The
Slater determinants are computed in two ways in CASINO: i) using

10



DC QC

pool size 1 2 4 1 2 4
System 1 1024 electrons

OPO 118 80(0.46) 78(0.17) 141 93(0.52) 64(0.40)
Jastrow 271 218(0 24)  189(0.14) 199 151(0 32) 123(0 21)
Ewald 79 59(0.34) 34(0.44) 122 90(0.36) 52(0.45)
DMC 773 656(0.18)  592(0.10) 743  610(0.22)  518(0.14)
System 2 1536 electrons

OPO 267  171(0.56 143(0.29) 311  197(0.58 136(0.43

(0.56) (0.58) (0.43)
Jastrow 640  505(0.27) 473(0 12) 454 340(0.36)  317(0.14)
Ewald 183 137(0.34)  81(0.42) 276 207(0.33)  121(0.43)
DMC 1965 1709(0.15) 1531(0.09) 1847 1522(0.21) 1358(0.12)

Table 2: Computing times in seconds for SLP algorithm for dual core (DC)
and quadcore (QC) processors with pools of sizes 1, 2 and 4. The times are
for the three section of the code that are computed in parallel (OPO, Jastrow,
Ewald) and for whole DMC segment that contains also sections executed in
serial mode on the pool’s head. In brackets are the values of the efficiency
parameter defined by with Eq (6).

LU factorisation of the Slater matrix, which scales as N2, ii) using an
iterative relationship for the cofactor matrix [9], which scale as N2 but
is numerically unstable. We have implemented a parallel computation
over the pool cores of this two subroutines for VMC calculations using
Scalapack subroutines. The timing results, Table 3, shows an excellent
scaling for the N2 algorithm but little improvement or slight degra-
dation for N2 algorithm which in fact has a much larger weight in the
computation time ( in the last version of CASINO LU computation
of the Slater determinant is call by default every 100,000 time steps).

4 Second parallelism level with OpenMP

The previous study shows that the parallel computation of a config-
uration across processors is rather expensive while the performance
of distributed computation on the same processor is promising. In
phase II HECToR is equipped with quadcore processors and it is ex-
pected that the next stages of the HECToR service will use processors
with higher number of cores or/and shared memory for the processors
belonging to a blade. In this hardware framework the mixed mode
programming is the straightforward option for the implementation of
SLP. OpenMP can be used to accelerate the computation of one con-

11



DC
pool size 1 2 4
System 1 1024 electrons
det O(N3) 12 5.5(1.18) 4.7(0.52)
det O(N?) 94 106(-0.11)  76(0.08)
System 2 1536 electrons
det O(N3) 39 18(1.17)  10(0.90)
det O(N?) 330 344(-0.01) 231(0.14)

Table 3: Computing times in seconds for Slater determinants using Scalapack
over the pool for the recursive algorithm, O(N?), or by LU factorisation,
O(N3). The O(N?) method shows longer times because its number of calls
is a small multiple of N, larger that of the O(N?3) method. In brackets are
the values of the efficiency parameter defined by with Eq (6).

figuration, while keeping separated MPI tasks for separated sets of
configurations.

OpenMP parallelism at loop level in CASINO is relatively easy
to implement as the code contains patterns of nested loops over the
number of electrons for the computation of various physical quantities
which are sums of function that depend on two or more electrons
coordinates.

The OpenMP parallelism is implemented for the inner loops of the
computation. The external loop parallelism, which from a theoretical
point of view should be more efficient, is in practice very hard to
implement with OpenMP for two main reasons:

1. the code uses a buffering algorithm for various quantities to avoid
the repetitive computation of the same quantity but which in-
troduces data dependency,

2. most importantly at the moment, the current implementation
of the OpenMP specifications in the used compilers are strug-
gling to handle procedure calls that use module variables. PGI
and Pathscale compilers have difficulties with module variables
which also can be thread private (this problem disappeared in
PGI at version 8.0.6). GCC compiler (version 4.3.3) crashes dur-
ing compilation if the parallel region is contained in an internal
subroutine (problem solved in version 4.4.0). Sometimes it is
possible to rewrite the code in order to use the implemented
OpenMP specifications, but this kind of solutions are time con-
suming and interferes unnecessarily with the work of the other
developers. Ideally OpenMP at the loop level should not change
the serial code.

12



threads No MP 1 2 4

System 1 1024 electrons

OPO 102 105 73(0.38)  61(0.56)
Jastrow 246 302 216(0 14) 170(0 15)
Ewald 79 78 39(1.03)  20(0.98)
D 49 47 19(1.58)  9(1.48)
Ree 123 114 65(0.89)  40(0.69)
DMC 672 723  481(0.40) 363(0.28)
System 2 1536 electrons

OPO 218 232 166(0.31) 147(0.16)
Jastrow 539 648 470(0 15) 420(0 09)
Ewald 176 176 90(0.96)  46(0.94)
D 178 180  126(0.41) 124(0.15)
Ree 265 249  143(0.85)  84(0.72)
DMC 1542 1654 1154(0.34) 966(0.20)

Table 4: Computing times in seconds for OpenMP SLP algorithm for quad-
core processors for 1, 2 and 4 threads. For comparison the first column shows
timing data of the executable compiled without OpenMP flags. The times
are for the five section of the code that are computed in parallel (OPO, Jas-
trow, Ewald, update of the D matrix, the electron-electron distances R..)
and for the full DMC sector. In brackets are the values of the efficiency
parameter defined by Eq (6) where ¢; is the taken from the first column.

The benchmarks test for the OpenMP parallelism was done on the
same system as in the section 3. However a direct comparison between
the numerical values is not straightforward as the CASINO code has
undergone significant changes between the two measurements, never-
theless one can use the efficiency Eq (6) parameter for a performance
comparison between the two SLP algorithms.

At a first sight two features need to be discussed regarding the
values presented in table 4.

The efficiency of the OpenMP parallel loops varies. There are
sections as Ewald and D for ”System 1”7 which show larger than one
efficiency and a very small overhead. On the other hand the overhead
for the parallel loops in Jastrow sector is very large in both sectors and
the scaling is rather poor. The extreme case of poor scaling is shown
by the computation with four threads of the D for ”System 2” which
shows practically no speed gain, despite the fact that ”System 1”7 has
a perfect behaviour in this case. The main suspect of this variation is
cache memory utilisation as the linear size of D matrix of ”System 2”

13



is 50% larger than that of ”System 1”.

In conclusion, SLP implemented with OpenMP offers better per-
formance than the MPI pool algorithm on the benchmark cases. In
some sectors of the parallel calculation (Jastrow, D) must be investi-
gated further in order to understand the poor scaling. As the compilers
improves in this area and the number of cores per processor increases
the parallel computation should be implement at level of the first loop
over electrons. For nodes with more that 10 cores and models with
very large number of electrons (> 10%) one should consider nested
OpenMP parallelism in order to acquire the best performance.

5 Data input optimisations

We describe briefly the improvements implemented in the input sub-
routines which read various data sets at the beginning of a compu-
tation. The algorithms used are straightforward though laborious to
implement.

CASINO versions older than 2.4 uses ASCII input files to store
BC data. For system with more that 1000 electrons the reading of
this file could take more that 30 minutes which is rather a significant
fraction of the maximum allowed run time (12 hours). If the input
data file is converted to binary format the reading time drops below
30 seconds. Also an MPI-TO version of this file can be used. This is
useful for calculations using MPI-2S algorithm, described in Sec 2, for
only one file is needed to store the BC for any value of the number of
task per group.

Another significant slowdown, of the order of one 60 minutes, was
observed in runs with more that 5000 cores at the reading of the file
config.in. Contrary to the BC data file this file is in binary format, the
long input time was caused by the fact that in the initial algorithm
each task opens the file config.in to read its share of configuration
at the beginning of the calculation. The problem was solved by a
new version of the configurations reading subroutine in which only a
small group of tasks read the file config.in and transfers the data to
the associates tasks via MPI communications. In this new version the
reading time decrease to tens of seconds even when using 40, 000 tasks.

6 Conclusions

The dCSE project ”Improving the parallelisation and adding func-
tionality to the quantum Monte Carlo code CASINO” has achieved
its stated goals. CASINO is now capable to compute more complex

14



40000 + ,
Ve
/7
/7
Ve
Ve

30000 + 7
3 /
2 /!
N id

20000 + A

7
7,
7,
VY
V/
10000 + ¢
0 : : : :
0 10000 20000 30000 40000
Ntasks

Figure 2: Speed versus number of tasks for a CASINO calculation on Jaguar
Cray XTbH at ORNL. The dashed line represents the ideal scaling. Data
produced in June 2009.

physical systems with increased efficiency on the latest generation of
supercomputers.

We summarise the main improvements implemented in the new
version of the code by the dCSE work:

e The System V shared memory solution allows sharing of the
OPO data and therefore each core of a processor can run a com-
puting task even for very large scale models. In quantitative
terms a computation that needs from 2 to 4 GB of OPO data
increases its speed with a factor of 2, with respect to the initial
version of the code, and with a factor of 4 if the size the OPO
data are larger that 4 GB (for quadcore processors).

e The input optimisations have eliminated unnecessary waiting
time for data input which ranged from 30 to 60 minutes sav-
ing in this way from 3000 to 6000 AU per 1000 tasks run.

e The computation using mixed mode second level parallelism in-
creases the computation speed with a factor between 1.8-1.6 for
systems with a more than 1000 electrons using quadcore proces-
sors. The mixed mode parallelism offers the possibility to per-
form calculations for very large systems (about 10 electrons).

The System V shared memory algorithm and the input optimi-
sation have been ported in the release 2.4 of CASINO (July 2009).

15



The CASINO manual was updated with the necessary information
and the Makefile was adapted in order to help users to easily generate
the executable that fits their requirements. The second level paral-
lelism is planed to be available in the 2010 release, meanwhile it can
be obtained upon request from development branches.

An illustration of the performance level reached by CASINO over
the last two years can be seen in Fig 2 which shows that good scaling
was obtained for runs up to 40,000 tasks.

The degradation of scaling for very large number of tasks hints
for the need to improve the configuration redistribution algorithm.
Another extension which is planned in the next dCSE project is the
coupling of CASINO with molecular dynamics codes. This will allow a
much faster computation of the QMC corrections to the system energy
using the correlated samples technique.

References

[1] Kenneth P. Esler et al, Journal of Physics: Conference Series 125
012057 (2008).

S

http://www.tcm.phy.cam.ac.uk/~mdt26/casino2.html

Richard Needs, Mike Towler, Pablo Lopéz Rios, CASINO User’s
Guide (Theory of Condensed Matter Group, Cavendish Labora-
tory, Cambridge, UK, 2008).

M. D. Towler, Phys. Stat. Sol. (B) 243, No. 11, 2573 (2006).
D. Alfe, M. J. Gillan, Phys. Rev. B 70 161101(R) (2004).

The initial code for these functions was provided by David Tan-
quaray, Cray UK.

=

ENRETEE

=)

Unix man pages.

=)

http://www.hector.ac.uk

S. Fahy, X. W. Wang and Steven G. Louie, Phys. Rev. B 42 3503
(1990).

=

16



