
1

Enhancement of high-order CFD solvers for many-core
architecture

Phil Ridley and Yiqi Qiu,

Numerical Algorithms Group Ltd,
Wilkinson House, Jordan Hill Road,

Oxford, OX2 8DR, UK
October 7, 2013

 Abstract

 In turbomachinery design, Reynolds averaged Navier-Stokes (RANS) models commonly

encounter problems when dealing with turbulent flows dominated by unsteady features such as
convecting wakes, large scale separations and complex vortical structures. These render both
RANS and unsteady RANS theoretically questionable, even for basic jets. On the other hand,
Large eddy simulation (LES) is showing tremendous promise, because the turbulent flow
structures are fully resolved numerically, rather than approximated (as in the case with RANS).
However, LES requires the use of meshes of the order of 100 million grid points, in order to
capture the intricate turbulent flow structures. Typical simulations for fourth order space-time
correlations of turbulent fluctuations also require long run times (>12hrs). The aim of this
project is to improve the performance of the structured CFD codes BOFFS and NEAT, for better
use of HECToR and other many-core HPC architectures. A flexible parallel data decomposition
will be implemented in BOFFS to improve scalability with complex-grids. Optimisation of the
solver and the implementation of thread safe OpenMP in NEAT will also be performed in order
to improve performance and scalability.

Table of Contents

Abstract .. 1

1 Introduction .. 2

1.1 Overview .. 2

1.2 Description of the BOFFS code .. 2

1.3 Description of the NEAT code .. 3

1.4 Outline of this project .. 3

2 Implementation on HECToR Phase 3 .. 5

2.1 BOFFS ... 5

2.2 Performance of BOFFS ... 5

2.3 NEAT ... 5

2.4 Performance of NEAT... 5

3 Development of a flexible approach to the block allocation in BOFFS 6

3.1 Implementation ... 6

3.2 Comparison of Performance .. 8

4 Development of OpenMP for the Linear Solvers in NEAT .. 10

4.1 Implementation ... 10

4.2 Comparison of Performance .. 12

5 Conclusions ... 14

6 Acknowledgments ... 15

References ... 15

2

1 Introduction

1.1 Overview
CFD is very important in the design of an aircraft engines as full scale tests are too costly to create
within a reasonable time. Hence, high-resolution computational aerodynamic models and the use of
large HPC resources are essential. Aero engine flows are turbulent and challenging to model because
of their wide range of temporal and spatial scales. The turbulent features are usually resolved using
the Reynolds Averaged Navier-Stokes (RANS) equations. However, RANS and unsteady RANS have
been shown to be inadequate both in accuracy and reliability for design [1]. An exciting and
promising method for accurately modelling and hence understanding these types of flows is that of
Large-Eddy Simulation (LES) [2]. This does not place such high demands on explicit turbulence
models, as most of the flow physics is resolved in time and space rather than attempting to model
the mean effect as in RANS.

However, the main disadvantage of LES is that it places huge demands on the computational
resources to solve the intricate flow structures. Grids with the order of 100 million points are
required to capture near wall streak structures. Furthermore, to accumulate statistical averages
such as those used in acoustics, long run times are required to accurately acquire low frequency
data.

For this project, two applications which are mainly for aircraft engine design will be optimised for
improved performance on HPC architectures: One of which is The Block Overset Fast Flow Solver
(BOFFS) and the other is NEAT. These codes are used to model complex flow scenarios with
structured multi-block decompositions. They carry less overhead in comparison to unstructured
solvers for what is already an expensive solution (5,000 kAUs per run on Phase 3).

BOFFS is used on HECToR to study a wide variety of gas turbine engine components. These include
high pressure turbine blades, low pressure turbines, rim seals and labyrinth seals. The code is also
used to characterize the effects of surface roughness on turbine blades. Recent simulations have
enabled a high fidelity CFD strategy to be developed for turbines that has sufficient accuracy and
consistency to (potentially) replace much rig testing, at a reduced cost. In turn, this will enable
increased automation within design cycles for the accurate modelling of the complex flows
encountered in turbines. The high order numerical scheme and overset approach used in BOFFS
allows arbitrarily complex design configurations for structured grids, making it an ideal LES tool.

NEAT is also used to study a variety of complex flows which involve the use of LES, RANS and Direct
Numerical Simulation. NEAT makes use of numerous RANS and LES models for structured Cartesian
grids, with numerical qualities defined by the discretisation schemes, including several temporal and
spatial discretisations with a flexible higher order cell-face interpolation stencil. The code is
especially suited to efficiently modelling more canonical turbulent flows using LES and refining RANS
models for understanding flow physics. NEAT has also been used internationally, and recently it has
been used to accurately model heat transfer in turbine cooling passages and highly accelerated flows
in labyrinth seals.

1.2 Description of the BOFFS code
BOFFS uses a high-order method for solving the 3D unsteady Navier-Stokes equations on structured
hexahedral meshes, combined with a multi-block overset (or Chimera) grid capability for arbitrarily
complex geometries. BOFFS can be used for RANS, Unsteady RANS and LES of turbulent flows. The

3

code is mostly used with overset structured grids to perform LES of turbulent flows, mainly for
turbomachinery applications.

The convection terms are solved using flux difference splitting methods based on the Monotone
Upstream Centred Scheme (MUSCL) approach of Van Leer [3]. Up to sixth-order central differencing
is possible for the inviscid terms. For the time integration, a Galerkin scheme [4] is used with dual
time-stepping and sub-iterations in pseudo-time with an infinite pseudo timestep. For the solution
of the linear equations required by the implicit relaxation scheme over planes or lines, a tri-diagonal
matrix algorithm (TDMA) and a Gauss-Seidel (GS) scheme are available.

The multi-block nature of BOFFS provides a convenient platform for parallel data decomposition,
which is a common feature shared by many multi-block codes. Therefore, BOFFS may be
instrumented in four different ways: serial (no parallelisation and no block decomposition),
OpenMP-parallel (no block decomposition), MPI-parallel (with a decomposition over the grid blocks)
and MPI/OpenMP parallel (MPI with the addition of OpenMP for the TDMA and GS routines). In the
serial case each block is processed sequentially. With the parallel cases, at each sub-iteration (for
unsteady calculations) or global iteration (for steady calculations), pressure, velocity components
and scalar variables are transferred between blocks via MPI.

1.3 Description of the NEAT code
NEAT is a 3D incompressible flow solver which is primarily used for LES. The code uses structured
Cartesian meshes that are staggered in space. Arbitrary solid regions can also be defined, allowing
complex flows to be studied. In addition to LES, NEAT can also be used for RANS and unsteady RANS
containing a wide variety of turbulence models for each. The code also has a multi-grid capability for
faster convergence. Currently, NEAT is mainly used for LES involving heat transfer applications
including turbomachinery, electronics cooling and other areas.

The core solver uses second order central differencing to obtain cell face fluxes and the second order
Crank Nicolson scheme is used for time advancement. Higher order discretisation is also available.
Each time step will involve a number of inner iterations to converge for each variable. Pressure and
velocity are coupled using the Semi-Implicit Method for Pressure Linked Equations (SIMPLE) scheme.
The staggered grid helps to avoid numerical issues (such as pressure checker-boarding). Finally, the
GS and TDMA schemes are used to solve for lines, planes and volumes of grid points.

1.4 Outline of this project

This software development project will develop both BOFFS and NEAT so that they may both run
more efficiently on HECToR and other many-core HPC architectures. The overall aim of the work is
to further turbomachinery research by enabling the efficient use of these complex flow solvers with
grids with a 100 million points and thousands of blocks. Although both BOFFS and NEAT are
structured multi-block codes, there are several functional differences between them. NEAT differs
from BOFFS in that it uses a staggered grid for pressure velocity coupling, whereas BOFFS uses
curvilinear meshes and explicit smoothing with a special scheme to avoid pressure checker-boarding.
The original objectives for this project were as follows.

WP1: Implement a flexible approach to MPI process allocation in BOFFS

The original parallel decomposition in the BOFFS code was designed such that each grid block was
assigned to a single MPI process. Additional parallelism within each MPI process would be achieved
by assigning a team of OpenMP threads for computations within the grid block. A new MPI

4

decomposition will be implemented such that several blocks may be combined together, forming
multi-block data for each MPI process.

There are two communications subroutines in BOFFS: one which takes care of the pack and send
(packvar_send) and the other for receive and unpack (recvvar_unpack) between buffers. These
subroutines will be redeveloped to allow a flexible approach to specifying a varying number of blocks
per MPI processes and the facility to read in a user specified configuration file 'mpi_cfg.in' which
specifies the block allocation will also be implemented.

To demonstrate the effectiveness of the flexible decomposition, a test case with 50 million cells and
100 grid blocks with a complex structure will be run on HECToR. This will show at least 20%
reduction in run-time for the flexible decomposition compared with the original one block per MPI
process decomposition.

WP2: Implement OpenMP sections in the TDMA and GS routines in NEAT

Since the structured multi-block nature of NEAT is shared with BOFFS, the parallel decomposition
was also one grid block per MPI process. However, unlike BOFFS, multi-block process assignment is
not the foremost concern to improve run-time in NEAT, since typically 50% or more of the overall
run-time is consumed by the linear equations solver and subsidiary routines. There are two linear
solvers available in NEAT: TDMA and GS. Either solver may be used for each plane (x,y or z) in order
to achieve optimal numerical convergence, and this will depend upon the nature of the flow.

The TDMA and GS routines are in the subroutine solve3, which consists of over 1400 lines of code.
This part of the work will be to implement thread safe OpenMP within these routines, and there will
be at least 10 regions where loops will need to be developed. The solve3 routine will allow most of
the variables to be declared PRIVATE within threads allowing the use of CRITICAL to be avoided
wherever possible and DYNAMIC scheduling with the NO WAIT clause to be used wherever possible.
To achieve efficient mixed-mode performance within the MPI parts of the code, only the master
thread will make the MPI calls. For large enough problems, this work will enable NEAT to utilise
more cores per MPI process.

The new mixed-mode parallel decomposition will be such that each MPI process will still work with a
single block but with the addition of intra-block OpenMP parallelisation for the TDMA and GS
solvers. To demonstrate the effectiveness of the new mixed-mode developed code, a test case for
an unsteady flow using 128 blocks and 8 OpenMP threads (128 MPI processes with 8 threads per
process) will be compared to the original code. The expected performance improvement will be a
20% reduction in run-time.

WP3: Implement OpenMP in the subsidiary routines of NEAT

The 50% overall run-time consumed by the linear equations solver and subsidiary routines in NEAT is
roughly made up as 40% and 10% respectively. Therefore the remaining part of the work will be to
implement thread safe OpenMP in the subsidiary routines. These are used to calculate the
coefficients and source terms to weight the nodal variables for the U,V,W velocities, the pressure
and the temperature: coeffu, coeffv, coeffw, coeffp and coefft. Each one of these routines contains
around 200 lines of code and either two or three loops which will require OpenMP parallelisation.

To demonstrate the performance of the combined OpenMP developments, the same unsteady flow
test case as in WP2 will be demonstrated. A further 3% reduction in run-time will be expected when
compared with the code developed from WP2.

5

2 Implementation on HECToR Phase 3

2.1 BOFFS
BOFFS is written in Fortran 90 and consists of around 22,000 lines of code. MPI is used for
communication of the physical flow variables: pressure, velocities and temperature, when the code
is run with a block decomposition. OpenMP is used for the optional parallelisation of the TDMA and
GS routines. The main sections of code concern grid pre-processing (and flow processing for
restarts), time advancement and solution post processing. The output files for visualisation are
written as binary in PLOT3D format along with restart files.

For the main calculation firstly the boundary conditions and metric terms are set, then for the main
time-step loop, the RHS side of the equations will be constructed and then solved using either a
TDMA and GS implicit relaxation scheme. The choice of solver will depend upon the mesh and flow
characteristics. The boundaries and arrays will then be updated prior to the next iteration. This
simple method of solution is a popular choice for many CFD solvers since it has a low storage
requirement relative to efficiency.

2.2 Performance of BOFFS

BOFFS is capable of scaling well to at least 1000 cores with non-complex grids (i.e. those grids having
either one or two neighbours per block). Such grids may be divided into ‘blocks’, where each one of
these ‘blocks’ is assigned to a single MPI process. However, for complex grid configurations with
overset meshes, there will usually be a variation in the number of neighbours per block, which is
unsuitable for this method of block decomposition.

In such configurations, there will usually be a central section of the grid e.g. several cooling holes,
each of which must be treated as separate blocks due to their specific mesh type, and ‘core’ blocks
which have fewer grid points. The block division is governed by the mesh topology and therefore,
the original MPI data decomposition for the grid, resulted in a very uneven distribution of
neighbours per block, which severely limits scalability. Therefore, WP1 will be to implement a
flexible decomposition to allow multiple blocks to be assigned per MPI process and therefore
improve the performance of the data transfers.

2.3 NEAT

NEAT is also written in Fortran 90 and consists of around 30,000 lines of code with around 20
subroutines. As with BOFFS, a block decomposition is used with MPI for the communication of the
physical flow variables: pressure, velocities and temperature.

At the beginning of each simulation, the pre-processing includes wall distance calculations and the
calculation of polynomial coefficients for higher order schemes (if required). The implicit solver used
in the main time-step loop is performed using either a TDMA and GS implicit relaxation scheme. At
the end of a simulation, flow data is written to binary restart files and ASCII files in Tecplot360
format for visualisation.

2.4 Performance of NEAT

The parallel performance and efficiency of NEAT is good for certain grids and problem sizes, however
this reduces for larger grids and for more than 256 cores. Profiling analysis showed that around 46%
of the run-time is taken up by solve3 (for the TDMA or GS matrix solver), followed by a combined
time of around 29% for the subsidiary routines which calculate the coefficients and source terms to

6

weight the nodal variables for the U,V,W velocities, the pressure and the temperature (coeffu,
coeffv, coeffw, coeffp and coefft). The inefficiency in the solve3 routine causes an imbalance in the
timings for each MPI process, with the slowest MPI process taking twice as long as the fastest.

Therefore WP2 will be to improve the scalability performance of NEAT by implementing OpenMP
within the main loops for the solvers in solve3 and also in the subsidiary routines (WP3). A red-black
approach with OpenMP will be used for the TDMA and GS solvers to enable each MPI process (or
block) to run in an efficient hybrid mixed-mode. The use of OpenMP also has the advantage of
allowing higher core counts with fewer grid blocks for larger sized problem.

3 Development of a flexible approach to the block
allocation in BOFFS

3.1 Implementation
The first development was to replace the array, exchangematrix(1:MaxNBlkMPI, 1:MaxNBlkMPI).
This was used to store the size of the MPI message buffers for data passed between neighbouring
processes. This array was replicated on each of the total number of MPI processes, MaxNBlkMPI. As
each process only needs to know the size of neighbouring data buffers for receiving from or sending
to, it is more efficient to store these sizes in the local arrays RecSize(1:MaxNBlkMPI) and
SendSize(1:MaxNBlkMPI).

The original MPI decomposition in BOFFS was fixed at one grid block per MPI process, so the second
development was to add the facility for a user configuration file, mpi_cfg.in, for storing the data for
describing the flexible MPI process allocation. This file will be read in by the master process and then
broadcast to the others. The following data will be read in (where MaxNBlki is the actual number of
blocks on each process and MaxNBlkMPI is the total number of MPI processes):

value of MaxNBlki for process i (ni), …, (i=0, MaxNBlkMPI-1)
list of block numbers for process i (ni entries), …, (i=0, MaxNBlkMPI-1)

(where ∑ni = block_number i.e. total number of blocks)

E.g. to assign 12 blocks to 12 MPI processes, with 1 block per MPI process
1,1,1,1,1,1,1,1,1,1,1,1

1,2,3,4,5,6,7,8,9,10,11,12

Or, to assign 12 blocks to 5 MPI processes
3,3,3,2,1

1,2,3 4,5,6 7,8,9 10,11 12

The list of block numbers for process i must be in ascending numerical order due to the method
which will be used for determining the block per process assignment. The data will be copied to the
array num_rankblock(1:MaxNBlkMPI), which will store the values of MaxNBlk for each process; and
rank_block(1: num_rankblock(1: MaxNBlkMPI),MaxNBlkMPI), for the list of local to global block
indices. These arrays will be replicated on each process.

By comparing the serial form (mpi_flag==0) and the parallel form (mpi_flag==1), it was observed that
those parts of BOFFS affected by any modification to the original decomposition, would have the
following loop structure (where numblocks is the total number of blocks):

7

 IF (mpi_flag==0) THEN

 DO i = 1, numblocks

 …

 CALL currentblock(i) ! set offsets for data

 Perform calculations on local arrays, e.g. pval(i,:,:,:)
 …

 END IF

 END DO

 ENDIF

 IF (mpi_flag==1) THEN

 …

 CALL currentblock(my_rank) ! set offsets for data

 Perform calculations on local arrays, e.g. pval(my_rank,:,:,:)
 …

 ENDIF

In parallel form, each process deals only with its own block (i.e. originally one block and several
blocks for the new flexible approach). But the serial form works sequentially through all blocks. This
was a useful observation, since for the new block decomposition, the main difference will be that
MaxNBlk may vary in size for each MPI process. So the next update involved replacing all instances
of the previous loop structure, with the following:

DO i = 1, numblocks

 CALL currentblock(i) ! set offsets for data

 setblock = .FALSE.

 IF (mpi_flag==0) THEN

 setblock = .TRUE.

 nblock = i

 ENDIF

 IF (mpi_flag==1) THEN

 nrcheck = num_rankblock(my_rank)

 DO rcheck = 1, nrcheck

 IF (rankblock(rcheck,my_rank)==i) THEN

 setblock = .TRUE.

 nblock = nblock+1

 ENDIF

 END DO

 ENDIF

IF (setblock) THEN

…

Perform calculations on local arrays, e.g. pval(nblock,:,:,:)! where nblock<MaxNBlk
…

ENDIF

ENDDO

Therefore, each particular MPI process will only deal with its own blocks (when setblock is TRUE). To
implement this new loop structure throughout was time consuming, as there are over 105 such
cases. Three further routines were also updated, to take account of the extra data storage required:
externalblockboundariesmpi, packvar_send and recvvar_unpack.

The subroutine externalblockboundariesmpi performs updates to the local variables. This subroutine
is called before sending updates to the neighbouring block boundaries, and after receiving updates
for the boundaries from neighbouring MPI processes. The original block decomposition was fixed at
one block per MPI process, but for the new flexible approach, there may be more than one block.
Therefore, externalblockboundariesmpi would need to be updated to handle both local blocks (i.e.
those blocks assigned to the same MPI process) and external blocks (i.e. those blocks assigned to
neighbouring MPI processes).

8

To implement a method for distinguishing between local and external blocks, a LOGICAL array,
mpineighs(1: MaxNBlk) was defined on each MPI process. The entries for this array were defined by
performing a once only check between each local block and all other local blocks. This was
implemented using the replicated array, rank_block (list of local to global block indices), such that
mpineighs(i) is FALSE for a local block, or TRUE for an external one. Therefore, the new method for
updating the local variables in externalblockboundariesmpi, will firstly be performed for the external
blocks, and then secondly, for the other local block boundaries (i.e. excluding the local block itself).

The subroutines packvar_send and recvvar_unpack perform the packing and unpacking of the data
buffers. Before describing the final developments, it is worthwhile to mention that there will need to
be some consideration for the order of the blocks when packing and unpacking. This was not
required with the original allocation of one block per MPI process. So for the ordering, the local

array rankneigh(1:3, 1:MaxNBlk) has been added for each MPI process. This array contains the
global indices of the block data that will need to be copied from (from_block), the global indices of
the block data that needs to be copied to (to_block) and the indices of the neighbouring MPI
processes (so that the global number of the MPI process can then be determined).

To achieve the correct order when unpacking the buffers for the block data, a further local array,
unpackord(1: MaxNBlk) was also added. This contains a look up table for the indirect addressing of
the blocks to be unpacked. It is necessary to perform the unpacking of the blocks in their correct
order since every single MPI buffer may contain the data for several blocks. Therefore each MPI
process will need to know the order in which the original data was packed. E.g. if MPI process 1 and
MPI process 3 contain neighbouring blocks, to send data from process 1 to 3, it may be that data
from process 1 is packed in the order of (1,8) (1,9) (2,9) (3,7) but received from process 3 as (7,3)
(8,1) (9,1) (9,2) (i.e. the same order that it was packed on process 3); in this case, the correct
unpacking order for data from process 3 would be found by accessing unpackord.

Finally, to correctly handle the buffers when packing or unpacking the data, the offset of where the
new data is to be added to and taken from the buffers, must also be stored. Several local variables
for the block boundaries need to be communicated to one or more different blocks, therefore the

array countn(1: MaxNBlk) was added. This is for storing the starting location of where the next local
block data from each neighbouring MPI process is stored within the data buffer.

3.2 Comparison of Performance

Performance of the new BOFFS code with the flexible allocation of blocks was demonstrated on
HECToR Phase 3. The test case was a subsonic jet LES, with 50 million cells and 108 grid blocks. A
transient state for this case is shown in Figure 1. A complex grid configuration is used, as shown in
Figure 2(a) and 2(b), where different blocks are represented by separate colours. To avoid an axis
singularity there are central ‘core’ blocks and this region is represented by the thin rectangular area,
which is marked in black just above the horizontal line in Figure 2(a). It is worthwhile to note that
the non-central ‘core’ blocks contain relatively fewer points in the x and y directions, which is
extended throughout the domain. The original method of allocating one block per MPI process
would lead to a large number of neighbouring blocks, as shown by the separately coloured blocks
which surround the central ‘core’ region in Figure 2(a). Using the new flexible allocation of blocks,
the ‘core’ region may be split into many smaller blocks (i.e. multiple ‘core’ blocks), as shown in
Figure 2(b). Here, assigning localised surrounding blocks to the same MPI processes leads to a similar
number of neighbours for each MPI process which gives improved load balancing and scalability.

9

Figure 1: U-velocity contours for a high LES of a jet, using 50 million cells.

(a)

(b)

Figure 2: (a) block structure with single ‘core’ block for the jet mesh, (b) block structure with multiple
‘core’ blocks for the jet mesh.

The wall clock timings to perform 10 time step iterations are given in Table 1, along with the
parameters used for aprun. The results are shown for GCC 4.7.2 and PGI 12.10.0. With PGI, the flags
used were -fast Mipa=fast, and with GCC, -Ofast -funroll-loops -ftree-vectorize.

The rows where N=108 concern the original method of allocating one block per each MPI process,
and those with N=54 are for the new flexible allocation of blocks. It is worthwhile to note that GCC
4.7.2 gives better overall performance than PGI 12.10.0. Also, the maximum number of MPI
processes per HECToR node is limited to 4 for the block structure with a single ‘core’ block, this is
because of the memory requirements of the larger blocks. For the block structure with multiple core
blocks, the memory required per block is less and therefore it is possible to allocate 8 MPI processes
per node (with a maximum of 2 threads per process).

10

N n d S mppwidth Time(s) GCC Time(s) PGI

108 4 1 1 864 144.92 151.81

108 4 2 1 864 102.79 114.13

108 4 4 1 864 78.76 89.23

108 4 8 1 864 67.28 78.87

54 8 1 2 224 231.61 243.08

54 8 2 2 224 124.05 132.77

54 4 4 1 448 72.18 77.70

54 4 8 1 448 50.10 53.84

Table 1: Timings (in seconds) to perform 10 iterations with 50 million cells and 108 grid blocks.

The aim of this work was to be able to show at least 20% reduction in run-time for the new flexible
decomposition compared with the original one block per MPI process decomposition. Far better
performance than expected can now be achieved with BOFFS, e.g. comparing the use of 8 threads
for the single ‘core’ block case (where N=108) with the multiple core blocks (where N=54), the wall
clock time is reduced from 67.28s to 50.10s (with GCC) using nearly half the number of cores.

4 Development of OpenMP for the Linear Solvers in NEAT

4.1 Implementation
In NEAT, the MPI data decomposition is based on the multi-block structure which works well.
However, for a typical run at least 50% of the overall run-time is consumed by the linear equations
solver and subsidiary routines. The two linear solvers available in NEAT: TDMA and GS, may be
employed in each plane (x,y or z), and either solver may be used in order to achieve optimal
numerical convergence, depending upon the nature of the flow. Both the TDMA and GS schemes
consist of calculations over 3D-nested loops, and although these are widely used schemes, NEAT
uses modified versions in order to exploit flow features for faster convergence.

The TDMA and GS routines are in the subroutine solve3, which consists of over 1400 lines of code
with around 18 main loops for TDMA x (non-periodic), TDMA x (periodic), GS x, TDMA y, GS y, TDMA
z (non-periodic), TDMA z (periodic), GS z. Before implementing the OpenMP code, it was noticed
that restructuring the main loops would be beneficial to performance.

For WP2, the first update for the new code (version 1) was to ensure that the loops for TDMA and GS
were ordered for improved memory access. The TDMA / GS x with z,y,x; TDMA / GS y with x,z,y and
TDMA / GS z with y,x,z (ordered outer most to inner most loop). These calculations use pre-
determined coefficients for the off-diagonal terms and are stored within 3D arrays. Therefore, it was
only possible to arrange the TDMA and GS calculations for x with the inner most loop accessing the
first array index. This could not be done for y and z, since each inner most loop has to be performed
within that particular plane.

Secondly, wherever possible IF … THEN conditions were either moved outside the loops or
restructured to ensure that the minimum amount of branching was being performed within the
loops, particularly with the inner-most loops. This was possible as most branches were related to
boundary conditions which are fixed throughout the run e.g.

DO i=isq,id-1

IF (i==isq)THEN … ENDIF

IF (i==id-1)THEN … ENDIF

END DO

11

was replaced with

computation with i=isq
DO i=isq+1,id-2

computation with i=isq+1,id-2
END DO

computation with i=id-1

Thirdly, due to the removal of the IF … THEN conditions within the inner-most loop, it was noticed
that vectorisation was achievable for the loops in TDMA x and GS x. However, a separate branch of
the code (version 2) was developed for this, due to the routines in solve3 requiring a lot of extra
code. The main development included the implementation of a new array, nblr, which is used as a
replacement for an IF … THEN condition related to the boundary. This was achieved by setting nblr
to 0.0 or 1.0 at each grid point, depending upon whether the point is a boundary one or not. The
boundary condition can then be set via multiplication, rather than by performing the IF … THEN for
each grid point.

The next part of the work was to Implement thread safe OpenMP for the outer loops for TDMA x
(non-periodic), TDMA x (periodic), GS x, TDMA y, GS y, TDMA z (non-periodic) and TDMA z (periodic).
This was performed using STATIC scheduling, which gave the best performance for the test case
problem. As well as the addition of OpenMP to these loops, a red-black decomposition was also
implemented for GS x, GS y and GS z. Initially the loops were in a natural ordering. The red-black
ordering means that the outer most loops are split in two: one for the odd index and another for the
even index. The calculation within each of these loops may then be performed in parallel with
OpenMP, it is a widely used standard approach. A 7-point stencil (3D) is used for the solution of the
Navier-Stokes equations, therefore care was required to ensure that the actual loop ordering does
give thread safe answers.

Following a similar approach for WP3, the subsidiary routines in NEAT were also updated. These are
in the files: p.F, t.F, u.F, v.F and w.F. The routines are used for calculating the coefficients and source
terms which are used to weight the nodal variables for the U,V,W velocities, the pressure and the
temperature: coeffu, coeffv, coeffw, coeffp and coefft. Many two-level loops were reordered for
improved memory access e.g.

 DO i=2,id-1

 DO k=ks,ke

 IF(nbl(i,jd,k)==-1.AND.nbl(i-1,jd,k)==-1)THEN

 IF(((v(i,jd,k)+v(i-1,jd,k))/2)>0.0)THEN … ENDIF

 ENDIF

 ENDDO

 ENDDO

was replaced with

 DO k=ks,ke

 DO i=2,id-1

 IF(nbl(i,jd,k)==-1.AND.nbl(i-1,jd,k)==-1)THEN

 IF(((v(i,jd,k)+v(i-1,jd,k))/2)>0.0)THEN … ENDIF

 ENDIF

 ENDDO

 ENDDO

12

Overall, the OpenMP parallel decomposition works well with the original MPI data decomposition
and because this level of parallelism is contained only within the TDMA and GS solvers, there is no
need to be concerned about thread safety with any other parts of the code which use MPI.

4.2 Comparison of Performance
Performance of the new code when compared with the original is shown in Figure 3. This test case is
for an unsteady flow over a structured grid with 12,642,048 points and 128 blocks (i.e. 98,766 grid
points per block). The results from HECToR are shown for GCC 4.7.2 and PGI 12.10.0. With PGI, the
flags used were -fast Mipa=fast, and with GCC, -Ofast -funroll-loops -ftree-vectorize. The horizontal
axis shows results for three versions of the code: the original, new version 1 (with the developments
described in the previous section, apart from the new array, nblr) and new version 2 (with the
additional developments for the array nblr, to enable the compilers to achieve some further
vectorisation).

Each run was performed for 1000 time steps and timings were taken for the computation only, with
no I/O. The number of MPI processes was fixed at 128, which is also the number of blocks in the
grid. However, the total number of cores used ranged from 128 to 1024 to vary process placement.
With more than 128 cores, although some cores are not used, it was observed that between 28%-
36% reduction in run-time can be achieved. With no OpenMP (d=1), it is more costly to run a single-
threaded job in this way, however with OpenMP and for larger problem sizes, this could be
beneficial.

Overall in Figure 3, even without any OpenMP, there is already a 24% reduction in run-time for the
new code (version 1 and version 2) compared with the original code. Furthermore, for the MPI only
NEAT, PGI 12.10.0 gave an overall better performance than GCC 4.7.2.

Performance of the new code with OpenMP is shown in Figure 4. Here, the same test case was used
as the one used to generate the results shown in Figure 3. This time, NEAT was run in hybrid parallel
mode, with OpenMP for the TDMA and GS routines, as developed in WP2. The first point to notice
about the results was that here, GCC 4.7.2 gave an overall better performance than PGI 12.10.0.
Scalability is reasonable for up to 8 OpenMP threads, comparing the run with mppwidth=1024 and 8
threads in Figure 4 with the corresponding four runs with mppwidth=1024 in Figure 3. For the
original code (Figure 3), MPI only timings were 75.1357s with GCC 4.7.2 and 73.9947s with PGI
12.10.0. For the new version 1 (Figure 3), these were 63.736s with GCC 4.7.2 and 61.3346s with PGI
12.10.0. In Figure 4, using 8 OpenMP threads (with the same number of cores), the run-time is
36.1021s with GCC 4.7.2 and 45.7929s with PGI 12.10.0. Comparing these figures with the results for
the original code, the total run-time for the new version is less than half that of the original. Please
note that as this comparison is between the original code and new version, there was already a 24%
reduction in run-time, without any OpenMP. Also, the section of code which has been developed
consumes just over half of the total run-time, therefore this comparison has been made to highlight
the original aim of achieving a 20% overall speedup, against the result of 50%, which is better than
expected.

Performing the same test case again, but with OpenMP for the TDMA and GS routines, and also the
subsidiary routines as developed in WP3, it was observed that a further 3% reduction in run-time
could be achieved for this particular test case.

13

Figure 3: Comparison between compilers and versions with no OpenMP (MPI only).

Figure 4: Comparison between compilers for the improved code with OpenMP.

14

5 Conclusions
The overall objective of this project was to improve the parallel implementation of two separate
structured multi-block codes (BOFFS and NEAT) for improved performance on HECToR and future
high-end HPC architectures. For BOFFS, this was achieved by implementing a flexible parallel data
decomposition, and for NEAT by implementing hybrid parallelism within the most computational
part of the code (the tri-diagonal matrix, Gauss-Seidel and subsidiary routines) via the use of
OpenMP.

For BOFFS, the aim was to demonstrate at least 20% reduction in run-time for a representative 50
million cell test case using around 100 grid blocks with a complex structure, when comparing the
new flexible decomposition with the original one block per MPI process decomposition. The new
flexible data decomposition for BOFFS was successfully implemented, which now allows an arbitrary
number of blocks to be assigned to the same MPI process. A demonstration of the capability of the
flexible decomposition for a subsonic jet LES, with 50 million cells and 108 grid blocks showed that
far better performance than expected can now be achieved with BOFFS. Comparing the use of 8
threads for the single ‘core’ block case (where N=108) with the multiple ‘core’ blocks (where N=54),
showed that the wall clock time is reduced from 67.28s to 50.10s (with GCC) using nearly half the
number of cores.

For NEAT, the aim was to achieve a 20% reduction in run-time for the new mixed-mode developed
TDMA and GS solvers, for a representative unsteady flow test case with 128 blocks and 8 OpenMP
threads (128 MPI processes with 8 threads per process), when compared with using 1024 cores for
the MPI only code. A further 3% reduction in run-time would also be expected for the addition of
OpenMP to the subsidiary routines.

A new threaded red-black ordering was implemented for the TDMA and GS routines in NEAT, along
with improved memory access for the main computational loops (including those in subsidiary
routines). A test case for an unsteady flow over a structured grid with 12,642,048 points and 128
blocks (i.e. 98,766 grid points per block) was performed for 1000 time steps. To demonstrate the
better performance due to the improved memory access and restructured loops (i.e. without
OpenMP), original and new versions of the MPI only code were compared and a 24% reduction in
run-time was observed for the new code (version 1 and version 2). This was by a comparison with
the original MPI only code, using fully populated nodes. Demonstrating performance with more
cores (mppwidth=1024), only 16-18% reduction in run-time was observed as the original code also
performed better when nodes were not fully populated. Furthermore, for the MPI only NEAT, PGI
12.10.0 gave an overall better performance than GCC 4.7.2.

To demonstrate performance of the new code in hybrid parallel mode, with OpenMP for the TDMA
and GS routines, the same test case was used. Here, GCC 4.7.2 gave an overall better performance
than PGI 12.10.0. Reasonable scalability for up to 8 OpenMP threads was observed for the run with
mppwidth=1024 and 8 threads when compared with the four MPI-only runs, with mppwidth=1024.
Comparing these figures with the results for the original code, the total run-time for the new version
is less than half that of the original, which is good considering that the original aim was to achieve a
reduction of 20% of the total run-time.

This work will enable BOFFS and NEAT to be used on high-end HPC architectures for a variety of
problems for turbomachinery, heat and cooling film technology. In particular, this DCSE project will
now allow BOFFS to use HECToR and ARCHER to facilitate the development and testing of new ideas
which have been generated from previous research. So far HECToR usage of BOFFS stands at over
50,000 kAUs, this has been used for the investigation of the aerodynamics and aeroacoustics of
complex geometry hot jets through EPSRC research grants EP/G027633/1, EP/G069581/1,

15

EP/F005954/1, EP/I017771/1. The code is also used within groups at Cambridge, Warwick and
Cranfield Universities, e.g. for simulations of a Boeing Fan in EPSRC project EP/I010440/1.

6 Acknowledgments
This project was funded under the HECToR Distributed Computational Science and Engineering (CSE)
Service operated by NAG Ltd. HECToR - A Research Councils UK High End Computing Service - is the
UK's national supercomputing service, managed by EPSRC on behalf of the participating Research
Councils. Its mission is to support capability science and engineering in UK academia. The HECToR
supercomputers are managed by UoE HPCx Ltd and the CSE Support Service is provided by NAG Ltd.
http://www.hector.ac.uk

For useful discussions thanks to the lead developer of BOFFS, Dr Richard Jefferson-Loveday, and the
lead developer of NEAT Dr James Tyacke, who are both at the University of Cambridge.

References
[1] M. A. Leschziner, “Turbulence Modelling for Separated Flows with Anisotropy-Resolving
Closures”, Philosophical Transactions: Mathematical, Physical and Engineering Sciences, Vol. 358, pp.
3247-3277.
[2] C. Klostermeier, “Investigation into the Capability of Large Eddy Simulation for Turbomachinery
Design”, University of Cambridge, 2008.
[3] B. van Leer, Upwind-Difference Methods for Aerodynamic Problems Governed by the Euler
Equations, Lectures in Applied Mathematics Vol. 22, pp. 327-336, 1985.
[4] P. G. Tucker, Computation of Unsteady Internal Flows, Kluwer Academic Publishers, Norwell, MA,
2001.

http://www.hector.ac.uk/

