

1

Cloud and Aerosol Research on Massively-

parallel Architectures (CARMA)

Jon Gibson

Numerical Algorithms Group Ltd,

Wilkinson House, Jordan Hill Road, Oxford OX2 8DR, U.K.

e-mail: support@nag.co.uk

28th February, 2013

Abstract

This report presents the work carried out on the project “Cloud and Aerosol Research on

Massively-parallel Architectures”, or CARMA for short. This was a one year distributed

Computational Science and Engineering (dCSE) support project, part of the CSE support for

HECToR [1], the UK’s national academic supercomputing service. The report first describes

the work carried out implementing a parallel iterative solver within the Met Office Large Eddy

Model (LEM). The primary purpose of this new approach, as an alternative to the FFT-based

solver, is that of enabling new science by losing the requirement for lateral periodic boundary

conditions. It then describes the parallelisation of the code ACPIM (Aerosol-Cloud-

Precipitation Interaction Model), a process-scale model for studying the growth and evolution

of cloud from aerosols. The PI’s of the project were Alan Gadian of the University of Leeds

and Paul Connolly of the University of Manchester.

Table of Contents

1. Application Overview: The LEM Code ... 2

1.2. The Pressure Calculation .. 3

1.3. The LEM Software .. 3

1.4. Parallel Decomposition of the Domain .. 4

2. Application Overview: ACPIM ... 4

3. Outline of the Project .. 5

4. The Parallel Iterative Solver .. 6

4.1. The BiCGStab Algorithm ... 6

4.2. Parallel BiCGStab .. 7

4.3. The Implementation .. 7

4.4. Code Verification .. 9

4.5. Code Optimisation ... 9

2

5. Parallel ACPIM ... 10

6. Summary ... 10

7. Acknowledgements ... 10

8. References .. 10

1. Application Overview: The LEM Code

The Large Eddy Model (LEM) code has been developed by the Met Office as a high

resolution numerical model used to simulate cloud-scale and micro-scale atmospheric

processes, such as aerosol-cloud interactions. It implements modified Navier-Stokes

equations with parameterisations for turbulence, microphysical processes and radiation. The

software is also widely used by the scientific community outside the Met Office and is

documented in [2], [3] and [4].

1.1. Basic Equation Set

As explained more fully in [3], the LEM solves the following basic equation set, shown using

tensor notation. These equations are integrated over time using a centred-difference

scheme.

(

)

 (1)

() (2)

 (

)

 (

)

 (3)

 (

)

 (4)

where

 denotes a reference state of

 denotes a perturbation from the reference state of
u is the vector flow velocity

 is the potential temperature

 represents all other scalar variables

 is the pressure

 is the density

 is the buoyancy

 is the subgrid stress

 is the subgrid scalar flux of

 is the subgrid scalar flux of

 is the Earth’s angular velocity (f-plane approximation)

 is the alternating pseudo-tensor

3

(

)

 is the source term of due to microphysics

(

)

 is the source term of due to radiation

(

)

 is the source term of qn due to microphysics

and

 (5)

1.2. The Pressure Calculation

Calculation of the pressure term in equation (1) requires the solution of a Poisson-like elliptic

equation:

[

()]

() (6)

where

 (7)

This can be solved by performing a Fourier transform in the horizontal to eliminate the

and operators, solving the resulting equations using a tridiagonal solver and then

applying a reverse Fourier transform to recover . This method was the only one

implemented in the code prior to this project.

1.3. The LEM Software

The software is documented fully in [4] but it is worth mentioning a few aspects of the code

here to put it in a proper context. The code is mainly written in Fortran 77 but with a few

Fortran 90 features. All memory is statically allocated. The message passing is written using

a library called GCOM [5][6], a wrapper around a wrapper (called MPL) around a small

subset of the MPI library. The original idea was that the same GCOM calls could equally

interface to MPI [7], PVM [8] or SHMEM [9] libraries at a lower level, allowing the user to

easily switch between them. However, given that MPI tends to be used universally now, the

fact that GCOM only allows the programmer to access a small subset of the overall

functionality of MPI, makes it more of an obstacle to efficient programming than anything

else (not only is the entire MPI 2 functionality absent but much of MPI 1).

The approach to version control is equally archaic. It uses a system called the nupdate

source code manager [10]. The source code under this system consists of decks (.dk files)

and comdecks (.cdk files), which are processed by running the nupdate command to

produce the Fortran source code. The comdecks, consisting of variable and common block

declarations that are common to a number of decks, get inlined in the source code during

the processing. Any modifications to the source code need to be made by writing an update

file, which is processed along with the other files.

4

Jobs can be submitted by the user using the lemsub script, which via the use of nupdate, a

default info file, a machine info file, a machine-specific run script and a makefile, updates,

transfers files to the run directory, compiles and submits a job to the batch system. This

initial job is referred to as a set-up job. A job can be set up so as to submit a follow-on job,

referred to as a chain job, upon completion and to continue to do so until a certain point is

reached in the simulation.

1.4. Parallel Decomposition of the Domain

The problem domain is made up of IIPJJPKKP grid-points. The LEM integrates the field in

a succession of 2D slices in the y-z plane, moving along the x-direction. Integration of the

model equations only requires information from up to two grid-points away so the domain

can be decomposed into sub-domains with overlapping halo regions. Figure 1, taken from [4],

illustrates how the domain is decomposed in the x-direction so that each PE holds IIP/NPES

slices, along with a two-slice halo region for each neighbouring sub-domain.

Figure 1: The LEM’s domain decomposition. Part (a) shows a single processor run. The halo slices implement the periodic
boundary conditions (i.e. slice -1 is a copy of slice IIP-1, slice 0 is a copy of slice IIP, etc). Part (b) shows this same
configuration run on four processors, with halo slices now also providing the continuity between neighbouring
processors (i.e. slices IIPEP+1 and IIPEP+2 on PE 0 are copies of slices 1 and 2 on PE 1, etc).

2. Application Overview: ACPIM

The Aerosol-Cloud-Precipitation Interaction Model (ACPIM) has a modular framework and

has been developed and validated at the University of Manchester and the world leading

AIDA cloud chamber facility at the Institute for Meteorology and Climate research in

Germany through EU activities. ACPIM’s primary use has been as a detailed process-scale

model for studying the growth and evolution of cloud from aerosols. This was a serial code

written in C.

5

3. Outline of the Project

The following objectives are taken from the original proposal.

Objective 1 - to update the LEM pressure solver with faster, parallel FFT libraries for

better operation on HECToR

The first way of solving the Poisson equation is to use a Fast Fourier Transform numerical

algorithm to eliminate the two horizontal spatial derivatives in the Poisson equation, leaving

a second order ODE to be solved at each point on the horizontal grid. This can be solved by

first discretising the ODE over three vertical grid points and then solving by matrix inversion

using a tridiagonal solver. A reverse Fourier Transform is then needed to transform the

pressure frequency modes back to atmospheric pressure. Currently the LEM uses, serial

FFT solver, but in this work we will implement a parallel version such as FFTW for

optimisation on HECToR. This method of solution is fast, but has the limitation that solutions

must have periodic boundaries, which is useful in some cases but not others. Iterative

solvers do not require periodic boundaries.

Objective 2 - to implement a parallel iterative pressure solver within the LEM for better

operation on HECTOR

A second way of solving the Poisson equation is by iterative methods. The GKRES and

GMRES methods have been shown to be efficient and also do not have the limitations that

the boundary conditions be periodic. In the US, use of MP architectures has led to the need

to look at iterative solvers to solve the Poisson equation. A GCR(k)-multigrid solver for the

anelastic equations of atmospheric flow, is first proposed by Thomas & Smolarkiewicz,

(1997), Copper Mountain Conference on Multigrid Methods, http://www.mgnet.org/mgnet-

ccmm97.html). This is based on a non-oscillatory forward-in-time (NFT) discretisation of the

equations with a non self-adjoint operator (Smolarkiewicz & Margolin 1997, Atmos Ocean,

35,127-157), and spectral pre-conditioners are shown to improve the efficiency (Thomas SJ,

et al Mon. Wea. Rev 131(10): 2464). These papers present the underlying philosophy and

approach. We propose to adapt is the GMRES approach (Allen 2007, Atmos Sci. Letters,

DOI , 10.1002/asl.145) Allen compares several methods. An advantage of the GMRES

approach is that it is consistent with the UK MO Blasius model, and is already implemented,

albeit in vector mode only. Again a pre-conditioner scheme will be implemented for improved

efficiency. Presentations and discussions will occur with the UK Met office Scientists when

completed, and this approach will have the advantage that the code will be available for use

in the UK MO and, when approved be available to all other users of the Met Office LEM

model.

The FFT and iterative solver implementation will require 9 man months of support. This will

be spent mostly on implementation of the new iterative solver routines.

Objective 3 - to parallelize the ACPIM model for operation on HECTOR

The main difficulty here is coding the MPI so that good scalability is achieved.

6

4. The Parallel Iterative Solver

The largest part of the project involved implementing a parallel iterative solver to solve for

pressure, as an alternative to the FFT-based method. The primary advantage this technique

holds is that it does not require lateral periodic boundary conditions and so extends the

science that the LEM is capable of investigating. The iterative solver will be solving an

equation of the form of Poisson’s equation, i.e.

 (8)

A number of techniques were considered and three alternatives were implemented:

BiCGStab, GMRES and GCR. Comparison clearly showed that the most efficient algorithm

to use here was BiCGStab, the BiConjugate Gradient Stabilized method. This agreed with

advice from the Met Office [11].

4.1. The BiCGStab Algorithm

If we define such that then we are solving . The algorithm is as follows.

1. Set the parameters TOL and ITMAX, the stopping tolerance and the maximum

iteration count respectively.

2. Compute the scale factor for the error, (√)

3. Compute the initial residual, for an initial guess

4. Initialise ̅ ; and

5. DO i = 1, ITMAX

a. ̅

b. (

) (

)

c. []

d. solve ̂

e. ̂

f.

 ̅

g.

h. solve ̂

i. ̂

j.
 ̂

k. ̂ ̂

l. ̂

m. Check the residual for convergence: IF (
√

) THEN exit the loop

6. END DO

For the calculations of the form in steps 3, 5e and 5i, we assume a 7-point stencil and

use the following finite-difference relation:

7

 ()

 ()

 ()

 ()

 ()

 ()

 (

) ()

(9)

where , and represent the distances to the neighbouring grid-points in the x, y and z

directions respectively. Note that in the LEM, the grid spacing is constant in the x and y

directions but can vary as we move in the z direction.

Steps 5d and 5h use a preconditioner. The Jacobi method was chosen [11]:

()

(∑

()

) (10)

In the code, the number of iterations of the preconditioner is set by the parameter PREITS.

4.2. Parallel BiCGStab

For the parallel BiCGStab, we assume the same decomposition along the x-direction that the

rest of the LEM uses. This means that the calculations of the form of , shown in

Equation 9, require halo exchange between neighbouring processes. Steps 2, 5a, 5f, 5j and

5m include the calculation of dot products, which require a global sum across all the

processes. Apart from these things, the other operations required by the algorithm are local.

For the time being, periodic boundary conditions have been assumed in the x and y

directions, although alternative methods could be used. The pressure at the boundaries in

the z direction is set to zero.

4.3. The Implementation

The iterative solver has been added to version 2.4 of the LEM. The following files have been

added to the source code. All the deck files contain a single procedure with the same name

as the file but without the .dk extension. They are all subroutines apart from INNER_PROD,

which is a function.

 POISSON_ITERATIVE.dk – solves the Poisson equation for pressure by calling the

iterative solver. This is equivalent to POISSON.dk, which uses FFTs to solve the

Poisson equation.

 SET_MAT_A.dk – sets the values of the matrix A such that

 BICGSTAB.dk – an iterative solver using the BiCGStab method. After some

experimentation, the parameters ITMAX, TOL and PREITS were set to 999, and

1, respectively. It is not expected that the user will want to adjust them but, if

necessary, their values can be changed by editing this file.

8

 PRECOND.dk – the Jacobi preconditioner, performing PREITS iterations.

 CALC_Ax.dk – calculates

 INNER_PROD.dk – finds the inner product of two arrays whose values are

distributed across all the processes

 SOLVER.cdk – a comdeck containing variables related to the iterative solver

The following source code file, present prior to the iterative solver, has been updated:

 NNSTEPS.dk – this file now contains an #ifdef#else#endif structure to be resolved

by the pre-processor. If the macro ITERATIVE_SOLVER is defined then the

subroutine POISSON_ITERATIVE is called; otherwise, POISSON is called, as it is in

the standard version of the LEM.

The following two files, also present in the source code directory, have been updated to

include the additional files:

 deck.lst – contains a list of the “decks” to be processed by nupdate.

 comdeck.lst – contains a list of the “comdecks” to be processed by nupdate.

Figure 2 illustrates the relationships between the various routines in the parallel iterative

solver:

Figure 2: A call graph of the routines used by the parallel iterative solver.

NNSTEPS

POISSON_Iterative

SET_MAT_A BiCGStab

PRECOND

CALC_Ax

INNER_PROD

9

4.4. Code Verification

The correct operation of the iterative solver has been verified using a test code in the

following way:

1. Generate a set of known pressure values,

2. Calculate the input source terms using

3. Call the iterative solver with as the input.

4. Check that this gives us back our original set of pressure values,

4.5. Code Optimisation

The CrayPat profiling tool and the output from the compilers were used to optimise the

performance of the code, mainly by improving cache re-use. The approach taken to the

communication in the iterative solver is more efficient than that used elsewhere in the code,

which could really do with some re-writing. Through profiling, it also became apparent that

non-blocking communication would give improved performance in the halo exchange. Since

this basic feature of MPI is absent from GCOM, the intermediate MPL library is called

directly where it is needed.

4.6. Code Performance

Figure 3 show the scaling of the code with the iterative solver on phase 1 of HECToR.

Figure 3: A graph of runtime (seconds) against number of MPI processes for the LEM code with the iterative solver on
phase 1 of HECToR. Linear scaling is shown for comparison.

0

500

1000

1500

2000

2500

3000

3500

4 8 16 32

LEM code

linear

10

5. Parallel ACPIM

The code contains two main loops. The outer one is over time and the inner one is over the

set of air parcels that move within a 1D column. This set of parcels can be divided amongst

the processes of the MPI job. There is no communication between these parcels but their

data does have to be gathered onto a single root process once every timestep in order to

output the data to a file and to carry out the advection and sedimentation calculations. The

amount of parallelism is limited by the number of parcels in the simulation, which is often of

the order of 20 to 30.

6. Summary

The project successfully added an iterative solver to the Met Office LEM code. This removed

the need for periodic boundary conditions which were previously made necessary by the use

of FFTs. This enabled the code to be used in new areas of research.

The project also parallelised the code ACPIM, again opening up new areas of investigation.

The third goal of the project was to replace the FFT routines in the LEM code by calls to the

FFTW library. This was not carried out. This was the least important of the objectives and it

was decided to drop this due to the time needed by other parts of the project, as well as the

fact that because of the way FFTW is licensed (GNU GPL), it would not be appropriate to

incorporate these changes into the main Met Office code.

7. Acknowledgements

This project was funded under the HECToR Distributed Computational Science and

Engineering (CSE) Service operated by NAG Ltd. HECToR - A Research Councils UK High

End Computing Service - is the UK's national supercomputing service, managed by EPSRC

on behalf of the participating Research Councils. Its mission is to support capability science

and engineering in UK academia. The HECToR supercomputers are managed by UoE

HPCx Ltd and the CSE Support Service is provided by NAG Ltd. http://www.hector.ac.uk

8. References

[1] http://www.hector.ac.uk/cse/

[2] M. E. B. Gray and J. Petch, “Version 2.3 Of The Met Office Large Eddy Model: Part I.

User Documentation”

[3] M. E. B. Gray et al, “Version 2.3 Of The Met Office Large Eddy Model: Part II.

Scientific Documentation”

[4] M. E. B. Gray et al, “Version 2.3 Of The Met Office Large Eddy Model: Part III.

Software Documentation”

[5] Jørn Amundsen and Roar Skålin, “GC User’s Guide Release 1.1”, SINTEF Applied

Mathematics, October 16, 1996.

http://www.hector.ac.uk/

11

[6] Jørn Amundsen and Roar Skålin, “GCG User’s Guide Release 1.1”, SINTEF Applied

Mathematics, October 16, 1996.

[7] http://www.mpi-forum.org/docs/docs.html

[8] http://www.csm.ornl.gov/pvm/

[9] http://staff.psc.edu/oneal/compaq/ShmemMan.pdf

[10] Ramesh Krishna, “Unified Model Documentation Paper X2: The Nupdate Source Code

Manager”, Met Office, November 11, 1993.

[11] Meeting with Tom Allen, Met Office.

