
1

Contents

Abstract .. 2

1 Introduction .. 3

2 Code Description ... 3

3 Project Objectives ... 4

3.1 WP1: Improvement to the MPI buffers ... 7

3.2 WP2: Efficient Memory Usage ... 8

3.3 WP3: Validation ... 8

4 Project Outcomes ... 8

4.1 Improvement to the MPI Communication .. 8

4.2 Asynchronous Communication for Complex Geometries ... 11

4.3 Efficient Memory Usage... 11

4.4 Updating the OpenMP ... 11

4.5 Validation ... 12

4.6 Compiler Performance Comparison .. 13

5 Example Simulations ... 15

5.1 High Pressure Turbine .. 15

5.2 Low Pressure Turbine .. 16

5.3 Rim Seal .. 17

5.4 Labyrinth Seal ... 17

6 Conclusions ... 18

7 Acknowledgements ... 18

8 References .. 19

2

Enhancement of a high-order CFD solver for many-core
architecture

Lucian Anton, Ning Li and Phil Ridley,

Numerical Algorithms Group Ltd,
Wilkinson House, Jordan Hill Road,

Oxford, OX2 8DR, UK
August 6, 2012

 Abstract

In turbomachinery design, Reynolds averaged Navier-Stokes (RANS) models commonly

encounter problems when dealing with turbulent flows dominated by unsteady features such as
convecting wakes, large scale separations and complex vortical structures. These render both RANS
and unsteady RANS theoretically questionable, even for basic jets. On the other hand, Large eddy
simulation (LES) is showing tremendous promise, because the turbulent flow structures are fully
resolved numerically, rather than approximated (as in the case with RANS). However, LES requires
the use of meshes of the order of 100 million grid points, in order to capture the intricate turbulent
flow structures. For typical simulations for fourth order space-time correlations of turbulent
fluctuations, long run times (>12hrs) are also required. The aim of this project is to improve the
performance of the structured CFD code BOFFS, for better use of many-core HPC architectures. The
work will target the MPI communications for the inter block transfers, achieve better memory
utilisation and improve the use of OpenMP for the intra block computations. The overall goal of the
work will be to enable realistic turnaround times for very high resolution, high-order LES by using
BOFFS with more than 100 million grid points with thousands of processing cores on HECToR.

3

1 Introduction

For unsteady turbulent flows, Reynolds averaged Navier-Stokes (RANS) models commonly encounter
problems when dealing with turbulent flows dominated by unsteady features such as convecting
wakes, large scale separations and complex vortical structures. Examples of these are gas turbine
blade shroud flows, hub cavity/endwall regions, internal turbine blade cooling passage flows and
cutback trailing edge zones. Also, many internal air system cavity flows are highly turbulent. These
render both RANS and unsteady RANS theoretically questionable. Even for basic jets the poor
performance of RANS models is well documented in [1][2].

On the other hand, Large eddy simulation (LES) is showing tremendous promise. This is because the
turbulent flow structures are fully resolved numerically, rather than their effect on the mean flow
being approximated (as in the case with RANS modelling). However, the principal difficulty in using
LES is the mesh size, needed to capture the intricate turbulent flow structures, this is usually the
order of at least 100 million grid points. This becomes especially important close to walls where
turbulent eddies are anisotropic and streak-like structures exist. To resolve these structures
incredibly fine grids are required in the streamwise, normal and especially spanwise directions. For
the acoustic LES work performed at the Whittle Laboratory at the University of Cambridge, fourth
order space-time correlations of turbulent fluctuations are needed. As part of assembling the
spectral information (both acoustic and turbulent) long run times are needed to accurately resolve
low frequency components, these are usually more than 12 hours. Such run-times typically involve
the consumption of 5,000 kAUs per job on HECToR Phase 3.

The additional overhead of using a general unstructured CFD solver on these scales soon becomes
very apparent. Therefore an in-house structured CFD code, namely the Block Overset Fast Flow
Solver (BOFFS) has been developed for large scale distributed parallel computations with Chimera
(overset) meshes. BOFFS is a Fortran 90 code, which uses a hybrid OpenMP / MPI approach for
parallelisation. Scalability on HECToR is reasonable for less than 10 million grid points, but it soon
becomes poor for larger sized grids. For calculations on grids of more than 100 million points,
improved scalability is necessary to be able to achieve a realistic turnaround time.

This project will improve scalability of BOFFS on HECToR and other many-core architectures by:
optimising the MPI used for the inter block data transfers, implementing improved memory
utilisation and updating the OpenMP for the intra block computations.

2 Code Description

The BOFFS code consists of around 22,000 lines of Fortran 90 code. This is split up into three main
sections, each one concerns a different stage in the simulation: grid pre-processing (flow processing
if restart), time advancement and solution post processing. The distributed data decomposition is
such that each grid block of the overset mesh is assigned to a single MPI process (i.e. one block per
MPI process) and within this process there is an assigned team of OpenMP threads. Each MPI
process reads in a block of mesh coordinates, boundary condition data and if a restart is required,
the relevant flow field files will also be read. Pre-processing then consists of reading further data
and the input deck, setting boundary conditions and calculating metric terms. In the case of a new
mesh block, interface interpolation data forms part of this stage. Once completed an interpolation
file is then written out and this will be read by any subsequent restarts. This section of the code has
been parallelised with OpenMP and is independent of the MPI parallelisation.

4

Once grid pre-processing is completed, the main time-step loop will then commence. Here the RHS
side of equations is firstly constructed. This system will be solved using either a Gauss-Seidel or
tridiagonal matrix algorithm (TDMA) implicit relaxation scheme – depending upon the mesh. The
boundaries and arrays will then be updated prior to the next iteration. This simple method of
solution is a popular choice for many CFD solvers since it has a low storage requirement relative to
efficiency.

When the time evolved solution has converged, post processing will then commence. This is
straightforward and current fields are written to unformatted binary files for restarts, and the
output is also ready for Plot3D visualisation. These output files are written by individual MPI
processes.

The most time consuming part of the code is the transfer between block boundaries, which is
required at every time step. This involves the different physical flow variables: pressure, velocities
and temperature. Also, if turbulence modelling is used, then additional variables are required for this
exchange. The routines which handle the transfer are PackVar_Send and Recvvar_unpack.

Prior to this dCSE project, some initial re-factoring of the BOFFS code was performed by NAG core
CSE and minor performance improvements were achieved. This re-factoring included: removing
unnecessary (and costly) initialisation to 0, general declarations for undefined variables and testing
the code on the range of compilers available on HECToR. The code was also split up into manageable
.f90 files and some function in-lining performed. Use of the COMMON BLOCK was replaced with
MODULEs and a makefile was written.

3 Project Objectives

A typical 32 block case simulation could utilise 8 fully populated 24 core HECToR phase 2b (XE6)
nodes (with 4 MPI processes per node with 6 OpenMP threads per block) or 8 fully populated 32
core phase 3 (XE6) nodes (with 4 MPI processes per node with 8 OpenMP threads per block). A
typical job would then take around a month in turnaround time, which equates to around 130 kAUs
and prohibits serious use of BOFFS on HECToR.

The performance of BOFFS on phase 2b and the comparable performance on phase 3 is given in the
following Table 1 and Table 2 for 4 test cases. Each test case has a fixed number of grid points such
that the 4BLK_3M case has 0.75 million grid points per block, the 4BLK_12M case has 3 million grid
points per block, the 32BLK_3M case has 93,750 grid points per block and the 32BLK_12M case has
375,000 grid points per block. Here the total timings are broken down to illustrate the time taken to
perform reading in the input data files, grid post processing and the main time step iteration. One
can see by comparing the two tables that the speed up for the threaded code is generally quite
good. But for the 4 Blocks running over 4 MPI processes, the speedup for both 3 million and 12
million grid sizes is good, however for the 32 Block cases the speedup is not so good. Here the time
taken for a single iteration gives only around a 2 times speed up for 6 or 8 threads.

5

Cases with OpenMP
threads

Wall clock time in seconds

Read Input Post Processing 1 time step

6 threads 8 threads 6 threads 8 threads 6 threads 8 threads

4BLK_3M 1.2 1.0 1.2 0.9 30.5 27.1

4BLK_12M 5.8 5.5 6.1 5.9 149.5 122.2

32BLK_3M 1.3 1.1 1.9 1.8 7.5 5.7

32BLK_12M 5.8 5.7 7.8 6.5 36.1 27.2

Table 1: Block timings with 6 OpenMP threads per block on phase 2b and 8 threads on phase 3.

Cases with no
OpenMP threads

Wall clock time in seconds

Read Input Post Processing 1 time step

Phase 2b Phase 3 Phase 2b Phase 3 Phase 2b Phase 3

4BLK_3M 1.4 1.1 1.4 1.1 106.7 82.4

4BLK_12M 6.1 5.6 7.5 6.2 865.7 396.3

32BLK_3M 1.4 1.3 1.9 1.7 34.3 12.63

32BLK_12M 6.4 5.8 8.1 6.6 84.6 62.5

Table 2: Block timings with no OpenMP on phase 2b and phase 3.

The test cases demonstrate performance for a total number of grid points of 3 million and 12
million, with 4 and 32 blocks. All timings were produced with the GNU compiler (GCC 4.5.1 on phase
2b and GCC 4.6.3 on phase 3). As shown in Table 1, the on node performance is good with 6 or 8
OpenMP threads per MPI process. In Table 2, it is clear that the newer GNU compiler (GCC 4.6.3) on
phase 3 is able to perform more optimisation in BOFFS than GCC 4.5.1 on phase 2b, and it gives
better performance for the pure MPI runs.

However, the main time step iteration does not scale as expected for larger problem sizes. Output
from automatic profiling analysis shown in Figure 1, implies that the routine for packing the MPI
buffer across blocks in a synchronous manner (PackVar_Send) is a problem. Further analysis in
Figure 2 shows that there is a significant load balance problem caused here too, which in turn
increases the MPI synchronisation times.

6

Figure 1: Automatic profiling analysis of a 3 million grid point, 32 block case.

Figure 2: a) Load imbalance for PackVar_Send and b) Call graph (3 million grid point, 32 block case).

In addition to the scalability problem, during core CSE investigation, it was discovered that BOFFS
generally performed better with the PGI compiler (version 10.9.0) rather than the GNU one – due to
improved optimisation in the areas of loop unrolling and vectorisation. However, this was only
investigated using the smaller (3 million) grid point case, for larger problem sizes, the use of large
static arrays for all variables within BOFFS caused out of memory errors. Furthermore the use of
OpenMP scheduling was not optimal within the intra block computations. The following work was
therefore proposed for this project:

7

3.1 WP1: Improvement to the MPI buffers

WP1.1 Within the MPI packing/unpacking routines: PackVar_Send and Recvvar_unpack, the double
precision buffer Var_Recv_Mpi stores the data (boundary values of pressure, velocities and
turbulence equation quantities) which are needed at every time step. The packing and unpacking of
this buffer uses five levels of nested IF...THEN loops within the three level DO loops (below).

E.g.

 do k = Nk1, Nk2
 do j = Nj1, Nj2
 zn_num = zonenumber(nblock,1,j,k)
 do z = 1, zn_num
 zn_type = zonetype(nblock,z,1,j,k)
 if (zn_type .ze. 0) then

 bnd1 = zoneboundm(nblock,z,1,j,k)
 bnd2 = zoneboundp(nblock,z,1,j,k)
 if (bnd1.eq.b_int) then
 if ((val .Eq. 0).or.(val .Eq. b_int)) then
 block = nbb(nblock,z,1,j,k)
 if (block.eq.from_block) then

 count = count + 1
 PbndM(nblock,z,1,j,k) = Var_Recv_Mpi(count)

This will be upgraded so that the data structures can be aligned beforehand in a way that the
IF…THENs may then be removed. Pre-determined off-sets will be used for count rather than
incrementing. This will be achieved by implementing the following approach:

nblock = rank
do np = 1, npbound
 i = mpi_index(np)
 j = mpi_index (np+1)
 k = mpi_index (np+2)
 z = mpi_index (np+3)
 count = countindex(np+4)
 PbndM(nblock,z,1,j,k) = Var_Recv_Mpi(count)
enddo

Here the mpi_index array will be calculated as part of the pre-processing phase, and incorporated
into the interpolation file. Using this approach it will be possible to move from five levels of nested
IF...THEN loops within the three level DO loops to a single do loop which should significantly boost
performance.

WP1.2 The rest of the work needed to improvement the performance of the inter block transfers
will be to replace the existing (serial) MPI communication scheme with an asychronous method, so
that there is a significant reduction in synchronisation time. This will be achieved by mixing
computation with communication, and therefore replacing the existing communication pattern of
the point to point communications which use a left to right serial transfer. The combined effort of

8

WP1 is expected to give at least a representative 20% speedup in performance and enable good
scalability up to at least 100 blocks (1000+ cores).

3.2 WP2: Efficient Memory Usage

Large static arrays are used for all variables including those for the interface, primitives (steady and
unsteady), RHS, boundary, and output metrics. For the 12 million grid point cases, these are too
large for the PGI compiler with mcmodel=medium, however, they work fine with dynamic linking.
They also work fine as static arrays for the GNU compiler. But for the 3 million grid point case, the
PGI compiler is 10% faster than GNU and it would therefore be beneficial for performance to get
BOFFS working with PGI for all problem sizes without the need for dynamic linking. This will be
achieved by replacing all necessary static arrays with allocatable ones and removing any redundant
arrays where not required.

3.3 WP3: Validation

All work will be validated on the 32 and 4 block test cases, both with 12 million grid points.

4 Project Outcomes

4.1 Improvement to the MPI Communication

In order to improve the MPI buffers, a further analysis of BOFFS was performed. Before any
development to the PackVar_Send and Recvvar_unpack routines was performed, the method of
calling these transfer algorithms was updated. Originally, a serial method of calling the MPI
communications was used to exchange data between blocks. Here, each MPI process would perform
a loop over the total number of MPI tasks with a blocking receive waiting for the previous process to
send the data. The following example which uses 5 MPI tasks for simplicity, illustrates the situation:

Considering 5 MPI tasks, with each task passing a data buffer to the left neighbour the
communication pattern is

0 <- 1 <- 2 <- 3 <- 4

with

call mpi_send(sbuff,...,myid-1...,ierr)
.....
call mpi_recv(rbuff,...,myid+1,..,ierr)

Here every rank posts a blocking send to the left first, but only rank 0 can proceed to the receive call
(for non-periodic boundary conditions). Then after the exchange (0 <- 1) completes, rank 1 will move
to receive the call and then the (1 <- 2) exchange can progress and so on. But this is serialised
communication which could be completed in just two parallel operations.

9

In terms of the effects on code performance, the following profile by function group and function,
shows that for the 12 million 32 block test case, 9.3% of the run time is taken up in MPI, in particular
most of this time is consumed by the blocking MPI_SEND routine.

Time% | Time | Imb. | Imb. | Calls |Group
 100.0% | 230.205369 | -- | -- | 14281280.8 |Total
|---
| 82.3% | 189.357545 | -- | -- | 14280789.6 |USER
||--
|| 38.6% | 88.894237 | 2.648718 | 3.0% | 40.0 |solve_.LOOP@li.212
|| 12.8% | 29.496465 | 2.303737 | 7.5% | 1.0 |main_
|| 9.8% | 22.588643 | 0.093898 | 0.4% | 42.0 |rhs_.LOOP@li.223
|| 9.3% | 21.451923 | 0.090482 | 0.4% | 42.0 |rhs_.LOOP@li.1812
|| 7.5% | 17.350544 | 0.079816 | 0.5% | 42.0 |rhs_.LOOP@li.1024
|| 2.4% | 5.448789 | 2.663316 | 33.9% | 14280000.0 |inversematrix_
|| 0.9% | 2.102017 | 0.009066 | 0.4% | 42.0 |rhs_
|| 0.5% | 1.058167 | 0.028250 | 2.7% | 61.0 |boundaryupdate_.LOOP@li.144
|| 0.3% | 0.692370 | 0.003452 | 0.5% | 40.0 |solve_
|| 0.1% | 0.126090 | 1.943039 | 96.9% | 3.8 |boundaryupdate_.LOOP@li.479
|| 0.1% | 0.117772 | 0.003597 | 3.1% | 61.0 |boundaryupdate_.LOOP@li.1182
||===
| 9.3% | 21.368852 | -- | -- | 112.4 |MPI
||--
|| 7.7% | 17.813062 | 18.727963 | 52.9% | 40.7 |MPI_SEND
|| 1.1% | 2.603411 | 1.503864 | 37.8% | 1.0 |mpi_finalize
|| 0.4% | 0.951937 | 0.112093 | 10.9% | 40.7 |mpi_recv
|| 0.0% | 0.000376 | 0.000128 | 26.2% | 21.0 |MPI_BARRIER
|| 0.0% | 0.000051 | 0.000007 | 12.6% | 6.0 |mpi_wtime
|| 0.0% | 0.000006 | 0.000001 | 9.2% | 1.0 |MPI_INIT
|| 0.0% | 0.000005 | 0.000001 | 23.2% | 1.0 |mpi_comm_rank
|| 0.0% | 0.000004 | 0.000001 | 24.6% | 1.0 |MPI_COMM_SIZE
||===
| 8.5% | 19.474334 | 19.223893 | 98.7% | 21.0 |MPI_SYNC
||--
| 8.5% | 19.474334 | 19.223893 | 98.7% | 21.0 | mpi_barrier_(sync)
||===

By applying a simple trick (where firstly the odd ranks post their receives and then the even ones
post their sends), the packing subroutine will drop out from the statistics. With this method, the
communication is done in parallel between distinct pairs in two stages:

Stage 1: (0 <- 1), (2 <- 3) , 4
Stage 2: 0, (1 <- 2), (3 <- 4)

code pattern

if (mod(myid,2)==0)then
 call mpi_recv(rbuff,...,myid+1,..,ierr)
 ...
 call mpi_send(sbuff,...,myid-1...,ierr)

10

else
 call mpi_send(sbuff,...,myid-1...,ierr)
 ...
 call mpi_recv(rbuff,...,myid+1,..,ierr)
endif
In terms of the effects on code performance, the following profile by function group and function,
shows that for the 12 million 32 block test case, now only 3.1% of the run time is taken up in MPI, in
particular less than 1% of the time is consumed by the blocking MPI_SEND routine. For this test case,
the overall speed gain is that the MPI_SEND time drops from ~18 seconds to 1.8 seconds which gives
an overall run time decrease from 230 to 203 seconds.

Time% | Time | Imb. | Imb. | Calls |Group
100.0% | 203.165181 | -- | -- | 14281280.8 |Total
|--
| 93.2% | 189.367336 | -- | -- | 14280789.6 |USER
||---
|| 43.8% | 89.040701 | 3.005270 | 3.4% | 40.0 |solve_.LOOP@li.212
|| 14.7% | 29.898026 | 4.079582 | 12.4% | 1.0 |main_
|| 11.2% | 22.674467 | 0.095291 | 0.4% | 42.0 |rhs_.LOOP@li.223
|| 10.4% | 21.225894 | 0.077735 | 0.4% | 42.0 |rhs_.LOOP@li.1812
|| 8.6% | 17.393574 | 0.079199 | 0.5% | 42.0 |rhs_.LOOP@li.1024
|| 2.5% | 5.018218 | 2.621076 | 35.4% | 14280000.0 | inversematrix_
|| 1.0% | 2.098218 | 0.008748 | 0.4% | 42.0 |rhs_
|| 0.5% | 1.061462 | 0.028729 | 2.7% | 61.0 |boundaryupdate_.LOOP@li.144
|| 0.3% | 0.679213 | 0.002862 | 0.4% | 40.0 |solve_
|| 0.1% | 0.127722 | 1.979859 | 97.0% | 3.8 |boundaryupdate_.LOOP@li.479
|| 0.1% | 0.119386 | 0.003574 | 3.0% | 61.0 |boundaryupdate_.LOOP@li.1182
||===
| 3.7% | 7.496753 | 6.046087 | 80.6% | 21.0 |MPI_SYNC
||---
| 3.7% | 7.496753 | 6.046087 | 80.6% | 21.0 | mpi_barrier_(sync)
||===
| 3.1% | 6.296505 | -- | -- | 112.4 |MPI
||---
|| 1.4% | 2.920704 | 1.907597 | 40.8% | 1.0 |mpi_finalize
|| 0.9% | 1.827206 | 2.685173 | 61.4% | 40.7 |MPI_SEND
|| 0.8% | 1.548190 | 0.217016 | 12.7% | 40.7 |mpi_recv
|| 0.0% | 0.000340 | 0.000057 | 14.8% | 21.0 |MPI_BARRIER
|| 0.0% | 0.000051 | 0.000005 | 9.2% | 6.0 |mpi_wtime
|| 0.0% | 0.000006 | 0.000002 | 29.7% | 1.0 |MPI_INIT
|| 0.0% | 0.000005 | 0.000008 | 65.4% | 1.0 |mpi_comm_rank
|| 0.0% | 0.000005 | 0.000004 | 44.5% | 1.0 |MPI_COMM_SIZE
||===

After this development, the PackVar_Send and Recvvar_unpack routines do not show up in the
profile and therefore, there would not be any useful performance gain by improving the loops in the
original plan for WP1, since the time spent in those packing loops is a very small fraction of the total
run time.

11

4.2 Asynchronous Communication for Complex Geometries

After updating the MPI communication with an odd / even MPI_SEND and MPI_RECV transfer, it was
noticed that the existing communication method limited the scope of BOFFS to grids where
individual blocks were related to either one or two neighbouring blocks. In practice, this is restrictive
because in a typical mesh there may be a central core block that all outer blocks must interface with
e.g. for a compressor blade or jet mesh simulation.

 Figure 3: Example of a jet mesh.

However, the situation was improved by implementing asynchronous communication in the form of
MPI_ISEND, MPI_IRECV and MPI_WAIT. This was achieved by storing the number of neighbouring
blocks for each individual block (MPI task), then pre-posting the MPI_IRECVs before the calls to
PackVar_Send and the MPI_ISENDs. Now the buffers are loaded and each MPI process will be ready
and waiting to receive incoming data from its’ neighbours. Although, each task still has to wait, this
is a very short time for grids where each block has an even distribution of neighbours. Overall, this
improves the performance of the communications as well as enabling grids with more complex block
structures. This method of communication also gives a further 1% improvement over the odd / even
MPI_SEND and MPI_RECV transfer.

4.3 Efficient Memory Usage

The original BOFFS used large static arrays for all main variables including those for the interface,
primitives (steady and unsteady), RHS, boundary, and output metrics. These are all contained within
the file arrays.mod which defines the MODULE arrays. Approximately 100 static arrays contained
within this module were subsequently updated to allocatable form. The introduction of allocatable
arrays also makes the code more flexible as the array dimension can now be read from an input file,
hence there is no need to recompile the BOFFS code when changing the array sizes for different
grids.

For the 12 million grid point cases, these now work with the PGI compiler thus enabling at least a
10% representative speedup over the GNU compiler.

4.4 Updating the OpenMP

In addition to the original objectives, a short study was done for the scalability of the OpenMP
sections in solve.f90. This routine performs the TDMA solver and from the previous CrayPAT profile,

12

it can be seen that it takes up 43.8% of the overall run-time, in particular the main loop. With the
initial OpenMP implementation scalability was lost above 6 threads, because the local domain was
very narrow in one direction (i.e. on average 40:1).

To improve OpenMP scalability, a red-black decomposition of computation was implemented in
solve.f90 for the main loop and this algorithm now scales reasonably up to 32 threads. In addition to
the implementation of the red-black decomposition for the OpenMP threads, the number of
OpenMP threads available is now collected with the omp_get_max_threads function which gets the
number straight from the OMP_NUM_THREADS environment variable.

While testing scalability with the default compilers on HECToR, it was noticed that PGI was having a
problem running the code with more than a single thread, even though it worked fine with GCC and
CCE. The code would not progress past the main loop in solve.f90 and it was discovered that this
was due to the volatile use of an INTEGER array, 'map'. The solution was to use the following
declaration of ‘map’

INTEGER, volatile :: map(0:maxsizeline,0:maxsizeline)

The directive !$OMP FLUSH(map) was already in the code, but volatile variables are part of the
Fortran 2003 language standard, both GCC and CCE were able to identify this whereas PGI was not.

Furthermore the source code was split as one module per file for a faster compilation and some out
of bound array accesses were corrected. The NAG compiler was also used (in depend mode) to
generate makefile dependencies for the new BOFFS source code.

4.5 Validation

To validate the updated version of BOFFS, several runs were performed on phase 3. These were
done to both check the results and record timings for the new code. All runs were performed using
code compiled with GCC 4.6.3, as this was used to compile the original version of the code. The runs
were performed with 1, 2 and 4 MPI tasks per 32 core HECToR phase 3 node. A comparison between
the original and new code is given in Table 3. Here, we see that for the new code scalability is only
better for the 32BLK_12M and 32BLK_3M cases, this is because these both involve more MPI
communication than the 4BLK cases. In the case of the single threaded runs, the new code is slower
for the 4BLK cases due to the overhead with the creation of the new OpenMP implementation for
the main TDMA solver. However, there is a 1.4 times speedup in the 32BLK cases due to the
improved OpenMP in the TDMA.

Test Cases Wall clock time to perform 1 time step (in seconds)

Original code New code

1 thread 8 threads 1 thread 8 threads 16 threads 32 threads

4BLK_3M 82.4 27.1 114.5 30.5 26.3 25.4

4BLK_12M 396.3 122.2 544.15 137.4 122.0 115.0

32BLK_3M 12.63 5.7 16.4 4.0 4.0 4.6

32BLK_12M 62.5 27.2 62.8 18.5 18.1 18.5

Table 3: Comparison between the original and new code.

13

4.6 Compiler Performance Comparison

Before the beginning of this project, it was noticed that BOFFS gave better performance with PGI
than with GCC, so the aim of WP2 was to enable the code to compile with PGI. Therefore, results will
be presented for the performance of the new BOFFS code with the default compilers on HECToR:
Gnu (GCC), PGI and Cray (CCE).

The compiler options (FLAGS) which give the best code performance for BOFFS are as follows:

GCC 4.6.3 FLAGS= -Ofast –fopenmp
PGI 12.5.0 FLAGS= -fast –mp
CCE 8.0.6 FLAGS= -O ipa1

The results in Figures 4-7 show that CCE generally gives best performance and OpenMP scalability,
with PGI a close second.

 Figure 4: Compiler performance for the 3 million grid point, 4 block case.

Scalability of the OpenMP is better for the 4BLK_3M and 4BLK_12M test cases as shown in Figures 4
and 5, this is due to the larger number of grid points per block (i.e. 750,000 and 3 million) and so
there is more scope to get a good speed up going from 8 to 32 threads per block. Scalability for up to
8 OpenMP threads is efficient for all four of these test cases, however use on only problem sizes
comparable the larger 4BLK_3M and 4BLK_12M cases may prove worthwhile.

All runs were performed with at most one MPI task per 8 core NUMA die and in the case of the
4BLK_12M test case, each MPI task was allocated to a single Interlagos 16-core chip due to the larger
memory requirements (i.e. the phase 3 nodes used were half populated).

For the 4BLK_12M and 32BLK_12M test case results shown in Figures 5 and 7, the new code with
PGI or CCE gives on average a 1.5 times speedup for the 12 million grid point, 4 and 32 block cases,
which is better than the original aim of achieving a 20% speedup.

14

 Figure 5: Compiler performance for the 12 million grid point, 4 block case.

 Figure 6: Compiler performance for the 3 million grid point, 32 block case.

15

 Figure 7: Compiler performance for the 12 million grid point, 32 block case.

In general, the most cost effective solution for using BOFFS on HECToR phase 3 is with 8 OpenMP
threads, and either 2 or 4 MPI tasks per node depending on the size of the problem.

5 Example Simulations

To end this report, some recent results from LES and hybrid RANS-NLES simulations performed with
BOFFS on HECToR, will be presented:

5.1 High Pressure Turbine

This is an instantaneous flow from a BOFFS calculation of a high pressure turbine blade (HPT) as
given in Figure 8 showing zones of separated large scale vortical structures contaminating the span
of the blade.

Figure 8: Flow in high pressure turbine using RANS-NLES.

16

5.2 Low Pressure Turbine

BOFFS simulations of a flat plate with an imposed pressure gradient, representative of a low
pressure turbine blade (LPT), are presented. The upper boundary of the computational domain is
specifically contoured to impose an adverse streamwise pressure gradient as shown in Figure 9.

Figure 9: Computational domain and the boundary conditions considered. Contours show z-
vorticity, with incoming box turbulence.

This is representative of the flow around the leading edge of a LPT blade. Two simulations, without
and with incoming free-stream turbulence, labelled Simulation A and B respectively were also
performed. The incoming turbulence intensity was set to 4% in simulation B.

(a)

(b)

Figure 10: Iso-surfaces of vorticity magnitude for: (a) Simulation A with laminar inflow, (b) Simulation
B with turbulent inflow.

Figure 11: Wake induced transition and end wall flow for a T106A blade.

17

The iso-surfaces of vorticity magnitude for simulations A and B are shown in Figure 11. While the
separated shear layer prior to transition is fairly two dimensional in simulation A, spanwise
undulations clearly appear in simulation B. These undulations are the footprints of what are called
Klebanoff modes. A successful eddy resolving approach needs to capture such modes when
modelling LPTs.

5.3 Rim Seal

Figure 12: (a) Cavity LES grid, (b) vorticity magnitude isosurfaces for cavity geometry.

Using BOFFS with a validated modelling methodology the interaction of sealant flows with the main
stream can be studied in much greater depth. An example is given in Figure 12(b) where the rim seal
cavity flow can be seen to substantially influence the main passage endwall and separation zones.
The use of LES and hybrid RANS-NLES will allow many more complex flow systems to be studied in
detail and improved upon, at a cost much lower than that of experimental rig testing.

5.4 Labyrinth Seal

A labyrinth seal geometry as shown in Figure 13 is representative of those found at blade
tips/shrouds and throughout the internal air system. The flow generated by this seal is again
complex. It includes regions of high acceleration, separation, recirculations of different scales and a
high velocity rotating lower wall.

In Figure 13 (a), vorticity contours of the flow field are shown. There is high vorticity near the
rotating wall showing the boundary layer type flow, with vortices shed off the tooth tips. Hence this
flow contains both wake and boundary layer type turbulence.

All of the simulations presented can be obtained in less than 1 month using 500 processing cores.

(a) (b)

18

Figure 13: (a) Lab Seal Mesh, (b) Vorticity magnitude contours of Lab Seal LES flow field.

6 Conclusions

The aim of this project was to enable at least a representative 20% speedup in performance over the
original BOFFS code and also enable scalability to at least 100 blocks. The results in section 4 have
demonstrated that this has been achieved and OpenMP scalability has been improved in general, for
up to 8 threads. In particular the new code with PGI or CCE gives on average 1.5 times speedup for
the 12 million grid point, 4 and 32 block case. Furthermore, using the 12 million grid case with 4
blocks as an example having 3 million grid points per block, comparative weak scalability for a
problem just over 30 times larger would take BOFFS to more than 100 million grid points and more
than 100 blocks.

Given that BOFFS is a versatile overset, structured code, it will continue to be used on HECToR for a
variety of turbomachinery problems including heat and cooling film technology. It will also provide a
platform for broadband noise calculations that will require of the order of 4,000 kAUs per HECToR
job. Immediate plans include collaborating with other members of Cambridge UGTP Whole Engine
Computational Aeroacoustics Consortium, who have successfully obtained an EPSRC grant for
computing resources on HECToR. In particular, this dCSE work will now allow BOFFS to use HECToR
to facilitate the development and testing of new ideas which have been generated from previous
research. It is also planned to collaborate with internationally leading research groups and the wider
HPC community through the next UK Applied Aerodynamics HECToR consortium. Through
EP/I017771/1, the UKTC and the new UKAAC (under preparation) substantial resource (15,000 kAUs)
is planned for allocating to BOFFS usage for investigation of the aerodynamics and aeroacoustics of
complex geometry hot jets.

7 Acknowledgements

This project was funded under the HECToR Distributed Computational Science and Engineering (CSE)
Service operated by NAG Ltd. HECToR A Research Councils UK High End Computing Service - is the
UK’s national supercomputing service, managed by EPSRC on behalf of the participating Research
Councils. Its mission is to support capability science and engineering in UK academia. The HECToR
supercomputers are managed by UoE HPCx Ltd and the CSE Support Service is provided by NAG Ltd.
http://www.hector.ac.uk.

http://www.hector.ac.uk/

19

The authors would also like to thank the main developer of BOFFS, Dr Richard Jefferson-Loveday of
the Department of Engineering at the University of Cambridge, for ongoing discussion and also for
providing the results shown in Figures 8-13.

8 References

 Georgiardis, N. & DeBonis, J., 2006, “Navier Stokes Analysis Methods for Turbulent Jet Flows
with Application to Aircraft Exhaust Nozzles”. Progress in Aerospace Sciences., Vol. 42, pp. 377-418

 Secundov A. N., Birch S. F. and Tucker P. G. 2007, “Propulsive Jets and their Acoustics”,
Philosophical Transactions of the Royal Society (Series A: Mathematical, Physical and Engineering
Sciences) Vol. 365, pp. 2443-2467.

