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 Abstract 

 
In turbomachinery design, Reynolds averaged Navier-Stokes (RANS) models commonly 

encounter problems when dealing with turbulent flows dominated by unsteady features such as 
convecting wakes, large scale separations and complex vortical structures. These render both RANS 
and unsteady RANS theoretically questionable, even for basic jets. On the other hand, Large eddy 
simulation (LES) is showing tremendous promise, because the turbulent flow structures are fully 
resolved numerically, rather than approximated (as in the case with RANS).  However, LES requires 
the use of meshes of the order of 100 million grid points, in order to capture the intricate turbulent 
flow structures. For typical simulations for fourth order space-time correlations of turbulent 
fluctuations, long run times (>12hrs) are also required. The aim of this project is to improve the 
performance of the structured CFD code BOFFS, for better use of many-core HPC architectures. The 
work will target the MPI communications for the inter block transfers, achieve better memory 
utilisation and improve the use of OpenMP for the intra block computations. The overall goal of the 
work will be to enable realistic turnaround times for very high resolution, high-order LES by using 
BOFFS with more than 100 million grid points with thousands of processing cores on HECToR. 
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1 Introduction 

 
For unsteady turbulent flows, Reynolds averaged Navier-Stokes (RANS) models commonly encounter 
problems when dealing with turbulent flows dominated by unsteady features such as convecting 
wakes, large scale separations and complex vortical structures.  Examples of these are gas turbine 
blade shroud flows, hub cavity/endwall regions, internal turbine blade cooling passage flows and 
cutback trailing edge zones.  Also, many internal air system cavity flows are highly turbulent. These 
render both RANS and unsteady RANS theoretically questionable. Even for basic jets the poor 
performance of RANS models is well documented in [1][2].   
 
On the other hand, Large eddy simulation (LES) is showing tremendous promise.  This is because the 
turbulent flow structures are fully resolved numerically, rather than their effect on the mean flow 
being approximated (as in the case with RANS modelling). However, the principal difficulty in using 
LES is the mesh size, needed to capture the intricate turbulent flow structures, this is usually the 
order of at least 100 million grid points.  This becomes especially important close to walls where 
turbulent eddies are anisotropic and streak-like structures exist.  To resolve these structures 
incredibly fine grids are required in the streamwise, normal and especially spanwise directions.  For 
the acoustic LES work performed at the Whittle Laboratory at the University of Cambridge, fourth 
order space-time correlations of turbulent fluctuations are needed.  As part of assembling the 
spectral information (both acoustic and turbulent) long run times are needed to accurately resolve 
low frequency components, these are usually more than 12 hours. Such run-times typically involve 
the consumption of 5,000 kAUs per job on HECToR Phase 3. 
 
The additional overhead of using a general unstructured CFD solver on these scales soon becomes 
very apparent.  Therefore an in-house structured CFD code, namely the Block Overset Fast Flow 
Solver (BOFFS) has been developed for large scale distributed parallel computations with Chimera 
(overset) meshes. BOFFS is a Fortran 90 code, which uses a hybrid OpenMP / MPI approach for 
parallelisation. Scalability on HECToR is reasonable for less than 10 million grid points, but it soon 
becomes poor for larger sized grids. For calculations on grids of more than 100 million points, 
improved scalability is necessary to be able to achieve a realistic turnaround time.  
 
This project will improve scalability of BOFFS on HECToR and other many-core architectures by: 
optimising the MPI used for the inter block data transfers, implementing improved memory 
utilisation and updating the OpenMP for the intra block computations. 
 

2 Code Description  

 
The BOFFS code consists of around 22,000 lines of Fortran 90 code. This is split up into three main 
sections, each one concerns a different stage in the simulation: grid pre-processing (flow processing 
if restart), time advancement and solution post processing.  The distributed data decomposition is 
such that each grid block of the overset mesh is assigned to a single MPI process (i.e. one block per 
MPI process) and within this process there is an assigned team of OpenMP threads. Each MPI 
process reads in a block of mesh coordinates, boundary condition data and if a restart is required, 
the relevant flow field files will also be read.  Pre-processing then consists of reading further data 
and the input deck, setting boundary conditions and calculating metric terms.  In the case of a new 
mesh block, interface interpolation data forms part of this stage.  Once completed an interpolation 
file is then written out and this will be read by any subsequent restarts.  This section of the code has 
been parallelised with OpenMP and is independent of the MPI parallelisation.   
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Once grid pre-processing is completed, the main time-step loop will then commence.  Here the RHS 
side of equations is firstly constructed. This system will be solved using either a Gauss-Seidel or 
tridiagonal matrix algorithm (TDMA) implicit relaxation scheme – depending upon the mesh. The 
boundaries and arrays will then be updated prior to the next iteration.   This simple method of 
solution is a popular choice for many CFD solvers since it has a low storage requirement relative to 
efficiency.  

 
When the time evolved solution has converged, post processing will then commence.  This is 
straightforward and current fields are written to unformatted binary files for restarts, and the 
output is also ready for Plot3D visualisation.  These output files are written by individual MPI 
processes.   

 
The most time consuming part of the code is the transfer between block boundaries, which is 
required at every time step. This involves the different physical flow variables: pressure, velocities 
and temperature. Also, if turbulence modelling is used, then additional variables are required for this 
exchange.  The routines which handle the transfer are PackVar_Send and Recvvar_unpack. 

 
Prior to this dCSE project, some initial re-factoring of the BOFFS code was performed by NAG core 
CSE and minor performance improvements were achieved. This re-factoring included: removing 
unnecessary (and costly) initialisation to 0, general declarations for undefined variables and testing 
the code on the range of compilers available on HECToR. The code was also split up into manageable 
.f90 files and some function in-lining performed. Use of the COMMON BLOCK was replaced with 
MODULEs and a makefile was written. 
 

3 Project Objectives 
 
A typical 32 block case simulation could utilise 8 fully populated 24 core HECToR phase 2b (XE6) 
nodes (with 4 MPI processes per node with 6 OpenMP threads per block) or 8 fully populated 32 
core phase 3 (XE6) nodes (with 4 MPI processes per node with 8 OpenMP threads per block). A 
typical job would then take around a month in turnaround time, which equates to around 130 kAUs 
and prohibits serious use of BOFFS on HECToR. 
 
The performance of BOFFS on phase 2b and the comparable performance on phase 3 is given in the 
following Table 1 and Table 2 for 4 test cases. Each test case has a fixed number of grid points such 
that the 4BLK_3M case has 0.75 million grid points per block, the 4BLK_12M case has 3 million grid 
points per block, the 32BLK_3M case has 93,750 grid points per block and the 32BLK_12M case has 
375,000 grid points per block. Here the total timings are broken down to illustrate the time taken to 
perform reading in the input data files, grid post processing and the main time step iteration. One 
can see by comparing the two tables that the speed up for the threaded code is generally quite 
good. But for the 4 Blocks running over 4 MPI processes, the speedup for both 3 million and 12 
million grid sizes is good, however for the 32 Block cases the speedup is not so good. Here the time 
taken for a single iteration gives only around a 2 times speed up for 6 or 8 threads.  
 
 
 
 
 
 
 
 



5 

 

Cases with OpenMP 
threads 

Wall clock time in seconds  

Read Input Post Processing 1 time step 

6 threads 8 threads 6 threads 8 threads 6 threads 8 threads 

4BLK_3M 1.2 1.0 1.2 0.9 30.5 27.1 

4BLK_12M 5.8 5.5 6.1 5.9 149.5 122.2 

32BLK_3M 1.3 1.1 1.9 1.8 7.5 5.7 

32BLK_12M 5.8 5.7 7.8 6.5 36.1 27.2 

 
Table 1: Block timings with 6 OpenMP threads per block on phase 2b and 8 threads on phase 3. 

 

Cases with no 
OpenMP threads 

Wall clock time in seconds  

Read Input Post Processing 1 time step 

Phase 2b Phase 3 Phase 2b Phase 3 Phase 2b Phase 3 

4BLK_3M 1.4 1.1 1.4 1.1 106.7 82.4 

4BLK_12M 6.1 5.6 7.5 6.2 865.7 396.3 

32BLK_3M 1.4 1.3 1.9 1.7 34.3 12.63 

32BLK_12M 6.4 5.8 8.1 6.6 84.6 62.5 

 
Table 2: Block timings with no OpenMP on phase 2b and phase 3. 

 
The test cases demonstrate performance for a total number of grid points of 3 million and 12 
million, with 4 and 32 blocks. All timings were produced with the GNU compiler (GCC 4.5.1 on phase 
2b and GCC 4.6.3 on phase 3). As shown in Table 1, the on node performance is good with 6 or 8 
OpenMP threads per MPI process.  In Table 2, it is clear that the newer GNU compiler (GCC 4.6.3) on 
phase 3 is able to perform more optimisation in BOFFS than GCC 4.5.1 on phase 2b, and it gives 
better performance for the pure MPI runs. 
 
However, the main time step iteration does not scale as expected for larger problem sizes. Output 
from automatic profiling analysis shown in Figure 1, implies that the routine for packing the MPI 
buffer across blocks in a synchronous manner (PackVar_Send) is a problem. Further analysis in 
Figure 2 shows that there is a significant load balance problem caused here too, which in turn 
increases the MPI synchronisation times. 
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Figure 1: Automatic profiling analysis of a 3 million grid point, 32 block case. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: a) Load imbalance for PackVar_Send  and b) Call graph (3 million grid point, 32 block case). 

 
 
In addition to the scalability problem, during core CSE investigation, it was discovered that BOFFS 
generally performed better with the PGI compiler (version 10.9.0) rather than the GNU one – due to 
improved optimisation in the areas of loop unrolling and vectorisation. However, this was only 
investigated using the smaller (3 million) grid point case, for larger problem sizes, the use of large 
static arrays for all variables within BOFFS caused out of memory errors. Furthermore the use of 
OpenMP scheduling was not optimal within the intra block computations. The following work was 
therefore proposed for this project:   
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3.1 WP1: Improvement to the MPI buffers 

 
WP1.1 Within the MPI packing/unpacking routines: PackVar_Send and Recvvar_unpack, the double 
precision buffer Var_Recv_Mpi stores the data (boundary values of pressure, velocities and 
turbulence equation quantities) which are needed at every time step. The packing and unpacking of 
this buffer uses five levels of nested IF...THEN loops within the three level DO loops (below).  
 
E.g. 
 
 do k = Nk1, Nk2 
   do j = Nj1, Nj2 
     zn_num = zonenumber(nblock,1,j,k) 
     do z = 1, zn_num 
       zn_type = zonetype(nblock,z,1,j,k) 
       if (zn_type .ze. 0) then 
 
         bnd1 = zoneboundm(nblock,z,1,j,k) 
         bnd2 = zoneboundp(nblock,z,1,j,k) 
         if (bnd1.eq.b_int) then 
           if ((val .Eq. 0).or.(val .Eq. b_int)) then 
             block   = nbb(nblock,z,1,j,k) 
             if (block.eq.from_block) then 
 
               count = count + 1 
               PbndM(nblock,z,1,j,k) = Var_Recv_Mpi(count) 

 
This will be upgraded so that the data structures can be aligned beforehand in a way that the 
IF…THENs may then be removed. Pre-determined off-sets will be used for count rather than 
incrementing.  This will be achieved by implementing the following approach: 

 
nblock = rank 
do np = 1, npbound 
   i = mpi_index(np) 
   j = mpi_index (np+1) 
  k = mpi_index (np+2) 
 z = mpi_index (np+3) 
  count = countindex(np+4) 
  PbndM(nblock,z,1,j,k) = Var_Recv_Mpi(count) 
enddo 
 
Here the mpi_index array will be calculated as part of the pre-processing phase, and incorporated 
into the interpolation file.   Using this approach it will be possible to move from five levels of nested 
IF...THEN loops within the three level DO loops to a single do loop which should significantly boost 
performance. 
 
 
WP1.2 The rest of the work needed to improvement the performance of the inter block transfers 
will be to replace the existing (serial) MPI communication scheme with an asychronous method, so 
that there is a significant reduction in synchronisation time. This will be achieved by mixing 
computation with communication, and therefore replacing the existing communication pattern of 
the point to point communications which use a left to right serial transfer. The combined effort of 
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WP1 is expected to give at least a representative 20% speedup in performance and enable good 
scalability up to at least 100 blocks (1000+ cores). 

 

3.2 WP2: Efficient Memory Usage 

 
Large static arrays are used for all variables including those for the interface, primitives (steady and 
unsteady), RHS, boundary, and output metrics. For the 12 million grid point cases, these are too 
large for the PGI compiler with mcmodel=medium, however, they work fine with dynamic linking. 
They also work fine as static arrays for the GNU compiler.  But for the 3 million grid point case, the 
PGI compiler is 10% faster than GNU and it would therefore be beneficial for performance to get 
BOFFS working with PGI for all problem sizes without the need for dynamic linking. This will be 
achieved by replacing all necessary static arrays with allocatable ones and removing any redundant 
arrays where not required. 

 

3.3 WP3: Validation 

 
All work will be validated on the 32 and 4 block test cases, both with 12 million grid points. 

 

4 Project Outcomes 

4.1 Improvement to the MPI Communication 

 
In order to improve the MPI buffers, a further analysis of BOFFS was performed. Before any 
development to the PackVar_Send and Recvvar_unpack routines was performed, the method of 
calling these transfer algorithms was updated. Originally, a serial method of calling the MPI 
communications was used to exchange data between blocks. Here, each MPI process would perform 
a loop over the total number of MPI tasks with a blocking receive waiting for the previous process to 
send the data. The following example which uses 5 MPI tasks for simplicity, illustrates the situation: 
     
Considering 5 MPI tasks, with each task passing a data buffer to the left neighbour the 
communication pattern is 
 
0 <- 1 <- 2 <- 3 <- 4 
 
with  
 
call mpi_send(sbuff,...,myid-1...,ierr) 
..... 
call mpi_recv(rbuff,...,myid+1,..,ierr) 
 
Here every rank posts a blocking send to the left first, but only rank 0 can proceed to the receive call 
(for non-periodic boundary conditions). Then after the exchange (0 <- 1) completes, rank 1 will move 
to receive the call and then the (1 <- 2) exchange can progress and so on. But this is serialised 
communication which could be completed in just two parallel operations. 
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In terms of the effects on code performance, the following profile by function group and function, 
shows that for the 12 million 32 block test case, 9.3% of the run time is taken up in MPI, in particular 
most of this time is consumed by the blocking MPI_SEND routine. 
 
 
Time%  |      Time  |     Imb.  |  Imb.  |     Calls  |Group        
 100.0% | 230.205369 |        -- |     -- | 14281280.8 |Total 
|------------------------------------------------------------------------------------------- 
|  82.3% | 189.357545 |        -- |     -- | 14280789.6 |USER 
||------------------------------------------------------------------------------------------ 
||  38.6% |  88.894237 |  2.648718 |   3.0% |       40.0 |solve_.LOOP@li.212 
||  12.8% |  29.496465 |  2.303737 |   7.5% |        1.0 |main_ 
||   9.8% |  22.588643 |  0.093898 |   0.4% |       42.0 |rhs_.LOOP@li.223 
||   9.3% |  21.451923 |  0.090482 |   0.4% |       42.0 |rhs_.LOOP@li.1812 
||   7.5% |  17.350544 |  0.079816 |   0.5% |       42.0 |rhs_.LOOP@li.1024 
||   2.4% |   5.448789 |  2.663316 |  33.9% | 14280000.0 |inversematrix_ 
||   0.9% |   2.102017 |  0.009066 |   0.4% |       42.0 |rhs_ 
||   0.5% |   1.058167 |  0.028250 |   2.7% |       61.0 |boundaryupdate_.LOOP@li.144 
||   0.3% |   0.692370 |  0.003452 |   0.5% |       40.0 |solve_ 
||   0.1% |   0.126090 |  1.943039 |  96.9% |        3.8 |boundaryupdate_.LOOP@li.479 
||   0.1% |   0.117772 |  0.003597 |   3.1% |       61.0 |boundaryupdate_.LOOP@li.1182 
||================================================================= 
|   9.3% |  21.368852 |        -- |     -- |      112.4 |MPI 
||------------------------------------------------------------------------------------------ 
||   7.7% |  17.813062 | 18.727963 |  52.9% |       40.7 |MPI_SEND 
||   1.1% |   2.603411 |  1.503864 |  37.8% |        1.0 |mpi_finalize 
||   0.4% |   0.951937 |  0.112093 |  10.9% |       40.7 |mpi_recv 
||   0.0% |   0.000376 |  0.000128 |  26.2% |       21.0 |MPI_BARRIER 
||   0.0% |   0.000051 |  0.000007 |  12.6% |        6.0 |mpi_wtime 
||   0.0% |   0.000006 |  0.000001 |   9.2% |        1.0 |MPI_INIT 
||   0.0% |   0.000005 |  0.000001 |  23.2% |        1.0 |mpi_comm_rank 
||   0.0% |   0.000004 |  0.000001 |  24.6% |        1.0 |MPI_COMM_SIZE 
||================================================================= 
|   8.5% |  19.474334 | 19.223893 |  98.7% |       21.0 |MPI_SYNC 
||------------------------------------------------------------------------------------------ 
|   8.5% |  19.474334 | 19.223893 |  98.7% |       21.0 | mpi_barrier_(sync) 
||================================================================= 
 
By applying a simple trick (where firstly the odd ranks post their receives and then the even ones 
post their sends), the packing subroutine will drop out from the statistics. With this method, the 
communication is done in parallel between distinct pairs in two stages: 
 
Stage 1: (0 <- 1),  (2 <- 3) , 4   
Stage 2: 0,  (1 <- 2),  (3 <- 4) 
  
code pattern 
     
if ( mod(myid,2)==0)then 
    call mpi_recv(rbuff,...,myid+1,..,ierr) 
    ... 
    call mpi_send(sbuff,...,myid-1...,ierr) 
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else  
    call mpi_send(sbuff,...,myid-1...,ierr) 
    ... 
    call mpi_recv(rbuff,...,myid+1,..,ierr) 
endif 
In terms of the effects on code performance, the following profile by function group and function, 
shows that for the 12 million 32 block test case, now only 3.1% of the run time is taken up in MPI, in 
particular less than 1% of the time is consumed by the blocking MPI_SEND routine. For this test case, 
the overall speed gain is that the MPI_SEND time drops from ~18 seconds to 1.8 seconds which gives 
an overall run time decrease from 230 to 203 seconds. 
 
Time%  |      Time  |     Imb.  |  Imb.  |     Calls  |Group        
100.0% | 203.165181 |       -- |     -- | 14281280.8 |Total 
|------------------------------------------------------------------------------------------ 
|  93.2% | 189.367336 |       -- |     -- | 14280789.6 |USER 
||----------------------------------------------------------------------------------------- 
||  43.8% |  89.040701 | 3.005270 |   3.4% |       40.0 |solve_.LOOP@li.212 
||  14.7% |  29.898026 | 4.079582 |  12.4% |        1.0 |main_ 
||  11.2% |  22.674467 | 0.095291 |   0.4% |       42.0 |rhs_.LOOP@li.223 
||  10.4% |  21.225894 | 0.077735 |   0.4% |       42.0 |rhs_.LOOP@li.1812 
||   8.6% |  17.393574 | 0.079199 |   0.5% |       42.0 |rhs_.LOOP@li.1024 
||   2.5% |   5.018218 | 2.621076 |  35.4% | 14280000.0 | inversematrix_ 
||   1.0% |   2.098218 | 0.008748 |   0.4% |       42.0 |rhs_ 
||   0.5% |   1.061462 | 0.028729 |   2.7% |       61.0 |boundaryupdate_.LOOP@li.144 
||   0.3% |   0.679213 | 0.002862 |   0.4% |       40.0 |solve_ 
||   0.1% |   0.127722 | 1.979859 |  97.0% |        3.8 |boundaryupdate_.LOOP@li.479 
||   0.1% |   0.119386 | 0.003574 |   3.0% |       61.0 |boundaryupdate_.LOOP@li.1182 
||================================================================= 
|   3.7% |   7.496753 | 6.046087 |  80.6% |       21.0 |MPI_SYNC 
||----------------------------------------------------------------------------------------- 
|   3.7% |   7.496753 | 6.046087 |  80.6% |       21.0 | mpi_barrier_(sync) 
||================================================================= 
|   3.1% |   6.296505 |       -- |     -- |      112.4 |MPI 
||----------------------------------------------------------------------------------------- 
||   1.4% |   2.920704 | 1.907597 |  40.8% |        1.0 |mpi_finalize 
||   0.9% |   1.827206 | 2.685173 |  61.4% |       40.7 |MPI_SEND 
||   0.8% |   1.548190 | 0.217016 |  12.7% |       40.7 |mpi_recv 
||   0.0% |   0.000340 | 0.000057 |  14.8% |       21.0 |MPI_BARRIER 
||   0.0% |   0.000051 | 0.000005 |   9.2% |        6.0 |mpi_wtime 
||   0.0% |   0.000006 | 0.000002 |  29.7% |        1.0 |MPI_INIT 
||   0.0% |   0.000005 | 0.000008 |  65.4% |        1.0 |mpi_comm_rank 
||   0.0% |   0.000005 | 0.000004 |  44.5% |        1.0 |MPI_COMM_SIZE 
||================================================================= 
 
 
After this development, the PackVar_Send and Recvvar_unpack routines do not show up in the 
profile and therefore, there would not be any useful performance gain by improving the loops in the 
original plan for WP1, since the time spent in those packing loops is a very small fraction of the total 
run time. 
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4.2 Asynchronous Communication for Complex Geometries 

 
After updating the MPI communication with an odd / even MPI_SEND and MPI_RECV transfer, it was 
noticed that the existing communication method limited the scope of BOFFS to grids where 
individual blocks were related to either one or two neighbouring blocks. In practice, this is restrictive 
because in a typical mesh there may be a central core block that all outer blocks must interface with 
e.g. for a compressor blade or jet mesh simulation. 
 

 

   Figure 3: Example of a jet mesh. 

 
However, the situation was improved by implementing asynchronous communication in the form of 
MPI_ISEND, MPI_IRECV and MPI_WAIT. This was achieved by storing the number of neighbouring 
blocks for each individual block (MPI task), then pre-posting the MPI_IRECVs before the calls to 
PackVar_Send and the MPI_ISENDs. Now the buffers are loaded and each MPI process will be ready 
and waiting to receive incoming data from its’ neighbours. Although, each task still has to wait, this 
is a very short time for grids where each block has an even distribution of neighbours. Overall, this 
improves the performance of the communications as well as enabling grids with more complex block 
structures. This method of communication also gives a further 1% improvement over the odd / even 
MPI_SEND and MPI_RECV transfer. 

4.3 Efficient Memory Usage 

 
The original BOFFS used large static arrays for all main variables including those for the interface, 
primitives (steady and unsteady), RHS, boundary, and output metrics. These are all contained within 
the file arrays.mod which defines the MODULE arrays. Approximately 100 static arrays contained 
within this module were subsequently updated to allocatable form. The introduction of allocatable 
arrays also makes the code more flexible as the array dimension can now be read from an input file, 
hence there is no need to recompile the BOFFS code when changing the array sizes for different 
grids. 
 
For the 12 million grid point cases, these now work with the PGI compiler thus enabling at least a 
10% representative speedup over the GNU compiler. 

4.4 Updating the OpenMP 

 
In addition to the original objectives, a short study was done for the scalability of the OpenMP 
sections in solve.f90. This routine performs the TDMA solver and from the previous CrayPAT profile, 
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it can be seen that it takes up 43.8% of the overall run-time, in particular the main loop. With the 
initial OpenMP implementation scalability was lost above 6 threads, because the local domain was 
very narrow in one direction (i.e. on average 40:1). 
 
To improve OpenMP scalability, a red-black decomposition of computation was implemented in 
solve.f90 for the main loop and this algorithm now scales reasonably up to 32 threads.  In addition to 
the implementation of the red-black decomposition for the OpenMP threads, the number of 
OpenMP threads available is now collected with the omp_get_max_threads function which gets the 
number straight from the OMP_NUM_THREADS environment variable.  
 
While testing scalability with the default compilers on HECToR, it was noticed that PGI was having a 
problem running the code with more than a single thread, even though it worked fine with GCC and 
CCE. The code would not progress past the main loop in solve.f90  and  it was discovered that this 
was due to the volatile use of an INTEGER array, 'map'. The solution was to use the following 
declaration of ‘map’ 
 
INTEGER, volatile :: map(0:maxsizeline,0:maxsizeline) 
 
The directive !$OMP FLUSH(map) was already in the code, but volatile variables are part of the 
Fortran 2003 language standard, both GCC and CCE were able to identify this whereas PGI was not. 
 
Furthermore the source code was split as one module per file for a faster compilation and some out 
of bound array accesses were corrected. The NAG compiler was also used (in depend mode) to 
generate makefile dependencies for the new BOFFS source code. 
 

4.5 Validation 

 
To validate the updated version of BOFFS, several runs were performed on phase 3. These were 
done to both check the results and record timings for the new code. All runs were performed using 
code compiled with GCC 4.6.3, as this was used to compile the original version of the code. The runs 
were performed with 1, 2 and 4 MPI tasks per 32 core HECToR phase 3 node. A comparison between 
the original and new code is given in Table 3. Here, we see that for the new code scalability is only 
better for the 32BLK_12M and 32BLK_3M cases, this is because these both involve more MPI 
communication than the 4BLK cases. In the case of the single threaded runs, the new code is slower 
for the 4BLK cases due to the overhead with the creation of the new OpenMP implementation for 
the main TDMA solver. However, there is a 1.4 times speedup in the 32BLK cases due to the 
improved OpenMP in the TDMA.  
 

Test Cases Wall clock time to perform 1 time step (in seconds) 

Original code New code 

1 thread 8 threads 1 thread 8 threads 16 threads 32 threads 

4BLK_3M 82.4 27.1 114.5 30.5 26.3 25.4 

4BLK_12M 396.3 122.2 544.15 137.4 122.0 115.0 

32BLK_3M 12.63 5.7 16.4 4.0 4.0 4.6 

32BLK_12M 62.5 27.2 62.8 18.5 18.1 18.5 

 
Table 3: Comparison between the original and new code. 
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4.6 Compiler Performance Comparison 

 
Before the beginning of this project, it was noticed that BOFFS gave better performance with PGI 
than with GCC, so the aim of WP2 was to enable the code to compile with PGI. Therefore, results will 
be presented for the performance of the new BOFFS code with the default compilers on HECToR: 
Gnu (GCC), PGI and Cray (CCE). 
 
The compiler options (FLAGS) which give the best code performance for BOFFS are as follows:  
 
GCC 4.6.3 FLAGS= -Ofast –fopenmp 
PGI 12.5.0 FLAGS= -fast –mp 
CCE 8.0.6 FLAGS= -O ipa1 
 
The results in Figures 4-7 show that CCE generally gives best performance and OpenMP scalability, 
with PGI a close second.   
 

 

   Figure 4: Compiler performance for the 3 million grid point, 4 block case. 

Scalability of the OpenMP is better for the 4BLK_3M and 4BLK_12M test cases as shown in Figures 4 
and 5, this is due to the larger number of grid points per block (i.e. 750,000 and 3 million) and so 
there is more scope to get a good speed up going from 8 to 32 threads per block. Scalability for up to 
8 OpenMP threads is efficient for all four of these test cases, however use on only problem sizes 
comparable the larger 4BLK_3M and 4BLK_12M cases may prove worthwhile.  
 
All runs were performed with at most one MPI task per 8 core NUMA die and in the case of the 
4BLK_12M test case, each MPI task was allocated to a single Interlagos 16-core chip due to the larger 
memory requirements (i.e. the phase 3 nodes used were half populated). 
 
For the 4BLK_12M and 32BLK_12M test case results shown in Figures 5 and 7, the new code with 
PGI or CCE gives on average a 1.5 times speedup for the 12 million grid point, 4 and 32 block cases, 
which is better than the original aim of achieving a 20% speedup. 
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   Figure 5: Compiler performance for the 12 million grid point, 4 block case. 

 

 
   Figure 6: Compiler performance for the 3 million grid point, 32 block case. 
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   Figure 7: Compiler performance for the 12 million grid point, 32 block case. 

In general, the most cost effective solution for using BOFFS on HECToR phase 3 is with 8 OpenMP 
threads, and either 2 or 4 MPI tasks per node depending on the size of the problem. 

 

5 Example Simulations 
 
To end this report, some recent results from LES and hybrid RANS-NLES simulations performed with 
BOFFS on HECToR, will be presented:  

5.1 High Pressure Turbine 

 
This is an instantaneous flow from a BOFFS calculation of a high pressure turbine blade (HPT) as 
given in Figure 8 showing zones of separated large scale vortical structures contaminating the span 
of the blade.   

 
Figure 8: Flow in high pressure turbine using RANS-NLES. 
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5.2 Low Pressure Turbine 

 
BOFFS simulations of a flat plate with an imposed pressure gradient, representative of a low 
pressure turbine blade (LPT), are presented.  The upper boundary of the computational domain is 
specifically contoured to impose an adverse streamwise pressure gradient as shown in Figure 9.   

 

 

Figure 9: Computational domain and the boundary conditions considered.  Contours show z-
vorticity, with incoming box turbulence. 

 
This is representative of the flow around the leading edge of a LPT blade. Two simulations, without 
and with incoming free-stream turbulence, labelled Simulation A and B respectively were also 
performed.  The incoming turbulence intensity was set to 4% in simulation B. 
 

 
(a) 

 
(b) 

 

Figure 10: Iso-surfaces of vorticity magnitude for: (a) Simulation A with laminar inflow, (b) Simulation 
B with turbulent inflow. 

 

 

 

 

 

 

 

 

 
Figure 11: Wake induced transition and end wall flow for a T106A blade. 
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The iso-surfaces of vorticity magnitude for simulations A and B are shown in Figure 11. While the 
separated shear layer prior to transition is fairly two dimensional in simulation A, spanwise 
undulations clearly appear in simulation B. These undulations are the footprints of what are called 
Klebanoff modes. A successful eddy resolving approach needs to capture such modes when 
modelling LPTs. 

 

5.3 Rim Seal 

 

 

 

 

 
 
 
 
 
 
 

 
 
 
 

Figure 12: (a) Cavity LES grid, (b) vorticity magnitude isosurfaces for cavity geometry. 
 
Using BOFFS with a validated modelling methodology the interaction of sealant flows with the main 
stream can be studied in much greater depth.  An example is given in Figure 12(b) where the rim seal 
cavity flow can be seen to substantially influence the main passage endwall and separation zones. 
The use of LES and hybrid RANS-NLES will allow many more complex flow systems to be studied in 
detail and improved upon, at a cost much lower than that of experimental rig testing. 

 

5.4 Labyrinth Seal 

 
A labyrinth seal geometry as shown in Figure 13 is representative of those found at blade 
tips/shrouds and throughout the internal air system.  The flow generated by this seal is again 
complex.  It includes regions of high acceleration, separation, recirculations of different scales and a 
high velocity rotating lower wall. 
 
In Figure 13 (a), vorticity contours of the flow field are shown. There is high vorticity near the 
rotating wall showing the boundary layer type flow, with vortices shed off the tooth tips.  Hence this 
flow contains both wake and boundary layer type turbulence.   
 
All of the simulations presented can be obtained in less than 1 month using 500 processing cores.  

 
 
 

(a) (b) 



18 

 

 
 
 
 
 
 
 
 
 
 
 

Figure 13: (a) Lab Seal Mesh, (b) Vorticity magnitude contours of Lab Seal LES flow field. 

 
 
 

6 Conclusions 
 
The aim of this project was to enable at least a representative 20% speedup in performance over the 
original BOFFS code and also enable scalability to at least 100 blocks. The results in section 4 have 
demonstrated that this has been achieved and OpenMP scalability has been improved in general, for 
up to 8 threads. In particular the new code with PGI or CCE gives on average 1.5 times speedup for 
the 12 million grid point, 4 and 32 block case. Furthermore, using the 12 million grid case with 4 
blocks as an example having 3 million grid points per block, comparative weak scalability for a 
problem just over 30 times larger would take BOFFS to more than 100 million grid points and more 
than 100 blocks. 
  
Given that BOFFS is a versatile overset, structured code, it will continue to be used on HECToR for a 
variety of turbomachinery problems including heat and cooling film technology.  It will also provide a 
platform for broadband noise calculations that will require of the order of 4,000 kAUs per HECToR 
job.  Immediate plans include collaborating with other members of Cambridge UGTP Whole Engine 
Computational Aeroacoustics Consortium, who have successfully obtained an EPSRC grant for 
computing resources on HECToR.  In particular, this dCSE work will now allow BOFFS to use HECToR 
to facilitate the development and testing of new ideas which have been generated from previous 
research.  It is also planned to collaborate with internationally leading research groups and the wider 
HPC community through the next UK Applied Aerodynamics HECToR consortium. Through 
EP/I017771/1, the UKTC and the new UKAAC (under preparation) substantial resource (15,000 kAUs) 
is planned for allocating to BOFFS usage for investigation of the aerodynamics and aeroacoustics of 
complex geometry hot jets. 
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