
Parallelisation of CABARET

Phil Ridley
Numerical Algorithms Group Ltd,

Wilkinson House, Jordan Hill Road,
Oxford, OX2 8DR, UK,

email: phil.ridley@nag.co.uk

February 1, 2011

Abstract

The CABARET (Compact Accurate Boundary Adjusting high REsolution Technique) code
may be used to solve the compressible Navier-Stokes equations. The code is based on a low
dissipative and low dispersive conservative CABARET method that constitutes a substantial
upgrade of the second-order upwind leapfrog scheme. Most notably, the CABARET algorithm
has a very local computational stencil that for scalar advection constitutes only one cell in space
and time.

The present application of CABARET is for the investigation of aircraft noise, which is
currently a very important environmental concern. An important component of aircraft noise
is due to airframe/engine installation effects, the reduction of this remains a very challenging
problem. In particular, when deployed at a large angle of attack at approach conditions, the
wing flaps become a very important noise source. For engine-under-a-wing configurations, flap
interaction with the jet can even become a dominant noise component. A crucial element of
any noise prediction scheme is the high fidelity Large Eddy simulation (LES) model. For the
airframe/engine noise problem, this model needs to accurately capture all important wing-flap,
free jet and wing-flap-jet interaction effects.

With the high-resolution CABARET algorithm capable of resolving the fine-flow struc-
tures on coarse grids, we have already reduced the problem size needed for acoustic-sensitive
modelling. But for high-fidelity LES modelling, we require a computational means capable of
handling grid resolutions of the order of, at least, several millions of points. Hence for this
dCSE project we will develop a scalable CABARET code enabling use of the full capability
of HECToR for investigating grid sensitivity effects on the flow transition to turbulence in the
initial part of the jet as well as to study the effect of inflow conditions, e.g., with and without
including the nozzle exit geometry in the calculation.

This project was proposed by Dr Sergey Karabasov of the University of Cambridge Engi-
neering Department and was approved for 12 months effort at the December 2008 round. The
project began in March 2009 and was completed January 2011 after 10 months full time effort.
For jet-flap-interaction, this dCSE will provide a key computational tool that will hopefully help
to answer the question “What is the effect of fine-scale-flow structures on far-field noise in the
audible range of frequencies?”

1

Contents

1 Introduction 3
1.1 Application Background . 3
1.2 Why Use CABARET? . 3
1.3 Outline of this project . 4

2 CABARET Implementation for HECToR 4
2.1 Introduction . 4
2.2 Code structure . 5
2.3 Input Grid . 5
2.4 Output Data . 5
2.5 Implementing Data Parallelism . 5
2.6 Data decomposition . 7
2.7 Partitioning the Unstructured grid . 7
2.8 Performance of the code . 8

3 Efficiency of Partitioning Methods 8
3.1 Comparison of the Efficiency of Partitioners . 8
3.2 Partitioning and Load Balancing . 9

4 Compiler comparison 10
4.1 Main CABARET Loops . 10
4.2 Loop Structure . 10

5 Multi-core Data Parallelism 12
5.1 Distributed Data Parallelism in CABARET . 12
5.2 Transisition of CABARET to HECToR Phase 2b 12
5.3 Hybrid Parallelism in CABARET . 14
5.4 Performance of the Hybrid Parallel CABARET code 15

6 CABARET Demonstration 16

7 Conclusion 17

8 Acknowledgments 19

2

1 Introduction

1.1 Application Background

A large number of high resolution numerical schemes exist for solving general CFD prob-
lems. Typically, those are either more suitable for either shock capturing or linear wave prop-
agation. General purpose high-resolution schemes also exist but in many of them additional
implementation and computational costs arise from the boundary conditions because of the
stencil complexity and numerical robustness.

Robust general-purpose high-resolution numerical algorithms are particularly valuable in the
modelling of turbulent flows, especially in the context of Large Eddy Simulations (LES). LES
relies on the ability of the numerical method to resolve all flow scales above a certain threshold
and those which are below this threshold are removed from the solution by using either a
numerical realisation of ones favorite closure model of turbulent dissipation or implicitly, by a
numerical dissipation. For the latter, one efficient strategy is to use numerical flux-correction
methods in the framework of a Monotonically Integrated LES (MILES) approach. For the
MILES component of this work, the Compact Accurately Boundary Adjusting High REsolution
Technique (CABARET) is used. This is because the CABARET method is a cutting-edge
numerical scheme for hyperbolic-type equations that has already been successfully applied for
solving a range of convection/advection-dominated problems [1]–[5].

1.2 Why Use CABARET?

CABARET is a general-purpose advection scheme which is suited for computational aero-
nautics and geophysics problems. For solving Navier-Stokes equations with Reynolds numbers
of 104, the method gives a very good convergence without any additional preconditioning down
to Mach numbers as low as 0.05−0.1. In particular for the MILES modelling of a hydrodynamic
instability and free jet, a 2572 grid using CABARET is able to produce results comparable to a
conventional second order method which would require at least 10252 grid points [5]. Here, the
CABARET method is 30 times more efficient.

For linear advection, the CABARET scheme is a modification of the non-dissipative and
low-dispersive Second-order Upwind Leapfrog method [6]. The modification consists of intro-
ducing separate conservation and flux variables that are staggered in space and time this results
in a very compact, one cell in space and time computational stencil. In comparison to the stan-
dard finite-difference and finite-volume methods, in CABARET there is always an additional
independent evolutionary variable, which gives the method the ability to preserve one more
important property of the governing equations - the small phase and amplitude error. Tradi-
tionally conservation fluxes are computed at cell faces using cell-centre variable interpolation
but with CABARET the conservation fluxes explicitly depend on the evolution of cell-centre and
cell-face variables. For enforcing the non-oscillatory property of the solution, the CABARET
scheme uses a low-dissipative non-linear flux correction that is directly based on the maximum
principle for the flux variables.

The key role of the nonlinear correction in the MILES CABARET method is to remove
the under-resolved fine scales from the solution so that an accurate balance between the nu-
merical dissipation and dispersion errors is preserved. For the Navier-Stokes equations, each
time iteration of the CABARET method consists of a conservation phase and a characteristic
decomposition phase.

3

1.3 Outline of this project

The CABARET method can be used on structured and unstructured grids. To deal with
high-fidelity simulations requiring the use of unstructured grids, a version of the CABARET
code has been developed. This is capable of dealing with an arbitrary grid structure and will
be the code that is used for this project. At the start of this project, the CABARET code was
mainly used on single core desktop systems.

We shall describe the development of a distributed memory version of CABARET for use
on the HECToR XT/XE systems and based on an unstructured grid representation for com-
pressible turbulent flows. It is worthwhile noting that relationships between neighbouring cells
and partitions are generally more complex to manage here than with a structured grid. The
consequence is that data associated with unstructured grid layouts requires a lot of effort so
that it can be managed and updated by the methods which determine new values based on
other values in their physical proximity.

The original work plan for this project was scheduled as follows:

1. Develop an automatic geometrical domain decomposition for parallel processing, which
should balance the loads efficiently in relation to the CABARET hexahedral grid struc-
ture. This will be implemented by a pre-process stage of the data from the Gambit mesh
generator facilitating use of either METIS or Scotch. Produce an internal report on the
best partitioning method and demonstrate effectiveness for at least a million grid points.

2. Implement a new MPI parallel version of CABARET using data passing protocols between
internal boundaries (cell faces and sides).

3. Validate and test the new code using a 3D backward-facing step case while expecting 70%
parallel efficiency when using 256 cores of the XT4 part of HECToR with the Phase 2a
architecture.

4. Demonstrate that the new code works for at least 50 million grid points on the XT4 part
of HECToR, using the 3D backward-facing step case.

This work began March 2009 with the end goal being a scalable parallel code which would
facilitate much larger simulations than possible with the serial code. By implementing MPI,
the data would be located over many distributed processing nodes on HECToR using optimum
communication that would enable the application to run simulations at least 100 times larger
than previously and with a much faster turn around time.

This report will discuss the development of the CABARET code in relation to:

− The partitioning method for the data decomposition.

− Compiler performance.

− Efficient use of hybrid parallelisation using MPI and OpenMP.

2 CABARET Implementation for HECToR

2.1 Introduction

The serial version of the CABARET code emerged as the result of more than 12 years work
of Dr Karabasov and his collaborators within the group of Prof. Goloviznin of the Russian
Academy of Science, Moscow. This code has been used extensively for grids involving up to
105 points for both compressible and incompressible flows, however current state of the art high
fidelity MILES simulations require millions of grid points. This could be achieved with a new

4

version of the code, re-designed for distributed processing. CABARET is particularly suited to
this approach since the computational stencil only requires information from the first layer of
nearest neighbour cells.

2.2 Code structure

The existing CABARET code was around 4000 lines of Fortran 90, so this was used as an
outline for the parallel version. The code included routines for; reading in the computational
grid, reading from /writing to restart files, data output to Tecplot format, as well as the main
computational part which can be separated into the following five steps:

PHASE1 - This is the conservative predictor step. This calculation updates the neighbouring
conservative type variables. Interpolation of the cell based variables to the grid points is
also performed.

VISCOSITY - Computation of the cell centred viscous terms. This step updates the cell
based variables.

PHASE2 - Extrapolation step where the local cell-based characteristic splitting is performed.
This is where the most intensive computation lies.

BOUND - Applying conditions for the boundary cells. This determines the new values of the
flux-type cell face values and only involves the physical boundary.

PHASE3 - The conservative corrector step. This also updates the cell based variables with
their values from the previous time step.

2.3 Input Grid

The computational grid for CABARET is a Gambit(Fluent) generated unstructured linear
hexahedral mesh. This is described in an ASCII file which consists of; the total number of
apexes(NAPEX), cells(NCELL), sides(NSIDE) and boundary sets(NBSETS); a list of the sides
for each cell - GEMCELLSIDE; a list of the cell connectivity for each side - GEMSIDECELL;
a list of the cartesian vertices - APEX; a list of the vertex connectivity for each cell - GEM-
CELLAPEX; a list of the sides for each boundary set - IBOUND. For a 105 cell mesh, this file
is around 33MB and for a 5.12× 107 cell mesh, around 17GB.

2.4 Output Data

The output data is produced at intervals throughout a simulation which are pre-determined
by the user. There are two data files produced; for restarts and Tecplot visualisation. The
restart data is written to an unformatted file and contains mesh parameters along with the
current flux and conservative variable values. The Tecplot data file is written as ASCII. This
file also contains flux and conservative variable values along with mesh data and local vortex
identification criteria - the Q criterion. For a 105 cell mesh, the restart data file is around 15MB
and for a 5.12× 107 cell mesh, around 8GB. The Tecplot file is at least double this size and can
be larger depending upon how many checkpoints are chosen by the user.

2.5 Implementing Data Parallelism

For the computation, we can summarise that CABARET involves calculations based on
variables which either relate to the flux type, cell sides (SIDE) or the conservative type cell
based (CELL). Additionally there is also the grid point based variables (APEX) which are
calculated from the neighbouring CELL values.

In terms of implementing data parallelism within the code, the CABARET algorithm re-
quires knowledge of only the nearest neighbouring cells, so we need to store a set of halo values

5

of CELL, SIDE and APEX on each process and then update them at appropriate points in the
calculation. This is in addition to the local to global address mapping information regarding
the computational grid. However, this remains static throughout the calculation and so no
communication is required for this data.

The values in the APEX array require no communication since they can always be determined
from the halo CELL values and local process CELL values. Whenever there is an update to
the flux type i.e. SIDE values we shall need to communicate updates to the halo CELL values
on the other neighbouring processes. This is because each SIDE has two associated CELLs as
shown in Figure 1 and both of these may not necessarily exist as halo CELLs on each process.

This aspect of the computation means that we need updates for halo values of SIDE based
calculations to be communicated both before PHASE2 and after BOUND for each time step
of the CABARET calculation. The actual implementation is described below and this includes
two nearest neighbour based communications which involve updating both the conservative and
flux type (CELL and SIDE) variables.

PHASE1 - Calculate new cell (conservative) based variables and communicate them between
nearest neighbours for updating the neighbouring conservative type variables (CELL).
Interpolate the cell based variables to the grid points.

VISCOSITY - Update new cell based variables.

PHASE2 - Prior to the main (i.e. extrapolation) computation for SIDE, communicate the flux
type cell face variables along with the cell based variables between nearest neighbours, i.e.
SIDE and CELL.

BOUND - Apply boundary conditions. Calculate new values of the flux type cell face values
(SIDE).

PHASE3 - Update the cell based variables and perform a global reduction to determine the
size of the next time step.

To summarise the computational process, which is repeated at each time step. This includes
two nearest neighbour based communications and one global reduction. This was implemented
within the CABARET code with MPI, using a local (indirect) referencing system for the APEX,
SIDE, and CELL data for each MPI process and non-blocking MPI calls to update halo data
at each time step. When output data is required, (for restarts and Tecplot) data is sent to the
master process for writing to two separate files for post processing.

Figure 1: A side with two neighbouring cells.

6

2.6 Data decomposition

The numerical domain decomposition is described as a Gambit (Fluent) unstructured hexa-
hedral cell mesh, however, the geometrical arrangement in question may allow for a regular data
decomposition for parallelisation. Unstructured codes such as CABARET have a potentially
high degree of instruction parallelism, but their data accesses requires a large amount of indi-
rection, which increases memory operations for the indexing information and usually results in
poor spatial locality and higher latencies for data access. This is not to say that the underlying
algorithms will not scale as efficiently to as many cores as a structured grid based scheme would.

Unstructured grids require a list of the connectivity which specifies the way that a given set
of apexes form the individual cells (indirect referencing). This is not required in a structured
approach since we can usually deal with the local to global references via offsets. The per-
formance of the parallel CABARET code will rely heavily upon an efficient data partitioning.
Both in terms of performing the actual decomposition itself and also giving a well load balanced
and communication optimized simulation.

Algorithms for finding efficient partitions of unstructured grids must ensure that the number
of cells assigned to each processor is roughly the same, and also that the number of adjacent cells
assigned to different processors is minimised. The goal of the first condition is to achieve efficient
load balancing for the computations among the processors. The second condition ensures that
the communication pattern resulting from the placement of adjacent cells to different processors
can be optimised.

2.7 Partitioning the Unstructured grid

To partition the unstructured Gambit mesh we need to assign certain cells to appropriate
MPI processes in the communicator. This depends upon the number of MPI processes that one
wishes to run the end simulation with. One suitable approach is to use an external partitioning
package such as METIS [7], [9] or Scotch [8], [10]. Alternatively, we may be able to use a more
simple method of structured partitioning across one, two or three dimensions of the cartesian
plane.

The choice of whether to use an external partitioning package or a structured decomposition
depends upon the geometry in question. For our test case within this project, (backward facing
step geometry) subsequent results will show that it is most efficient to use a structured decom-
position, however, for the arbitrary geometries that may be considered in future CABARET
simulations it is necessary for the code to have the ability to handle unstructured decomposi-
tions.

The communication routines within the code have been designed to accomodate unstruc-
tured decompositions, if required. Also, a separate (pre-process) partitioning routine has been
developed. This routine can be used to process a decomposition from an external package or
generate a structured one. Due to the unstructured aspect of the Gambit grid, there will be
non-contiguous data. The partitioner has to either have enough global memory allocated to
read in the entire grid or else in separate parts. However, it is more efficient to read in the
entire grid on a single XT/XE node and then use a shared memory approach.

Therefore the partitioner has been implemented with hybrid OpenMP/MPI parallelism for
multi-core efficiency and the end application is capable of generating the partition data for a
5.12 × 107 cell Gambit mesh for 250 MPI partitions within 29s wct (using 240 cores over 10
fully populated Phase 2b nodes (XT6 - 24 core Opteron 6172 2.1GHz processors, arranged as
two dual hex core sockets per node in a non uniform memory architecture). It can be run with

7

Figure 2: Simple unstructured decomposition with four partitions.

up to the same number of cores as requested partitions. It exhibits linearly scalability as the
algorithm involves little communication.

2.8 Performance of the code

To benchmark initial performance of the MPI only CABARET, the wall clock time to
perform 276 time steps without any I/O was measured against the performance of the serial
code to perform the same task. The test case used here is a 3D backward facing step geometry
and the boundary conditions are for laminar flow, with Reynolds number=5000 and Mach
number=0.1. The grid size is 105 hexahedral cells. Both codes were compiled and run on Phase
2a of HECToR (with each node a quad core 2.3GHz Opteron processor with 8GB of RAM)
using the PGI 10.8.0 Fortran90 compiler. The time taken for the serial code was 360 seconds
and the parallel code 7.8 seconds using 50 cores (13 nodes) and 2 seconds using 250 cores (63
nodes). This gives an effective parallel efficiency of 72% for 250 full populated nodes.

3 Efficiency of Partitioning Methods

3.1 Comparison of the Efficiency of Partitioners

Due to the unstructured grid used within the main CABARET algorithm, the choice of
whether to use an external partitioning package or a structured decomposition depends upon
the geometry in question. Wherever possible it is recommended to use a structured approach
based on partitioning along the cartesian planes. If however, the geometrical arrangement is
more complex where it is not possible to obtain a reasonable (structured) partition which gives
a well load balanced problem and optimum communication arrangement, then an unstructured
partitioning algorithm is required such as METIS [7], [9] or Scotch [8], [10]. The parallel
CABARET code has been designed so that it is capable of running with either a structured or
unstructured data decomposition.

The METIS partitioner uses a multi-level k-way approach [12] whereas the Scotch package
employs a dual recursive bipartitioning approach [11]. In terms of performance, for the time
taken to partition a 105 cell backward facing step geometry, both METIS and Scotch give
similar results, when producing 32, 50, 100, and 250 partitions. For this test case Scotch does
give slightly better performance - a 5% reduction in CABARET run time. But METIS is slightly
easier to use since it does allow the user to provide it with input which is close to that of the
original unstructured grid whereas Scotch requires the input to be in the form of a dual graph.
Figure 2 illustrates how a 3D backward facing step geometry is partitioned with an unstructured
partitioner.

8

Figure 3: Uneven load balance for the VISCOSITY calculation.

3.2 Partitioning and Load Balancing

The main reason why partitioning the grid with Scotch enables CABARET to run slightly
better is that for this particular problem, the partitioning produces more efficient load balancing
and a balanced communication. The CrayPat profile in Figure 3 demonstrates what often
happens when using an unstructured partition for a structured geometry, e.g. Scotch or METIS.
Here, there are 32 MPI processes (partitions) and process number 30 appears to have a third
more work than process 22. The problem is caused by an uneven balance of cells within each
partition along with the number of cells in each partition which contain boundary faces. The
calculations which are dependent upon the boundary cells are VISCOSITY and BOUND.
If there is an unfair distribution of the boundaries within the partitions then certain partitions
may have an uneven load balance to cope with and this will in turn limit scalability.

For a structured geometry such as the 3D backward facing step, it is more efficient to use a
structured partitioning approach based on cutting along the cartesian plane(s). This approach
can be used to ensure that an equally distributed amount of work for each MPI process is
achieved and inter process communication is minimised. Referring back to Figure 2, for a
structured one dimensional partition, we may simply allocate the required number of partitions
by slicing the geometry by planes along the x axis. The spacing of these planes ensures that there
is an even distribution of both non-boundary and boundary cells (i.e. the number of cell faces
that are on a boundary, which is from 0-6 for a hexahedral cell). It’s worthwhile to note that
since there is a finite volume aspect to the CABARET algorithm, we have to be careful when
determining neighbouring partitions. Sides alone are not enough to distinguish neighbours since
partitions can be connected by a single apex. However, this situation cannot happen with a one
or two dimensional data decomposition, but is possible with three dimensional and unstructured
ones.

To demonstrate the performance of the MPI only CABARET for structured and unstruc-
tured partitions, the scalability of the code was measured when performing 276 time steps
(without any I/O) was measured. The test case used here is a 3D backward facing step geom-

9

Figure 4: Scalability comparison for unstructured and structured partitioning.

etry and the boundary conditions are for laminar flow, with Reynolds number=5000 and Mach
number=0.1. The grid size is 0.8× 106 hexahedral cells. This run was performed on Phase 2a
of HECToR (with each node a quad core 2.3GHz Opteron processor with 8GB of RAM) using
the PGI 10.8.0 Fortran90 compiler. Figure 4 shows that there is more than a 2× speedup when
using a strutured data decomposition which gives good load balancing.

4 Compiler comparison

4.1 Main CABARET Loops

In this section we shall discuss the performance of the four Fortan 90 compilers which are
currently available to HECToR users, namely the Portland Group (PGI), Pathscale, Cray and
GNU. The unstructured grid representation in CABARET and the associated method of indirect
addressing required for the main loop structures in CABARET result in non continuously
varying loop structures. These are particularly hard to achieve any vectorisation with.

4.2 Loop Structure

The following two areas of code highlight regions that would benefit from vectorisation. Each
area belongs to a particular subroutine which is called every time step iteration and therefore
any optimisation would be critical for improved performance of CABARET. In particular, the
PHASE2, BOUND and VISCOSITY subroutines involve loops formed over the side of each
cell. These are highlighted by CrayPat as where the most intensive computation takes place -
around 60% of the cpu time:

PHASE1 and PHASE3

DO K=1,NCELL
...
KEYE=KEY(K,1)
...

10

NSI=GEMCELLSIDE(K,1)
...
UI=SIDE(NSI,1)
....
SXI=SIDE(NSI,11)*DFLOAT(KEYE)
...

END DO

PHASE2 BOUND and VISCOSITY

DO I=1,NSIDE
NCF=GEMSIDECELL(I,1)
NCB=GEMSIDECELL(I,2)
IF((NCF/=0).AND.(NCB/=0))THEN
CALL TAKESTENCIL1F(I)
CALL TAKESTENCIL1B(I)
IF (ABS(CHAR3B)<DEPS) CHAR3B=0
IF (ABS(CHAR3F)<DEPS) CHAR3F=0
IF(CHAR3B+CHAR3F.LE.0)THEN... ENDIF

ENDIF
IF(NCF<0) THEN ... ENDIF
IF(NCB<0) THEN ... ENDIF
...
NCF=GEMSIDECELL(I,1)
NCB=GEMSIDECELL(I,2)
NSTYPE=GEMSIDECELL(I,3)
NC=NCF
IF(NCF==0)NC=NCB
NA1=GEMCELLAPEX(NC,1)
...
NA7=GEMCELLAPEX(NC,7)
IF(NSTYPE==2651)THEN
NSA1=NA2
NSA2=NA6
NSA3=NA5
NSA4=NA1

ENDIF
...

END DO

If the compiler is able to create packed SSE instructions for these loops then some perfor-
mance improvement would certainly be gained. But as the loops appear there is not much scope
for vectorisation and the algorithm constraints do not allow for any code re-structuring. We
have compiled the CABARET code with the default versions of the main compilers that are
currently available on HECToR, i.e. PGI 10.9.0, Pathscale 3.2.99, Cray 7.2.8 and GNU 4.5.1.

The results show that none of the compilers can perform any level of vectorisation on
PHASE2, BOUND and VISCOSITY. However, Pathscale and Cray both manage to pro-
duce partially vectorised instructions for the loops in PHASE1 and PHASE3. The Cray
compiler reports that it has estimated the number of vector registers required. The Path-
scale compiler reports that the LOOP WAS VECTORIZED. Removing the mixed data type
in PHASE1 and PHASE3 eliminates the type conversion from the INTEGER KEYE to
REAL(KIND=8) with the intrinsic function DFLOAT and helps to achieve partially vectorised
instructions for the loops with PGI.

11

For all three compilers, the optimisation options (i.e. compilation flags) used are to enable
inter-procedural analysis, loop unrolling, loop nesting (where possible) for the target processor
in 64-bit mode. In terms of producing the best performing object code for CABARET on
HECToR, the Pathscale compiled version performs on average 5% faster than the PGI or the
Cray generated object code. The worst performance wise is the GNU generated object code
which is on average 5% slower than the PGI and the Cray generated object code.

5 Multi-core Data Parallelism

5.1 Distributed Data Parallelism in CABARET

This project began during the transistion of Phase 1 of HECToR (when each compute node
was a dual core AMD Opteron 2.8GHz chip with 6GB RAM) to Phase 2a (with each chip
a quad core 2.3GHz Opteron processor with 8GB of RAM). Data parallelism in CABARET
for handling a partitioned Gambit unstructured mesh was initially designed for use on similar
architectures, with the level of parallelisation based on MPI.

In this single program multiple data approach, the data parallelism relies upon a partitioning
of the Gambit generated computational grid in order to produce sub grids, so that each one
of these can be used by the individual instance of the CABARET code. Due to the unstruc-
tured decomposition used within the core CABARET algorithm an indirect referencing scheme
then manages access to halo data and associated communications for the updates needed after
each time step. Asynchronous MPI calls were implemented within PHASE1, PHASE2 and
PHASE3 and placed so that computation could be performed while communication was in
process, ensured that performance was efficient.

At the beginning of this dCSE project, the hardware setup for Phase 2b and beyond was
unknown. Nearing the latter half of the work, however, it was possible to assume that this
hardware would become more increasingly multi-core focussed. When Phase 2b of HECToR
arrived (XT6 - 24 core Opteron 6172 2.1GHz processors, arranged as two dual hex core sockets
per node in a non uniform memory architecture) it was also clear that the existing MPI parallel
CABARET code would need development for multi-core architecture.

5.2 Transisition of CABARET to HECToR Phase 2b

To demonstrate the initial performance of the MPI only CABARET on Phase 2b of HECToR,
the scalability of the code to perform 276 time steps without any I/O involved is shown in
Figure 5. The test case used here is a 3D backward facing step geometry and the boundary
conditions are for laminar flow, with Reynolds number=5000 and Mach number=0.1. The grid
is 6.4× 106 hexahedral cells. The code was compiled with the PGI 9.0.4 Fortran 90 compiler.

Figure 5 shows results for both Phase 2a (quad core) and Phase 2b (Seastar2+ interconnect)
of HECToR. The interesting observation is that there is little performance degradation moving
from quad core to 24 core nodes - even with the increased contention for inter-process bandwidth.
In tests on both Phase 2a and Phase 2b the nodes were fully populated with the MPI tasks.
In general we would expect that an increased amount of contention for interconnect use would
occur due to the increased number of MPI tasks per node, but with this problem size this
doesn’t happen.

However, if we increase the size of the problem, very different behaviour is observed. When
moving to a larger sized case of 5.12× 107 hexahedral cells, we can see in Figure 6 that perfor-
mance is clearly affected by moving from quad core to 24 core nodes. In Figure 5 the positive

12

performance is due to the size of the problem in question being accomodated by the available
cache/interconnect arrangement.

In Figure 6 we see that by running the MPI only CABARET code on Phase 2b (XT6
with Seastar2+ interconnect) using 500 and 1000 cores, the wall clock time for performing 256
iterations does decrease for all cases, whether fully populating a node (24 cores) or maintaining
the same MPI process per node ratio as in Phase 2a (XT4) (4 cores). However, it is clear
that the 4 cores per node case takes around half the time of the 24 cores per node case. This
behaviour is expected and is a typical observation of porting a pure MPI code to a multi-core
architecture.

It is worthwhile to note that running the same test on the Phase 2b XE6 (24 core Opteron
6172 2.1GHz processors, arranged as two dual hex core sockets per node in a non uniform
memory architecture with a Gemini interconnect), shows an improved performance of around
17% when populating with 12− 24 cores per node, e.g. for 500 cores, the 24 core per node run
takes 970s on Seastar2+, whereas this reduces to 805s with Gemini.

The key difference between the Phase 2b XT6 and the XE6 is the replacement of the
Seastar2+ interconnect with the Gemini one. The Seastar2+ chip router has 6 links imple-
menting a 3D-torus of processors with a point-to-point bandwidth of 9.6 GB/s. The Gemini
interconnect has one third or less the latency of the SeaStar2+ interconnect and can deliver
about 100 times the message throughput of the SeaStar2+ interconnect - something on the
order of 2 million packets per core per second.

The Gemini interface is able to process huge numbers of small messages due to its higher
injection rate in comparison to that of the SeaStar2+ interconnect. Therefore one would expect
that with varying problem size, the Gemini interconnect would show considerable benefits over
the SeaStar2+ interconnect for the MPI only version of CABARET.

Figure 5: Scalability for a 6.4× 106 cell backward facing step.

13

Figure 6: Time taken for 276 time steps of a 5.12× 107 cell backward facing step.

5.3 Hybrid Parallelism in CABARET

In the pure distributed data approach to parallel CABARET, the data parallelism is carried
out on partitioned sub grids of the Gambit generated computational grid. Each one of these
sub grids being assigned as a single MPI process within the global communicator. Non-blocking
MPI calls are implemented within PHASE1, PHASE2 and PHASE3 and placed so that
computation is performed while communication is in process. The unstructured decomposition
used within the core CABARET algorithm has an indirect referencing scheme which manages
access to halo data and associated communications. But, to improve performance for Phase
2b we need to reduce the contention for interconnect bandwidth by reducing the number of
off-node MPI communications with a shared memory approach for on node parallelism.

We have a choice when making the decision on which strategy to adopt in implementing
Hybrid parallelism in CABARET.

1. Assign on node partitions to OpenMP threads rather than have them as MPI processes.

2. Parallelise the loops involving the conservative and flux variable updates, within PHASE1,
VISCOSITY, PHASE2, BOUND and PHASE3.

Both methods will potentially reduce the number of off-node MPI communications, but
1. should effectively be already happening as part of MPT’s ability to manage on node MPI
processes and therefore should have little benefit, so choosing 2. makes more sense and will
introduce a new level of parallelism within CABARET.

The computational stencil for CABARET involves only nearest neighbour grid points. This
enables great potential for thread safe OpenMP within the main computational loops. For the
loops involving the conservative and flux variable updates, within PHASE1, VISCOSITY,
PHASE2, BOUND and PHASE3, shared memory OpenMP parallel for directives with
a static schedule were implemented. These divide the loops into thread safe chunks of size
NCELL/OMP num threads or NSIDE/OMP num threads and assigns a thread to a separate
(local) chunk of the loop. The MPI THREAD FUNNELLED approach is used allowing only

14

the master thread to perform the inter-node communication, e.g.

!$OMP BARRIER
!$OMP MASTER

DO I=1,APEXNEIGHS
! pre-post required for CELL transfers

CALL MPI_IRECV(CELLD(0,1,I),10*(MAXNCELL+1)
& ,MPI_DOUBLE_PRECISION,NEIGH(I),0,MPI_COMM_WORLD
& ,REQUESTIN(I),IERR)

END DO ! APEXNEIGHS
!$OMP END MASTER
!$OMP BARRIER
...
!$OMP MASTER

DO I=1,APEXNEIGHS

CALL MPI_ISSEND(CELL(0,1),10*(MAXNCELL+1)
& ,MPI_DOUBLE_PRECISION,NEIGH(I),0,MPI_COMM_WORLD
& ,REQUESTOUT(I),IERR)

END DO ! APEXNEIGHS
!$OMP END MASTER
...

DO I=1,APEXNEIGHS
CALL MPI_WAIT(REQUESTOUT(I),STATUS,IERR)
END DO ! APEXNEIGHS

All multi-threaded loops are able to run with NOWAIT, again due to the need to consider
only nearest neighbour grid points.

It is also more useful to implement OpenMP within the PHASE1, VISCOSITY, PHASE2,
BOUND and PHASE3 loops, since these take around 60% of the cpu time and will not vec-
torise for the reasons discussed in Section 4.2.

5.4 Performance of the Hybrid Parallel CABARET code

In this section we shall discuss the performance of the hybrid parallel CABARET. We shall
revisit the 5.12×107 cell backward facing step, again with boundary conditions for laminar flow,
Reynolds number=5000 and Mach number=0.1. For each test run we can vary the number MPI
processes (n), the number MPI processes per node (N) and the number of OpenMP threads per
MPI process (d). There is always one MPI process per hex core die or per socket.

Figure 7 shows the speedup for 50, 250, 500 and 1000 MPI processes for 276 time steps. A
comparison can be made between the two runs, which are shown for:

1. 4 MPI processes per node with 6 OpenMP threads per MPI process.

2. 2 MPI processes per node with 12 OpenMP threads per MPI process.

The two runs were carried out on HECToR Phase 2b with the Seastar2+ interconnect.
Case 1. performs slightly better than Case 2. This is a demonstrative case and for a variation
in problem size, the situation may be slightly different. The ratio between computation and

15

Figure 7: Scalability for a 5.12× 107 cell backward facing step.

communication, is an important factor in CABARET performance since the main computational
loops are non vectorised. So for any particular problem size, it would be recommended to test
which setup gives best performance for the number MPI processes per node and the number
of OpenMP threads per MPI process for a given number MPI processes (partitions). It’s
worthwhile to note that performing the same simulation with the Gemini interconnect does give
a 5 − 10% speedup, which is expected since this computation is using a one dimensional data
decomposition and is not heavily dependent upon the performance of communication.

6 CABARET Demonstration

To demonstrate the method, Figure 8 shows the normalised x direction velocity component
of the flow field at 40000 time steps the evolving solution after 10000 time steps for the 3D back-
ward facing step test case. Here, the boundary conditions are for laminar flow, with Reynolds
number=5000 and Mach number=0.1. The grid size is 10 points per the step height giving a
total grid size of 800000 points. Time-averaged velocity fields shown for this mesh resolution
and for a 20 cells per step height give the correct length for the recirculation zone around the
step as shown in Figure 9. The Vorticity (Q-norm) iso-surfaces for the grid density of 20 cells
per step are shown in Figure 10.

16

Figure 8: x direction velocity component of the flow field at 40000 time steps

Figure 9: Time-averaged velocity fields for two mesh resolutions

7 Conclusion

Through a dedicated Computational Science and Engineering project sponsored by the HEC-
ToR dCSE programme, the general purpose CFD application CABARET has been ported to run
efficiently on the HECToR UK national supercomputer resource. Scalability of the CABARET
application has been demonstrated. This work will now enable leading research to be per-
formed on MILES modelling and general turbulence simulations and introduce a step change in
the capability of the application.

In this report, we have described the development of a scalable hybrid parallel implementa-

17

Figure 10: Vorticity (Q-norm) iso-surfaces for the grid density of 20 cells per step

tion of the CABARET application. This has taken place over the Phase 1 to Phase 2b (with
Gemini) lifetime of HECToR. The CABARET method is particularly suitable for modelling high
Reynolds number low Mach number turbulent flows in Large Eddy simulations. The method
ensures that only nearest neighbour cells are involved and is therefore suited to distributed
computing architectures.

The input grid is a Gambit(Fluent) produced unstructured hexahedral mesh and we have
implemented an automated method of grid partitioning - using either a structured (cartesian
plane) decomposition or unstructured external package - METIS/Scotch. Where the geometrical
arrangement permits, users are recommended to employ a structured partitioning to ensure
efficient load balancing. An MPI parallel version of CABARET was developed and tested on
Phase 2a. The format of the main computational loops in CABARET make it difficult to
achieve any form of vectorisation with any of the Fortran90 compilers available on HECToR.

The arrival of Phase 2b and increasingly more multi-core focussed architecture brought the
need for a hybrid parallel version of CABARET. For a representative size test case, it was shown
that the performance of a pure MPI version of CABARET was not as good on the 24 core per
node Phase 2b architecture as it had previously shown on the quad core nodes of Phase 2a.
Implementing hybrid parallelism in the form of multi-threaded work sharing for the main loops
has helped performance and enabled more efficiency of multi-core use of CABARET.

The overall outcome of this work may be summarised as follows:

1. An automated geometrical domain decomposition method for partitioning a Gambit gen-
erated unstructured grid. The resulting partitions are ensured to give good load balancing
for the main computation and minimise communication. The partitioner was demonstrated
on a 5.12× 107 grid and is currently capable of processing a 2.05× 108 grid on HECToR

18

Phase 2b. An internal report summarising methods for unstructured partitioning was
written [13].

2. A parallel version of CABARET was implemented using non-blocking MPI to pass data
between internal boundaries (cell faces and sides). This code was validated and tested
against the old code using the 3D backward-facing step case and a parallel efficiency of
72% was observed when using 250 cores of the XT4 part of HECToR with the quad core
Phase 2a architecture.

3. The new code was validated for a larger test case of 5.12 × 107 grid points on the XT4
part of HECToR, using the 3D backward-facing step case.

In addition to meeting the original aims of the project, the follow has also been achieved:

4. Implementation of a hybrid (OpenMP/MPI) parallel version of CABARET for Phase
2b and further. Also a hybrid parallel partitioner has been developed for the domain
decomposition of the Gambit generated unstructured grid.

5. A 3D backward-facing step test case of 5.12× 107 cells, retains 80% parallel efficiency on
1000 cores of Phase 2b.

6. Simulations can now be performed on grids at least 512× larger than previously possible.
Smaller scale simulations can now be performed in a few minutes that would otherwise
have taken several days before this work.

The main users of CABARET are now able to investigate problem sizes at least 100 times
larger than previously possible. Particular HECToR use of CABARET includes 7M AUs which
was awarded at the November 2010 RAP for the project entitled “Turbulent Flow Effects on
Flap Noise”. A further HECToR resource of 21M AUs over Phase 2b and over 21M AUs for
Phase 3, for further investigation in high Reynolds number turbulent flows of Jet Flap noise
(EP/I017747/1) will use CABARET as the main code. CABARET is available to all HECToR
users by contacting the HECToR CSE team (support@hector.ac.uk).

8 Acknowledgments

This project was funded under the HECToR Distributed Computational Science and En-
gineering (CSE) Service operated by NAG Ltd. HECToR - A Research Councils UK High
End Computing Service - is the UK’s national supercomputing service, managed by EPSRC on
behalf of the participating Research Councils. Its mission is to support capability science and
engineering in UK academia. The HECToR supercomputers are managed by UoE HPCx Ltd
and the CSE Support Service is provided by NAG Ltd. http://www.hector.ac.uk

19

References

[1] "Balanced Characteristic Method for Systems of Hyperbolic Conservation
Laws", V.M. Goloviznin, Doklady Math., 72 (2005), pp619-623.

[2] "A New Efficient High-Resolution Method for Nonlinear Problems in
Aeroacoustics", S.A. Karabasov and V.M. Goloviznin, American Institute
of Aeronautics and Astronautics Journal Vol. 45 (2007), pp2861-2871

[3] "A novel computational method for modelling stochastic advection in
heterogeneous media", V.M. Goloviznin, V.N. Semenov, I.A Korortkin, and
S.A. Karabasov, Transport in Porous Media, Springer Netherlands, 66(3)
(2009), pp439-456.

[4] "Compact Accurately Boundary Adjusting high-REsolution Technique for Fluid
Dynamics", S.A. Karabasov and V.M. Goloviznin, Journal of Computational
Physics, 228 (2009), pp74267451.

[5] "CABARET in the Ocean Gyres", S.A. Karabasov, P.S. Berloff and V.M.
Goloviznin, Journal of Ocean Modelling, 30 (2009), p55168.

[6] "Generalized Leapfrog Methods", A. Iserles, IMA Journal of Numerical
Analysis, 6 (1986), No 3, pp 381-392.

[7] http://www-users.cs.umn.edu/∼karypis/metis/
[8] http://www.labri.fr/Perso/∼pelegrin/scotch/
[9] "A Fast and Highly Quality Multilevel Scheme for Partitioning Irregular

Graphs", G. Karypis and V. Kumar, SIAM Journal on Scientific Computing
Vol. 20 (1999), pp359-392.

[10] http://www.cecill.info/licenses.en.html

[11] "Static mapping by dual recursive bipartitioning of process and
architecture graphs", F. Pelegrini, Proceedings of the IEEE Scalable
High-Performance Computing Conference (1994), pp486-493.

[12] "A multilevel algorithm for partitioning graphs", B. Hendrickson and R.
Leland, Proceedings of the IEEE/ACM SC95 Conference(1995), pp28-28. Also
available at http://www.sandia.gov/ bahendr/papers/multilevel.ps

[13] http://www.hector.ac.uk/cse/reports/unstructured partitioning.pdf

20

