
Performance optimisations for CARP: a
dCSE project

Lawrence Mitchell∗

EPCC, The University of Edinburgh, Mayfield Road, Edinburgh EH9 3 JZ

July 27, 2010

Abstract

In this report we describe performance optimisations carried out
on CARP (a cardiac simulation code) as part of an 8 month dCSE
project. We have implemented a parallel mesh decomposition scheme
and asynchronous parallel output that give performance improve-
ments of around 250% for small systems, rising to 1800% for large
simulations. As a result of these gains, a monodomain simulation of
a human heartbeat (1 second activity) is possible in under 5 minutes:
before this work began, the same simulation would take around 75
minutes to complete.

We also detail how further performance gains might be achieved
in the code in response to benchmarking of the newly optimised sim-
ulations.

1 INTRODUCTION

The Cardiac Arrhythmia Research Package (CARP) is a widely-used soft-
ware package designed for large-scale simulation studies of hearts. The
aims of these studies are to provide detailed personalised therapies for
treatment of medical conditions. The areas where incorporation of in-silico
modelling into the clinical workflow are feasible include cardiac resynchro-
nization therapy (for treatment of arrhythmias); drug trials (looking for
possible side-effects); and development of better defibrillators.

∗lawrence.mitchell@ed.ac.uk

1

The simulation requires a model of a heart, typically obtained from
the discretisation of an MRI scan (Bishop et al., 2009), as input. CARP
has been developed to target a number of different architectures. Compile
time options can be used to choose the level (if any) of parallelisation:
a single serial processor; openMP parallelism of some loops; off-loading
some computation onto GPUs; massively parallel MPI. In this project, we
have only considered the MPI-parallel code. Some of the optimisations we
have implemented – most notably the mesh decomposition – should also
be applicable to the other compile-time targets.

1.1 Objectives

Profiling work carried out prior to the start of this project identified two
main areas which we needed to address to allow CARP to run efficiently
on large HPC platforms. The parallel decomposition scheme results in
high levels of load imbalance giving poor performance. Our first objective,
therefore, was to improve the decomposition used. In addition, further
profiling identified the output routines as a signficant bottleneck in simu-
lation of large systems. We therefore also needed to optimise the output
routines for use on thousands of cores.

2 BACKGROUND

2.1 The model

CARP solves the cardiac bidomain equations (Plonsey, 1988) numerically
on a fully unstructured 3-dimensional finite element mesh. The differential
operators are discretised on the mesh and the kernel of the simulation loop
thus becomes the solution of large sparse linear systems of the form

Ax = b. (1)

An operator-splitting approach is applied to the bidomain description
resulting in three decoupled equations. The complete solution is found by
leap-frogging between these decoupled components. The three equations
consist of a linear elliptic PDE, a linear parabolic PDE and a set of non-
linear ODEs. Solution of the elliptic PDE dominates the computational
time (Linge et al., 2009).

2

3 PARALLELISATION STRATEGY

The heart is divided up into a finite number of small sections forming the
input mesh. Each section is referred to as an element and the corners of
the elements are vertices. To form the shape of the heart, each vertex has a
fixed position in space. Although they are somewhat larger, we can think
of the elements as approximating the individual cells that constitute the
heart. The aim of the simulation is to solve for the electrical potential on
each of these elements. This potential causes the contraction of the heart
muscle leading to a heartbeat.

The parallelisation strategy CARP employs is to divide this finite ele-
ment mesh into separate regions. The bidomain equations are then solved
on these regions, data are communicated between these regions which are
each solved on a separate MPI process when necessary. In our linear sys-
tem picture of the problem, this corresponds to storing a subset of matrix
rows and columns locally on each process. Any elements in the matrix out-
with this block-diagonal decomposition will require communication. For
good parallel load balance, the decomposition of the input mesh into sep-
arate regions is crucial. In the next sections, we describe CARP’s existing
decomposition scheme and the new scheme we have implemented.

3.1 Existing decomposition technique

The CARP code currently employs a vertex-based decomposition of the
input mesh. Each process considers a contiguous chunk of vertices to be
local and uses a simple tie-breaking rule to decide if an element is also
local. If there are p processes and N vertices, then process j has a local
set of vertices Vj =

{
jN
p , ..., (j+1)N

p − 1
}

. Each element is defined by a set
of vertices v = {v1, v2, . . . , vn}. An element is considered to be local to a
process j if min v ∈ Vj. This method leads to a very even distribution of the
number of vertices between processes.

Unfortunately, the distribution of elements each process considers to
be local can be very unbalanced with this scheme. Furthermore, this parti-
tioning technique makes no attempt to minimise interface size, leading to
high communication costs on parallel systems. See figure 1 for an example
of the partitioning of a small heart mesh obtained with this scheme.

When we construct the linear systems defined by this mesh, local ver-
tices define the local rows in the sparse matrix. An entry appears at Aij

in this matrix if vertices i and j are in the same element. The unbalanced

3

Figure 1 Original (left, node-based) and new (right, element-based) decomposi-
tions of a simple heart mesh. Different colours indicate elements that are local to
different partitions

element ownership means that some parts of the matrix are much denser
than others; the large interfacial area in the partitioning results in many
off-block-diagonal entries in the matrix. Matrix-vector multiplications us-
ing the partitioning require a large amount of communication. These facts
exhibit themselves as poor parallel load-balance and hence poor scaling
behaviour.

3.2 Repartitioning the mesh

Achieving good load balance requires that we partition the mesh in a more
efficient manner than the existing CARP code. To do this, we employ an
element-based, rather than vertex-based, decomposition technique. Our
aim is to divide the mesh into a set of equal-sized domains, minimising
the interfacial area. This is a graph partitioning problem. We construct the
dual graph of the mesh: each element in the mesh becomes a node in the
graph and each face shared between elements a link (see figure 2). We then
find a minimum cut k-way bisection of this graph.

Finding optimal k-way bisections of graphs is an NP-hard problem
(Garey and Johnson, 1979), and the development of algorithms to approxi-
mate the best solution is an open and active research area. Fortunately for
us, a number of high-quality software libraries exist for partitioning graphs
in this manner. We have chosen to implement an interface to the parallel
library ParMetis (Karypis et al., 2003; Schloegel et al., 2002). Although only
a single library was used, most of our implementation is library-agnostic.
To interface with different libraries such as PT-Scotch (Chevalier and Pel-
legrini, 2008), one must provide a function to translate CARP’s mesh de-
scription into the mesh description required by the library. The code then

4

Figure 2 Simple triagonal mesh (black, circles) and its dual graph (red, squares).
The two shaded regions show a possible balanced bisection of the mesh with the
interfacial vertices surrounded by a dashed line

assumes that this library call returns a distributed vector indicating which
partition each local element should belong to.

3.3 Renumbering the vertices

Once a good partitioning of the mesh has been obtained, we need to do two
things. First, we redistribute the element data based on the new partition-
ing. To do this, on each process we pack a buffer containing the elements
to be distributed to all other processes. These buffers are exchanged with
MPI_Alltoallv. We then unpack the buffer into new element data struc-
tures.

Secondly, we must renumber the vertices according to the new distri-
bution of elements. This is to ensure that processes have a contiguously
numbered set of local vertices. Renumbering the vertices requires a little
thought. As figure 2 shows, vertices on the interface between partitions
could be assigned to more than one possible partition. The interface ele-
ments become more important for load balance as we increase the number
of processes we run the simulation on: the surface-to-volume ratio in-
creases and a good tie-breaking rule for ownership of the interface vertices
is crucial. We have implemented two different renumbering algorithms in
CARP which may be selected by the user at run time.

3.3.1 Simple serial renumbering

This scheme uses a very simple tie-breaking rule, vertices on a boundary
between a set of partitions are always assigned to the lowest-numbered

5

partition. This renumbering scheme is carried out in serial by looping
successively over each process and renumbering as yet unseen vertices se-
quentially. This method has two drawbacks: it typically assigns more ver-
tices to low-numbered ranks than high-numbered ones (due to the choice
of tie-breaking rule); additionally, the algorithm does not scale at all.

3.3.2 Parallel renumbering

To overcome these problems, we have also implemented a parallel renum-
bering scheme that does a better job of balancing the boundary vertices
between partitions. This algorithm is slightly more involved than the se-
rial one, the basic idea is to work out which vertices live on only a single
partition and which are interfacial. We then use a simple heuristic to assign
interface vertices to an appropriate partition.

Let pmin(v) and pmax(v) be the minimum and maximum numbered par-
titions a vertex v appears on. For example, if vertex v appears in elements
on partitions 2, 4 and 7 then pmin(v) = 2 and pmax(v) = 7. This allows us
to find shared (interface) vertices. This heuristic is not perfect: we have
assumed that only two-partition interfaces are important.

On each partition p we now calculate n(p,q) the number of vertices
shared between partitions p and q (p 6 q):

n(p,q) =
∑
{v}

1{pmin(v)}(p)1{pmax(v)}(q) (2)

where

1A(x) =

{
1 if x ∈ A

0 if x /∈ A
(3)

is the indicator function.
Of these shared vertices, partition p owns the first

nmin(p,q) =
⌈np,q

2

⌉
(4)

and partition q owns the subsequent

nmax(p,q) =
⌊np,q

2

⌋
. (5)

6

Each partition p is now able to calculate the number of vertices it owns

nv(p) = n(p,p) +
∑
q>p

nmin(p,q) +
∑
q<p

nmax(q,p). (6)

We now communicate the number of owned vertices between all par-
titions to calculate the starting index of the new numbering on each parti-
tion. On each partition, we then loop over all vertices and renumber those
vertices we own (according to the above rules) linearly. Finally we commu-
nicate the partially filled in remapping vector between all partitions and
renumber the vertices in the element datastructure.

This algorithm requires two calls to MPI_Allreduce, one to MPI_Exscan,
one to MPI_Allgather and one to MPI_Allgatherv. This is in contrast to
the serial (simple) renumbering which requires as many MPI_Send calls
as there are partitions and then one MPI_Bcast. In practice, for a system
with 150 million elements, we find the parallel renumbering takes around
20 seconds (irrespective of number of processes). The serial renumbering
takes around 50 seconds on 256 processes rising to almost 600 seconds
on 8192 processes. As a result, we have made the parallel renumbering
scheme the default option.

4 SOLVING THE SYSTEM

Once the mesh has been read in and partitioned, CARP constructs a sparse
matrix representation of each of the differential equations to be solved. The
bulk of the work in solving these equations is handed off to the parallel
library PETSc (Balay et al., 1997, 2008, 2009). In particular, the elliptic and
parabolic PDEs are solved using preconditioned conjugate gradient. The
ODEs are solved using an explicit method. The parabolic PDE may also
optionally be solved using an explicit method. We elaborate further on this
below. See Bordas et al. (2009) for a recent review of the techniques used
for solution of these equations.

4.1 Performance of the solver

Consider a linear system
Ax = b (7)

with x a vector of N unknowns. If A is symmetric positive definite, the
conjugate gradient method is guaranteed to converge to the correct solu-
tion to this equation in N steps. On a computer, due to the inadequacies of

7

floating point representation, we will never converge to exactly the right
solution. Instead, we stop iterating the method when the difference be-
tween our proposed solution and the “correct” answer is less than some
tolerance t. That is, we iterate until

|r| ≡ |Ax − b| < t. (8)

The number of iterations the algorithm takes to converge is an increasing
function of the condition number of the matrix A (the ratio of the largest to
the smallest eigenvalue). To converge in a small number of iterations, we
therefore want our matrix A to have a small condition number.

Consider the equation
MAx = Mb (9)

where M is a non-singular matrix. This is mathematically equivalent to
equation 7, but may well have different convergence properties on a com-
puter. For example if M = A−1 then MA = I is the identity matrix and
the conjugate gradient method will converge in a single step. The applica-
tion of a matrix M to a linear system of equations to speed convergence is
known as preconditioning.

Ideally, we would precondition the system using M = A−1, since in this
case the solution is immediately obtained. Unfortunately, constructing the
inverse of a matrix is a computationally expensive problem. Furthermore,
the inverse of a sparse matrix is in general dense: if our linear system is
large, we may not have the memory necessary to store the inverse. Instead,
we aim to find a matrix M which is cheap to compute and a reasonable ap-
proximation to the inverse of A while remaining sparse. We precondition
our linear system with this matrix M to decrease the condition number of
the system, decreasing the number of iterations to convergence.

Obtaining good performance for the implicit solvers is therefore a two-
step process. Firstly, decomposing the problem in the correct way to ensure
good load balance. We have described our approach here already. The
next step is to choose a good preconditioner. We cover this in the following
section.

4.2 Preconditioning the elliptic PDE

Multigrid preconditioners have been shown to give good convergence be-
haviour for elliptic PDEs (Stüben, 1999). The idea is to take the fine-grained
problem and coarsen in some specific way to produce a smaller problem.

8

That is, from the linear system Ax = b we produce the coarser system
Acxc = bc which is computationally cheaper to solve. This system is iter-
ated and the solution is then interpolated back onto the original system.
Using multigrid as a preconditioner for solving a linear system works in
a similar manner. We obtain a coarse approximation to the inverse of A
and then interpolate this result onto the original problem size to obtain our
preconditioning matrix M.

For best performance, some kind of geometric multigrid scheme should
be employed. However, these require both significant expertise in numeri-
cal analysis and parallel programming and must furthermore be tailored
to each individual problem (Ainsworth, 2010). Algebraic multigrid (AMG)
methods are an alternative approach which use information in the sparse
matrix to construct the various different coarsened levels, see Stüben (1999)
and Falgout (2006) for detailed introductions to the technique. These are
a more generic solution which trade off performance for generality. A
number of high performance parallel multigrid implementations exist, we
have focused predominantly on that provided by hypre (Falgout and Yang,
2002).

One issue, in particular, that multigrid implementations have on paral-
lel systems is that the coarsening process tends to lead to a relatively dense
matrix. If not in terms of the total number of non-zeros, then certainly in
terms of the process sparsity pattern. As a result, unless parameters are
picked carefully, the coarse matrix multiplication can require alltoall-like
message passing: even if the original matrix is very sparse. Choosing a set
of parameters that give good performance is somewhat problem-specific.

CARP’s parameter set for the hypre AMG preconditioner was previ-
ously selected on a 16 processor system. We have reinvestigated the choices
and have obtained a set of parameters that exhibit better performance on
large systems. The PETSc solvers we use have the option to select at run
time between a large number of different preconditioners. In addition to
selecting a good set of parameters for the hypre AMG preconditioner, we
have also studied the performance of an alternative multigrid implemen-
tation provided by the Trilinos package. In addition we have looked at
the performance of simpler block Jacobi preconditioning. We do not report
full results for these implementations. For our problems, we find that the
Trilinos multigrid preconditioner has the same scaling behaviour but is a
factor of 3 slower than the hypre AMG. The block Jacobi preconditioner
is more scalable than AMG, but does not speed up convergence enough.

9

At low core counts, AMG is much faster (around a factor of 20) than block
Jacobi; for large numbers of cores, the difference is much smaller (only a
factor of 1.5 or so).

We come to the detailed performance results later, the take home mes-
sage is that, for the moment, hypre’s AMG implementation produces re-
sults the fastest. The set of AMG options we have settled on is:

-ksp_type cg

-pc_type hypre

-pc_hypre_type boomeramg

-pc_hypre_boomeramg_max_iter 1

-pc_hypre_boomeramg_coarsen_type HMIS

-pc_hypre_boomeramg_interp_type ext+i

-pc_hypre_boomeramg_P_max 4

-pc_hypre_boomeramg_strong_threshold 0

Although it is recommended to choose a strong threshold somewhat above
0, we have found that for our system, a strong threshold of 0 gives best
absolute performance and does not negatively affect the scaling behaviour
of the code.

As we have mentioned previously, the generic problem with AMG pre-
conditioners is that the coarsening operators can easily produce a compar-
atively dense matrix at the coarse level. This then requires a much larger
amount of communication than a sparser matrix, which hinders the scala-
bility of matrix-vector multiplies. The options we have chosen attempt to
maintain the sparsity of the coarse-level matrices.

4.3 Preconditioning the parabolic PDE

For the parabolic problem, we use a block Jacobi preconditioner and use
incomplete cholesky factorisation to find the approximate inverses of these
blocks. The idea here is to remove the need for communication during the
computation of the preconditioning matrix. Recall that our parallelisation
strategy ensures that process i has ni contiguous local rows of the matrix
A. The diagonal block of size ni × ni is therefore local to a process i. We
throw away non-zeros of A outside this block diagonal structure to form a

10

new matrix

Ã =

A1 0 · · · 0
0 A2 · · · 0
...

...
0 0 · · · An

 . (10)

Where Ai is a sparse matrix of order ni. The inverse of each Ai may be
computed independently to form Ã−1. Since the inverse of a sparse matrix
is in general dense, we do not even compute the full inverse of Ai explicitly.
Instead we use incomplete factorisation, typically this is implemented by
dropping non-zeros such that the sparsity pattern of A−1

i is the same as
that of Ai. Application of Ã−1 to our linear system should require no
communication, since off-diagonal (non-local) elements will be multiplied
by zeros.

Multigrid methods can also be used to accelerate the convergence of
conjugate gradient when applied to parabolic PDEs. Our problem here is
no exception. We have made some numerical studies of the performance
of the same multigrid preconditioner used for the elliptic PDE. Although
the number of iterations to convergence is much lower, the cost of each
individual iteration is very much higher. The accelerated convergence rate
is not enough to overcome this higher cost. As a result multigrid precondi-
tioners give a longer time to solution than the block Jacobi preconditioner
we have settled on.

4.4 Performance of the ODE solve

The ODEs to be solved for CARP are entirely local. They are used to evolve
ion levels at each grid point: this affects the conductivity of the material for
subsequent timesteps. As a result, good load balance just requires that each
process have an equal number of ODEs to solve. In addition, to remove the
need for communication of the results, we require the set of ODE points
to be the same as the local set for the PDEs. The natural solution to these
constraints is just to use the same partitioning of vertices for the ODEs as
for the PDEs. This way we have both good load balance and good data
locality.

4.4.1 Scaling behaviour

Since the ODEs are entirely local and require no communication, they
should scale extremely well. In practice, we found that the scaling perfor-

11

mance was much worse than expected. The reason for this is an example
of why it is imperative to profile to find hotspots, rather than assuming
one knows which parts of a code will be fast.

The data from the ODEs is stored as a distributed vector: the ionic levels
at each vertex. The original code used PETSc routines for setting values
in distributed vectors. On each process, we set values in the distributed
vector, and then call routines to reassemble the data.

VecSetValues(vec, ...);

VecAssemblyBegin(vec);

VecAssemblyEnd(vec);

PETSc allows any process to set any element of a vector, the assembly
calls ensure that the vector ends up in the correct state. To deal with this
generality, the assembly step of the code requires global communication
even if all values have only been set locally. As a minimum, one call to
MPI_Allreduce is required to ensure that all processes agree on how they
are adding values to the vector (insertion of new elements or addition to
existing elements). This has scalability implications at large process counts.
Since we know that these operations are purely local, we can replace the
general PETSc machinery with a more scalable solution. PETSc allows us
to get at the local backing store of a distributed vector, so we can set local
elements by modifying this data. Setting local values is simply:

VecGetArray(vec, &data);

for (i = 0; i < nlocal_rows; i++)

data[i] = value[i];

VecRestoreArray(vec, &data);

This method has none of the scalability problems of the generic version,
and hence as long as we have good load balance, the ODE solve is now
almost perfectly scalable. Figure 3 shows the effect of this change on the
scaling behaviour of the ODE solve.

5 PRODUCING OUTPUT

As we saw in section 4.4, unexpected portions of the code can exhibit
performance problems at scale. In this section we describe the approach
we have taken in fixing another of these issues, namely the output system.

Other than fixing any performance issues, our primary concern in this
set of code modifications is ensuring that end users do not have to change

12

128 256 512 1024 2048 4096 8192 16384

1

2

5

10

20

50

122

Number of cores

S
p
e
e
d
u
p

Original VecSetValues

New VecSetValues

Figure 3 Scaling performance of ODE solver before and after modification to Vec-
SetValues routine. The new version requires no communication and hence scales
significantly better

any of their analysis routine. Changes that make the code run faster are
good, but we have to remain backwards-compatible with existing analysis
tools. Essentially, this means making the output go faster without changing
the file format.

CARP’s output routines were originally written for serial output and
have had parallel output bolted on to them after the fact. Most of the output
consists of writing vectors describing the electrical potential defined on the
grid points to output files. These vectors are written using a gather-to-rank-
zero approach. That is, when output is required, rank zero writes its local
portion of the data and then sequentially receives and writes data from all
other processes. All processes then wait at the end of the output routine.

With this method, the time to write a distributed vector is an increasing
function of the number of processes. The time to write the data to disk is a
constant, but as the number of processes increases the time spent gathering
the data also increases.

To remove this serial bottleneck in the code, we needed to implement
parallel output routines. The distributed vector that we need to output
maps quite nicely onto parallel output using MPI-IO, however, there are
a number of problems with this simple-minded approach that we detail
below.

13

5.1 Output post-processing

Recall that one of our primary aims is to preserve backward compatibility
with the existing output format. Our previous changes to fix the load
balance by repartitioning the input mesh have violated this design decision.
Visualisation of the data requires both the output vectors and the mesh they
were generated on: the ordering of the vector indicates which point the
data are defined on. The ordering of grid points in the repartitioned mesh
is not the same as that on the input mesh. We have two options to solve this
problem. Either, we output the repartitioned mesh for every simulation
run – users then visualise the output data on this repartioned mesh; or, we
map the output data back onto the input mesh before writing it to disk.

Since the repartitioned mesh can in theory be different for every simu-
lation we run, but will hold no new information – it’s just a permutation
of the input – we rejected the first solution detailed above. This leaves us
with mapping the output data back onto the input mesh. This is easily
done, using PETSc’s VecScatter and index set routines, but has a high
communication overhead. In general, this mapping will require all-to-
all communication. This is a communication-dominated bottleneck that
affects the scaling performance. We therefore rejected the idea of imple-
menting parallel output of the distributed vector using MPI-IO. Although
the output itself would be parallel, we would still run into communication
overhead. Instead of this we have implemented an asynchronous output
scheme that blocks the computation significantly less. This output scheme
can be selected by the user at run time. A command-line option can be
used to specify the number of cores to dedicate to output. If zero cores are
dedicated, the original output system is used.

5.2 Non-blocking output

Instead of attempting to parallelise output across all the processes carrying
out computation, we have instead rewritten the output system so that pro-
cesses carrying out computation do not ever write to disk. We dedicate a
small number of processes to output – the exact number may be specified
by the user at runtime. When an output routine is called, the distributed
vector defined on the compute processes is scattered onto the output pro-
cesses. At this point, the compute processes are done and can continue the
simulation.

On the output processes we now map the data back onto its canonical

14

0
1
2
3
4
5

0

1

0

1

Disk

Figure 4 Diagram showing scattering and permutation of a distributed vector. The
vector is computed on six processes which send data linearly to two output processes.
The data is then permuted back into canonical ordering before being output.

ordering before writing it to disk. We have implemented both serial output
(using the existing framework in CARP) and parallel output using MPI-IO.
Figure 4 shows this process schematically.

5.3 A caveat about the implementation

We note that our output scheme is not truly asynchronous. In particular,
although the output nodes aim to pre-post all receives for data, incoming
messages will not be processed in parallel even if the matching receive
already exists. The receive loop in the code looks like this:

for (i = 0; i < nrecv; i++) {

MPI_Irecv(..., i, ...);

}

for (i = 0; i < nrecv; i++) {

MPI_Waitany(..., idx, ...);

do_stuff_with_data(data[idx]);

}

The MPI_Waitany call effectively serialises the receipt of messages, even
if the message buffer is preallocated. If do_stuff_with_data takes a long
time to complete, the processes sending data will wait some time for ACKs
indicating that they can release the buffer and continue (Edwards and Roy,
2010). We note that irrespective of this small issue, the improvement in
IO performance is approximately a factor of 20 on large system. Where
previously IO throughput was around 25MB/s, we now obtain an effective
throughput of around 460MB/s for a simulation on 8192 cores.

Should this serialisation become a problem, there are a few ways we
could address the issue. All of these increase code complexity, and we
have found that with a suitable choice for the number of IO processes

15

the performance is entirely adequate. For completeness, we detail other
potential solutions that could be implemented should the need arise. Since
we are pre-posting all the receives, the natural thing to do on the send
side is to use a ready send rather than a standard send. Since in this case
the receive is guaranteed to exist, the MPI implementation can potentially
optimise the call. There is, however, a problem with this idea. Since the
output is initiated on the compute nodes, we cannot guarantee that receives
will be pre-posted unless sending an additional message from.

A option for removing the need for a message ACK is to use non-
blocking sends. Our compute nodes keep track of the status of this message
and MPI_Wait on it at the beginning of the output routine. This method, too,
has drawbacks. We have to copy the data into a temporary buffer so that it
is not overwritten by the continued computation steps.

6 PERFORMANCE RESULTS

6.1 Fixing trivial code “bugs”

It is worth mentioning that all the improvements detailed previously have
had approximately the same cumulative effect as a one-line code change
we have previously not mentioned. Again, this is an example of needing to
profile code religiously to find hotspots: often in the most unlikely places.

When carrying out some initial profiling runs, we found a routine that
just printed some progress statistics was taking an inordinately large por-
tion of the runtime for large jobs. The problem was a bad interaction
between the way progress statistics were printed and the filesystem imple-
mentation. Each process would enter the progress function and call

fprintf(stats, ...);

fflush(stats);

The fflush call being used so that on a workstation the user will always see
up-to-date progress statistics. On HECToR, this had a terrible interaction
with the Lustre filesystem. Output was effectively serialised and all other
processes would block at the call. Since on a large parallel machine there
is no need to view the progress statistics in real time, we removed the
fflush call. Furthermore, since the statistics were identical on all processes,
we now just have a single process printing statistics. Table 1 shows the
fraction of time spent in output routines before and after this change for
the OxfordHeart system described in section 6.2.

16

Table 1 Effect of removing global flush in output of iteration statistics. We show
the fraction of total simulation time spent in output before and after the change

Cores Before After
32 0.018 0.016
64 0.081 0.03

128 0.15 0.081
256 0.16 0.057
512 0.18 0.058

1024 0.23 0.049
2048 0.5 0.052

6.2 Benchmarked systems

We present results from three different systems. The first, TBunnyC1, is a 3-
D mesh of a rabbit heart with 862 515 vertices and 5 082 272 elements. The
second system, OxfordHeart2, is a more detailed 3-D mesh of a rabbit heart
with 6 901 583 vertices and 40 992 163 elements (Bishop et al., 2009). The
final system, HumanHeart3, is a 3-D mesh of a human heart with 26 190 199
vertices and 152 891 134 elements.

For the TBunnyC and OxfordHeart models, we solve the full set of
bidomain equations: elliptic and parabolic PDEs as well as the ODEs. For
the HumanHeart model, we only solve the monodomain equations: just
the parabolic PDE and ODEs. The elliptic problem is by far the most
computationally expensive and would take too much time to benchmark
and run for the HumanHeart system.

6.3 TBunnyC data

Figure 5 shows the scaling behaviour of the original and new CARP code.
Where previously the code would scale to 64 processes, it now reaches
256. Relative to the original code, we have achieved a speedup of 2.5 in
the minimum execution time for a simulation (on 256 as opposed to 64
processes). Notice that the scaling regime of the elliptic and parabolic PDE
solvers is extended by a factor of around four (from 64 to 256 processors).
ODE is scaling, as expected, is good for all codes. Good scaling behaviour
of the ODE solver relies purely on there being an equal number of ODEs
to solve on each processor since there is no communication required. Both

1Data provided by G. Plank
2Data provided by M. Bishop and G. Plank
3Data provided by S. Niederer and N. Smith

17

Unpartitioned elliptic solve

Repartitioned elliptic solve

Unpartitioned parabolic solve

Repartitioned parabolic solve

4 8 16 32 64 128 256 512

1

2

5

10

23

S
p
e
e
d
u
p
 r

e
la

ti
ve

 t
o
 u

n
p
a
rt

it
io

n
e
d
 c

a
s
e

Number of cores

Speedup of ODE solve

4 8 16 32 64 128 256 512

1

2

5

10

20

50

92

4 8 16 32 64 128 256 512

1

2

5

10

17

Unpartitioned total speedup

Repartitioned total speedup

Number of cores

Figure 5 Speedup curves for the TBunnyC model. The left panel shows the ad-
ditional speedup gained for the elliptic and parabolic solvers by repartitioning the
input mesh. The ODE solve (top right panel) shows good linear speedup irrespective
of the partitioning scheme used. The bottom right panel shows the total speedup
gains for the whole simulation

the original CARP partitioning and our new partitioning scheme satisfy
this requirement.

6.4 OxfordHeart data

We expect to see slightly more scaling for the original code here, just be-
cause the system is larger than the TBunnyC mesh. This is indeed the
case. However, we see roughly the same pattern (figure 6). The scaling
of the elliptic and parabolic solvers, which are not well load-balanced in
the original code, is poor (compared to the ODE scaling). With good mesh
partitioning and the addition of asynchronous output routines, the code
scales to around four times as many processes with reasonable efficiency.
There is also an absolute speedup over the original code of around a factor
of three when run on the same number of processes. The speedup of the
total simulation relative to the original code is around 740%.

6.5 HumanHeart data

Finally we look at the performance of the HumanHeart system. To the
best of our knowledge, this particular model has around twice as many
unknowns as the current largest studied model (Niederer, 2010). CARP

18

Unpartitioned elliptic solve

Repartitioned elliptic solve

Unpartitioned parabolic solve

Repartitioned parabolic solve

32 64 128 256 512 1024 2048

1

2

5

10

20

36

S
p
e
e
d
u
p
 r

e
la

ti
ve

 t
o
 u

n
p
a
rt

it
io

n
e
d
 c

a
s
e

Number of cores

Speedup of ODE solve

32 64 128 256 512 1024 2048

1

2

5

10

20

50

88

32 64 128 256 512 1024 2048

1

2

5

10

20
29

Unpartitioned total speedup

Repartitioned total speedup

Number of cores

Figure 6 Speedup curves for the OxfordHeart model. The left panel shows the
additional speedup gained for the elliptic and parabolic solvers by repartitioning the
input mesh. The ODE solve (top right panel) shows good linear speedup irrespective
of the partitioning scheme used. The bottom right panel shows the total speedup
gains for the whole simulation

allows solution of the parabolic PDE through two different methods. The
first is an implicit Krylov solve using conjugate gradient. The second is an
explicit solve, just requiring matrix-vector products. The explicit solution
method requires both less computation and communication per timestep.
The Krylov solve needs collectives to calculate dot products. However,
to preserve the stability of the solution, we must reduce the integration
timestep. Typically by a factor of five. So each step is less expensive,
however, we need to carry out about five times as many steps. Despite
these extra steps, we have found that the explicit parabolic solve is faster
than the implicit solve, and moreover scales to larger core counts. Figure
7 shows the performance of the original code along with the new code
on the HumanHeart. Where previously the scaling topped out at around
1024 cores, the code now scales with good parallel efficiency to 16384 cores.
Mapping these speedups onto real-world timings, the original code would,
at best, take 72 minutes to simulate 1 second of activity. The new code now
takes around 4 minutes, a speedup of 1800%. This naturally opens up new
avenues of research. Computational studies that would previously take
weeks of compute time can now be carried out in days.

19

128 256 512 1024 2048 4096 8192 16384

0.73

1

2

5

10

20

50
63

Number of cores

S
p
e
e
d
u
p
 r

e
la

ti
ve

 t
o
 u

n
p
a
rt

it
io

n
e
d
 c

a
s
e

Unpartitioned explicit solver

Repartitioned (inline output) explicit solver

Repartitioned (async output) explicit solver

Repartitioned (inline output) implicit solver

Figure 7 Speedup curves for the HumanHeart model. In all cases, we show the
speedup of the total simulation, rather than just that of the solver. Note the im-
provement in scaling both from repartitioning and introduction of asynchronous
output

6.6 Performance on HECToR phase 2b

The phase 2b configuration of HECToR, a Cray XT6, has 24 cores per node
arranged in two 12-core sockets, each with two 6-core chips. As of writing,
the network configuration is the same as on the phase 2a machine. Each
node is connected via a Cray Seastar2+ chip in a 3-dimensional torus. For
a pure MPI code, this effectively means a 6-fold increase in the number of
messages through each network chip over an equivalent job on the XT4. If
the communications were predominantly collective, we might hope that
the vendor MPI implementation would coalesce messages on an SMP node,
in which case we would see a performance gain: fewer messages of a
larger size typically win. For our application, most of the communications
are point-to-point, so the MPI implementation cannot do any message
coalescence.

The upshot of this network bottleneck is that we see much poorer per-
formance on the XT6 than the XT4. The HumanHeart benchmark which
shows good scaling behaviour to 16k cores on the XT4 does not scale much
past 1500 cores on the XT6. We note that this is entirely due to the network
performance. Underpopulating nodes so that the only 4 cores per node are
used on the XT6 (giving the same number of cores-per-network chip as the
XT4) results in entirely identical performance and scaling behaviour. As a

20

result, we are hopeful that the upgrade in late 2010 to a Cray XE6 (upgrad-
ing the Seastar2+ network chips to Gemini) will restore performance and
scaling behaviour to that seen on the XT4.

7 FUTURE WORK

The performance improvements we have made to the CARP code have
allowed for much better scalability, allowing simulation of systems that
were previously too time-consuming to study. These improvements have
revealed areas in the code that will require further work to fully exploit the
performance increases.

7.1 Fully parallelising all data structures

The current CARP code has distributed data structures for elements in the
finite element mesh, but the data defined on vertices is stored in replicated
data. That is, each process has a complete copy of the vertex data. Al-
though for the systems currently under study this lack of parallelisation
has not been an issue, it is clearly not a scalable solution when moving to
larger, more detailed meshes. For a cellular resolution mesh, with around
260 million elements and 40 million vertices, the replicated vertex data is
minimally 900MB, this increases when partitioning is performed: we have
to store further data structures mapping between intra- and extra-cellular
vertex lists. In the phase 2b configuration of HECToR, we have already hit
a memory wall with this scheme, since only 1.3GB are available per core.

The correct way to address this is to make the vertex datastructures
distributed in a similar way to the elements. This requires a bit of thought
to avoid excessive communication. We need to store the set of vertices
that are local to a processes elements. This will necessitate storage of some
ghost points for interface vertices, but should make the data size for ver-
tices scalable with the number of cores.

7.2 Solving the Purkinje system

In addition to simulating electrical activation in the bulk of the heart, for
more realistic models it is also necessary to take into account the effects of
the Purkinje network (Deo et al., 2008). This is a one-dimensional network
of highly-conducting fibers that are electrically isolated from the bulk of the
heart tissue, they are only connected at some termination points. Electrical
activations travel along these fibers much faster than in the bulk, and lead
to secondary activations in the ventricles.

21

The Purkinje system is smaller, and has many fewer degrees of freedom
than the complete heart mesh. As a result, distributing the data across all
computational processes would not result in good scalability.

7.3 Parallel data analysis

With larger simulations possible, the amount of data that can be acquired
also increases. As a result, analysis of the datasets on desktop computers
becomes more and more difficult. Parallel data analysis tools are likely
required. This will likely require a move away from CARP’s existing
home-grown data formats to leverage existing visualisation tools such
as Paraview. The VTK file formats do not allow for easy specification
of 4-dimensional (space + time) datasets: the spatial structure has to be
re-specified for every timestep, which is bad if it does not change. How-
ever, we note that Paraview understands the XDMF4 data format which
allows attaching multiple scalar or vector properties to a fixed structure.
This would allow for 4-dimensional datasets similar to the ones CARP
currently uses.

7.4 Prospects of further performance gains

With hetereogeneous (GPU + CPU) compute blades becoming a reality
– Cray’s roadmap for high end systems includes GPU accelerators – of-
floading some of the computationally expensive aspects to a GPU is a
possibility. CARP is already capable of solving the ionic models (ODEs)
on GPUs when compiled for serial execution. To assess the feasibility of
such an approach in a distributed memory environment, we need to con-
sider the ratio of computation to communication. It makes no sense to
speed up the solver if all the time is spent communicating data. to that
end, we have performed some measurements of the ratios of compute to
communication time in the time-intensive Krylov solve part of the code.
Our results indicate that the compute part is well-balanced, and scales well.
The communication does not perform as well. In particular, we need fast
collectives for testing the convergence of the Krylov iterations. In table
2 we show the ratio of computation to communication in the elliptic and
parabolic solve steps of a simulation with the OxfordHeart dataset. For the
elliptic solve, we find that most of the communication time is waiting for
point-to-point messages to complete in the sparse matrix-vector multiplies.
For the parabolic solve, most of the communication time is waiting for

4http://www.xdmf.org

22

allreduce calls to complete (checking for convergence of the Krylov solve).
This suggests that we may be able to extract more performance from the
parabolic solve if we have faster MPI collectives. Squeezing more perfor-
mance from the elliptic solve at high core counts is likely to be much harder.
Accelerating the computation at lower core counts using GPUs may well
be a more profitable direction to take.

Table 2 Ratio of computation to communication for the computationally expensive
elliptic and parabolic solvers when simulating the OxfordHeart system.

Cores Elliptic Parabolic
128 3.42 4.94
256 1.48 3.18
512 0.53 1.56

1024 0.22 0.92
2048 0.07 0.35

8 CONCLUSIONS

The original aims of this project were to improve the strong scaling be-
haviour of the CARP code through better parallel decomposition and im-
plementation of better parallel output schemes. Both of these aims have
been fulfilled. The performance gains for large systems have matched
the aims set out in the original project proposal. Simulation of a human
heartbeat is now possible in under 5 minutes.

The results of this work have now been merged back into the central
CARP repository and are now available to users worldwide. Dissemina-
tion of the work and results is ongoing, a paper was presented at CUG
2010 and a submission to PNAS is in preparation. A further paper on the
work will be presented at VPH 20105.

ACKNOWLEDGEMENTS

This work has been funded by a distributed CSE grant from EPSRC admin-
istered by NAG Ltd. Gernot Plank provided much useful direction and
advice. The datasets for benchmarking were kindly provided by Martin
Bishop and Gernot Plank (University of Oxford) and Steven Niederer and
Nicholas Smith (University of Oxford).

5http://www.vph-noe.eu/vph2010

23

REFERENCES

M. Ainsworth. Personal communication, 2010.

S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith. Efficient management
of parallelism in object oriented numerical software libraries. In E. Arge,
A. M. Bruaset, and H. P. Langtangen, editors, Modern Software Tools in
Scientific Computing, pages 163–202. Birkhäuser Press, 1997.

S. Balay, K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Kne-
pley, L. C. McInnes, B. F. Smith, and H. Zhang. PETSc users manual.
Technical Report ANL-95/11 - Revision 3.0.0, Argonne National Labora-
tory, 2008.

S. Balay, K. Buschelman, W. D. Gropp, D. Kaushik, M. G. Knepley,
L. C. McInnes, B. F. Smith, and H. Zhang. PETSc Web page, 2009.
http://www.mcs.anl.gov/petsc.

M. J. Bishop, G. Plank, R. A. Burton, J. E. Schneider, D. J. Gavaghan, V. Grau,
and P. Kohl. Development of an anatomically detailed mri-derived rab-
bit ventricular model and assessment of its impact on simulations of
electrophysiological function. Am J Physiol Heart Circ Physiol., 298(2):
H699–718, 2009.

R. Bordas, B. Carpentieri, G. Fotia, F. Maggio, R. Nobes, J. Pitt-Francis, and
J. Southern. Simulation of cardiac electrophysiology on next-generation
high-performance computers. Philosophical Transactions of the Royal Soci-
ety A, 367:1951–1969, 2009. doi: 10.1098/rsta.2008.0298.

C. Chevalier and F. Pellegrini. PT-Scotch: a tool for efficient parallel graph
ordering. Parallel Computing, 34:318–331, 2008. doi: 10.1016/j.parco.2007.
12.001.

M. Deo, P. Boyle, G. Plank, and E. Vigmond. Role of Purkinje system
in cardiac arrhythmias. In Engineering in Medicine and Biology Society,
2008. EMBS 2008. 30th Annual International Conference of the IEEE, pages
149–152, 20-25 2008. doi: 10.1109/IEMBS.2008.4649112.

T. Edwards and K. Roy. Using I/O servers to improve application perfor-
mance on Cray XTTM technology. In Cray Users Group Meeting (CUG)
2010, Edinburgh, Scotland, 2010.

24

R. D. Falgout. An introduction to algebraic multigrid. Computing in Science
and Engineering, 8:24–33, 2006.

R. D. Falgout and U. M. Yang. hypre: a library of high performance pre-
conditioners. In P. M. A. Sloot, C. J. K. Tan., J. J. Dongarra, and A. G.
Hoekstra, editors, Computational Science – ICCS 2002, volume 2331 of
Lecture notes in computer science. Springer, 2002.

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman, 1979.

G. Karypis, K. Schloegel, and V. Kumar. ParMETIS: parallel graph par-
titioning and sparse matrix reordering library. University of Minnesota,
version 3.1 edition, 2003. URL http://glaros.dtc.umn.edu/gkhome/

metis/parmetis/overview.

S. Linge, J. Sundnes, M. Hanslien, G. T. Lines, and A. Tveito. Numerical
solution of the bidomain equations. Philosophical Transactions of the Royal
Society A, 367:1931–1950, 2009. doi: 10.1098/rsta.2008.0306.

S. Niederer. Personal communication, 2010.

R. Plonsey. Bioelectric sources arising in excitable fibers (Alza lecture).
Annals of Biomedical Engineering, 16:519–546, 1988.

K. Schloegel, G. Karypis, and V. Kumar. Parallel statis and dynamic multi-
constraint graph partitioning. Concurrency and computation: practice and
experience, 14:219–240, 2002. doi: 10.1002/cpe.605.

K. Stüben. Algebraic multigrid (AMG): an introduction with applications.
Technical Report 70, GMD – Forschungszentrum Informationstechnik
GmbH, 1999.

25

