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 Abstract 

 
 In turbomachinery design, Reynolds averaged Navier-Stokes (RANS) models commonly 

encounter problems when dealing with turbulent flows dominated by unsteady features such as 
convecting wakes, large scale separations and complex vortical structures. These render both 
RANS and unsteady RANS theoretically questionable, even for basic jets. On the other hand, 
Large eddy simulation (LES) is showing tremendous promise, because the turbulent flow 
structures are fully resolved numerically, rather than approximated (as in the case with RANS).  
However, LES requires the use of meshes of the order of 100 million grid points, in order to 
capture the intricate turbulent flow structures. Typical simulations for fourth order space-time 
correlations of turbulent fluctuations also require long run times (>12hrs). The aim of this 
project is to improve the performance of the structured CFD codes BOFFS and NEAT, for better 
use of HECToR and other many-core HPC architectures. A flexible parallel data decomposition 
will be implemented in BOFFS to improve scalability with complex-grids. Optimisation of the 
solver and the implementation of thread safe OpenMP in NEAT will also be performed in order 
to improve performance and scalability. 
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1 Introduction 

1.1 Overview  
CFD is very important in the design of an aircraft engines as full scale tests are too costly to create 
within a reasonable time. Hence, high-resolution computational aerodynamic models and the use of 
large HPC resources are essential. Aero engine flows are turbulent and challenging to model because 
of their wide range of temporal and spatial scales. The turbulent features are usually resolved using 
the Reynolds Averaged Navier-Stokes (RANS) equations. However, RANS and unsteady RANS have 
been shown to be inadequate both in accuracy and reliability for design [1]. An exciting and 
promising method for accurately modelling and hence understanding these types of flows is that of 
Large-Eddy Simulation (LES) [2].  This does not place such high demands on explicit turbulence 
models, as most of the flow physics is resolved in time and space rather than attempting to model 
the mean effect as in RANS.   
 
However, the main disadvantage of LES is that it places huge demands on the computational 
resources to solve the intricate flow structures.  Grids with the order of 100 million points are 
required to capture near wall streak structures.  Furthermore, to accumulate statistical averages 
such as those used in acoustics, long run times are required to accurately acquire low frequency 
data. 
 
For this project, two applications which are mainly for aircraft engine design will be optimised for 
improved performance on HPC architectures: One of which is The Block Overset Fast Flow Solver 
(BOFFS) and the other is NEAT. These codes are used to model complex flow scenarios with 
structured multi-block decompositions. They carry less overhead in comparison to unstructured 
solvers for what is already an expensive solution (5,000 kAUs per run on Phase 3). 
 
BOFFS is used on HECToR to study a wide variety of gas turbine engine components.  These include 
high pressure turbine blades, low pressure turbines, rim seals and labyrinth seals. The code is also 
used to characterize the effects of surface roughness on turbine blades.  Recent simulations have 
enabled a high fidelity CFD strategy to be developed for turbines that has sufficient accuracy and 
consistency to (potentially) replace much rig testing, at a reduced cost. In turn, this will enable 
increased automation within design cycles for the accurate modelling of the complex flows 
encountered in turbines. The high order numerical scheme and overset approach used in BOFFS 
allows arbitrarily complex design configurations for structured grids, making it an ideal LES tool. 
 
NEAT is also used to study a variety of complex flows which involve the use of LES, RANS and Direct 
Numerical Simulation. NEAT makes use of numerous RANS and LES models for structured Cartesian 
grids, with numerical qualities defined by the discretisation schemes, including several temporal and 
spatial discretisations with a flexible higher order cell-face interpolation stencil.  The code is 
especially suited to efficiently modelling more canonical turbulent flows using LES and refining RANS 
models for understanding flow physics. NEAT has also been used internationally, and recently it has 
been used to accurately model heat transfer in turbine cooling passages and highly accelerated flows 
in labyrinth seals.  

1.2 Description of the BOFFS code 
BOFFS uses a high-order method for solving the 3D unsteady Navier-Stokes equations on structured 
hexahedral meshes, combined with a multi-block overset (or Chimera) grid capability for arbitrarily 
complex geometries. BOFFS can be used for RANS, Unsteady RANS and LES of turbulent flows. The 
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code is mostly used with overset structured grids to perform LES of turbulent flows, mainly for 
turbomachinery applications. 
 
The convection terms are solved using flux difference splitting methods based on the Monotone 
Upstream Centred Scheme (MUSCL) approach of Van Leer [3]. Up to sixth-order central differencing 
is possible for the inviscid terms. For the time integration, a Galerkin scheme [4] is used with dual 
time-stepping and sub-iterations in pseudo-time with an infinite pseudo timestep. For the solution 
of the linear equations required by the implicit relaxation scheme over planes or lines, a tri-diagonal 
matrix algorithm (TDMA) and a Gauss-Seidel (GS) scheme are available. 
 
The multi-block nature of BOFFS provides a convenient platform for parallel data decomposition, 
which is a common feature shared by many multi-block codes. Therefore, BOFFS may be 
instrumented in four different ways:  serial (no parallelisation and no block decomposition), 
OpenMP-parallel (no block decomposition), MPI-parallel (with a decomposition over the grid blocks) 
and MPI/OpenMP parallel (MPI with the addition of OpenMP for the TDMA and GS routines). In the 
serial case each block is processed sequentially. With the parallel cases, at each sub-iteration (for 
unsteady calculations) or global iteration (for steady calculations), pressure, velocity components 
and scalar variables are transferred between blocks via MPI. 

1.3 Description of the NEAT code 
NEAT is a 3D incompressible flow solver which is primarily used for LES.  The code uses structured 
Cartesian meshes that are staggered in space.  Arbitrary solid regions can also be defined, allowing 
complex flows to be studied.  In addition to LES, NEAT can also be used for RANS and unsteady RANS 
containing a wide variety of turbulence models for each.  The code also has a multi-grid capability for 
faster convergence.  Currently, NEAT is mainly used for LES involving heat transfer applications 
including turbomachinery, electronics cooling and other areas. 
 
The core solver uses second order central differencing to obtain cell face fluxes and the second order 
Crank Nicolson scheme is used for time advancement. Higher order discretisation is also available.  
Each time step will involve a number of inner iterations to converge for each variable.  Pressure and 
velocity are coupled using the Semi-Implicit Method for Pressure Linked Equations (SIMPLE) scheme. 
The staggered grid helps to avoid numerical issues (such as pressure checker-boarding). Finally, the 
GS and TDMA schemes are used to solve for lines, planes and volumes of grid points. 

1.4 Outline of this project 

This software development project will develop both BOFFS and NEAT so that they may both run 
more efficiently on HECToR and other many-core HPC architectures. The overall aim of the work is 
to further turbomachinery research by enabling the efficient use of these complex flow solvers with 
grids with a 100 million points and thousands of blocks. Although both BOFFS and NEAT are 
structured multi-block codes, there are several functional differences between them. NEAT differs 
from BOFFS in that it uses a staggered grid for pressure velocity coupling, whereas BOFFS uses 
curvilinear meshes and explicit smoothing with a special scheme to avoid pressure checker-boarding. 
The original objectives for this project were as follows. 
 

WP1: Implement a flexible approach to MPI process allocation in BOFFS 
 
The original parallel decomposition in the BOFFS code was designed such that each grid block was 
assigned to a single MPI process. Additional parallelism within each MPI process would be achieved 
by assigning a team of OpenMP threads for computations within the grid block. A new MPI 
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decomposition will be implemented such that several blocks may be combined together, forming 
multi-block data for each MPI process. 
 
There are two communications subroutines in BOFFS: one which takes care of the pack and send 
(packvar_send) and the other for receive and unpack (recvvar_unpack) between buffers. These 
subroutines will be redeveloped to allow a flexible approach to specifying a varying number of blocks 
per MPI processes and the facility to read in a user specified configuration file 'mpi_cfg.in' which 
specifies the block allocation will also be implemented. 
 
To demonstrate the effectiveness of the flexible decomposition, a test case with 50 million cells and 
100 grid blocks with a complex structure will be run on HECToR. This will show at least 20% 
reduction in run-time for the flexible decomposition compared with the original one block per MPI 
process decomposition. 
 

WP2: Implement OpenMP sections in the TDMA and GS routines in NEAT  
 
Since the structured multi-block nature of NEAT is shared with BOFFS, the parallel decomposition 
was also one grid block per MPI process. However, unlike BOFFS, multi-block process assignment is 
not the foremost concern to improve run-time in NEAT, since typically 50% or more of the overall 
run-time is consumed by the linear equations solver and subsidiary routines. There are two linear 
solvers available in NEAT: TDMA and GS. Either solver may be used for each plane (x,y or z) in order 
to achieve optimal numerical convergence, and this will depend upon the nature of the flow.  
 
The TDMA and GS routines are in the subroutine solve3, which consists of over 1400 lines of code. 
This part of the work will be to implement thread safe OpenMP within these routines, and there will 
be at least 10 regions where loops will need to be developed. The solve3 routine will allow most of 
the variables to be declared PRIVATE within threads allowing the use of CRITICAL to be avoided 
wherever possible and DYNAMIC scheduling with the NO WAIT clause to be used wherever possible. 
To achieve efficient mixed-mode performance within the MPI parts of the code, only the master 
thread will make the MPI calls. For large enough problems, this work will enable NEAT to utilise 
more cores per MPI process. 
 
The new mixed-mode parallel decomposition will be such that each MPI process will still work with a 
single block but with the addition of intra-block OpenMP parallelisation for the TDMA and GS 
solvers. To demonstrate the effectiveness of the new mixed-mode developed code, a test case for 
an unsteady flow using 128 blocks and 8 OpenMP threads (128 MPI processes with 8 threads per 
process) will be compared to the original code. The expected performance improvement will be a 
20% reduction in run-time. 
 

WP3: Implement OpenMP in the subsidiary routines of NEAT  
 
The 50% overall run-time consumed by the linear equations solver and subsidiary routines in NEAT is 
roughly made up as 40% and 10% respectively. Therefore the remaining part of the work will be to 
implement thread safe OpenMP in the subsidiary routines. These are used to calculate the 
coefficients and source terms to weight the nodal variables for the U,V,W velocities, the pressure 
and the temperature: coeffu, coeffv, coeffw, coeffp and coefft. Each one of these routines contains 
around 200 lines of code and either two or three loops which will require OpenMP parallelisation. 
  
To demonstrate the performance of the combined OpenMP developments, the same unsteady flow 
test case as in WP2 will be demonstrated. A further 3% reduction in run-time will be expected when 
compared with the code developed from WP2. 
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2 Implementation on HECToR Phase 3 

2.1 BOFFS 
BOFFS is written in Fortran 90 and consists of around 22,000 lines of code. MPI is used for 
communication of the physical flow variables: pressure, velocities and temperature, when the code 
is run with a block decomposition. OpenMP is used for the optional parallelisation of the TDMA and 
GS routines. The main sections of code concern grid pre-processing (and flow processing for 
restarts), time advancement and solution post processing. The output files for visualisation are 
written as binary in PLOT3D format along with restart files. 

 
For the main calculation firstly the boundary conditions and metric terms are set, then for the main 
time-step loop, the RHS side of the equations will be constructed and then solved using either a 
TDMA and GS implicit relaxation scheme. The choice of solver will depend upon the mesh and flow 
characteristics. The boundaries and arrays will then be updated prior to the next iteration.   This 
simple method of solution is a popular choice for many CFD solvers since it has a low storage 
requirement relative to efficiency.  
 

2.2 Performance of BOFFS 

BOFFS is capable of scaling well to at least 1000 cores with non-complex grids (i.e. those grids having 
either one or two neighbours per block). Such grids may be divided into ‘blocks’, where each one of 
these ‘blocks’ is assigned to a single MPI process. However, for complex grid configurations with 
overset meshes, there will usually be a variation in the number of neighbours per block, which is 
unsuitable for this method of block decomposition. 
 
In such configurations, there will usually be a central section of the grid e.g. several cooling holes, 
each of which must be treated as separate blocks due to their specific mesh type, and ‘core’ blocks 
which have fewer grid points. The block division is governed by the mesh topology and therefore, 
the original MPI data decomposition for the grid, resulted in a very uneven distribution of 
neighbours per block, which severely limits scalability. Therefore, WP1 will be to implement a 
flexible decomposition to allow multiple blocks to be assigned per MPI process and therefore 
improve the performance of the data transfers. 

2.3 NEAT  

NEAT is also written in Fortran 90 and consists of around 30,000 lines of code with around 20 
subroutines. As with BOFFS, a block decomposition is used with MPI for the communication of the 
physical flow variables: pressure, velocities and temperature.  
 
At the beginning of each simulation, the pre-processing includes wall distance calculations and the 
calculation of polynomial coefficients for higher order schemes (if required). The implicit solver used 
in the main time-step loop is performed using either a TDMA and GS implicit relaxation scheme. At 
the end of a simulation, flow data is written to binary restart files and ASCII files in Tecplot360 
format for visualisation. 

2.4 Performance of NEAT 

The parallel performance and efficiency of NEAT is good for certain grids and problem sizes, however 
this reduces for larger grids and for more than 256 cores. Profiling analysis showed that around 46% 
of the run-time is taken up by solve3 (for the TDMA or GS matrix solver), followed by a combined 
time of around 29% for the subsidiary routines which calculate the coefficients and source terms to 
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weight the nodal variables for the U,V,W velocities, the pressure and the temperature (coeffu, 
coeffv, coeffw, coeffp and coefft). The inefficiency in the solve3 routine causes an imbalance in the 
timings for each MPI process, with the slowest MPI process taking twice as long as the fastest. 
 
Therefore WP2 will be to improve the scalability performance of NEAT by implementing OpenMP 
within the main loops for the solvers in solve3 and also in the subsidiary routines (WP3). A red-black 
approach with OpenMP will be used for the TDMA and GS solvers to enable each MPI process (or 
block) to run in an efficient hybrid mixed-mode.  The use of OpenMP also has the advantage of 
allowing higher core counts with fewer grid blocks for larger sized problem. 

 

3 Development of a flexible approach to the block 
allocation in BOFFS 

3.1 Implementation 
The first development was to replace the array, exchangematrix(1:MaxNBlkMPI, 1:MaxNBlkMPI). 
This was used to store the size of the MPI message buffers for data passed between neighbouring 
processes. This array was replicated on each of the total number of MPI processes, MaxNBlkMPI. As 
each process only needs to know the size of neighbouring data buffers for receiving from or sending 
to, it is more efficient to store these sizes in the local arrays RecSize(1:MaxNBlkMPI) and 
SendSize(1:MaxNBlkMPI). 
 
The original MPI decomposition in BOFFS was fixed at one grid block per MPI process, so the second 
development was to add the facility for a user configuration file, mpi_cfg.in, for storing the data for 
describing the flexible MPI process allocation. This file will be read in by the master process and then 
broadcast to the others. The following data will be read in (where MaxNBlki is the actual number of 
blocks on each process and MaxNBlkMPI is the total number of MPI processes): 
 
value of MaxNBlki for process i (ni), …, (i=0, MaxNBlkMPI-1) 
list of block numbers for process i (ni entries), …, (i=0, MaxNBlkMPI-1) 
 
(where ∑ni = block_number i.e. total number of blocks) 
 
E.g. to assign 12 blocks to 12 MPI processes, with 1 block per MPI process 
1,1,1,1,1,1,1,1,1,1,1,1 

1,2,3,4,5,6,7,8,9,10,11,12 

 
Or, to assign 12 blocks to 5 MPI processes 
3,3,3,2,1 

1,2,3  4,5,6  7,8,9  10,11  12  

 
The list of block numbers for process i must be in ascending numerical order due to the method 
which will be used for determining the block per process assignment. The data will be copied to the 
array num_rankblock(1:MaxNBlkMPI), which will store the values of MaxNBlk for each process; and 
rank_block(1: num_rankblock(1: MaxNBlkMPI),MaxNBlkMPI), for the list of local to global block 
indices. These arrays will be replicated on each process. 
 
By comparing the serial form (mpi_flag==0) and the parallel form (mpi_flag==1), it was observed that 
those parts of BOFFS affected by any modification to the original decomposition, would have the 
following loop structure (where numblocks is the total number of blocks): 
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 IF (mpi_flag==0) THEN 

   DO i = 1, numblocks   

       … 

       CALL currentblock(i) ! set offsets for data 

       Perform calculations on local arrays, e.g. pval(i,:,:,:)    
       …  

      END IF 

   END DO 

 ENDIF 

 IF (mpi_flag==1) THEN 

   … 

   CALL currentblock(my_rank) ! set offsets for data 

   Perform calculations on local arrays, e.g. pval(my_rank,:,:,:)    
   … 

 ENDIF 

 
In parallel form, each process deals only with its own block (i.e. originally one block and several 
blocks for the new flexible approach). But the serial form works sequentially through all blocks. This 
was a useful observation, since for the new block decomposition, the main difference will be that 
MaxNBlk may vary in size for each MPI process. So the next update involved replacing all instances 
of the previous loop structure, with the following: 
 
DO i = 1, numblocks 

    CALL currentblock(i)   ! set offsets for data    

    setblock = .FALSE.  

     IF (mpi_flag==0) THEN 

       setblock = .TRUE. 

       nblock = i 

     ENDIF 

     IF (mpi_flag==1) THEN       

        nrcheck = num_rankblock(my_rank) 

        DO rcheck = 1, nrcheck 

          IF (rankblock(rcheck,my_rank)==i) THEN  

             setblock = .TRUE. 

             nblock =  nblock+1 

          ENDIF 

       END DO      

  ENDIF 

IF (setblock) THEN 

… 

Perform calculations on local arrays, e.g. pval(nblock,:,:,:)! where nblock<MaxNBlk 
… 

ENDIF 

ENDDO 

 
Therefore, each particular MPI process will only deal with its own blocks (when setblock is TRUE). To 
implement this new loop structure throughout was time consuming, as there are over 105 such 
cases. Three further routines were also updated, to take account of the extra data storage required: 
externalblockboundariesmpi, packvar_send and recvvar_unpack. 
 
The subroutine externalblockboundariesmpi performs updates to the local variables. This subroutine 
is called before sending updates to the neighbouring block boundaries, and after receiving updates 
for the boundaries from neighbouring MPI processes. The original block decomposition was fixed at 
one block per MPI process, but for the new flexible approach, there may be more than one block. 
Therefore, externalblockboundariesmpi would need to be updated to handle both local blocks (i.e. 
those blocks assigned to the same MPI process) and external blocks (i.e. those blocks assigned to 
neighbouring MPI processes). 
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To implement a method for distinguishing between local and external blocks, a LOGICAL array, 
mpineighs(1: MaxNBlk) was defined on each MPI process. The entries for this array were defined by 
performing a once only check between each local block and all other local blocks. This was 
implemented using the replicated array, rank_block (list of local to global block indices), such that 
mpineighs(i) is FALSE for a local block, or TRUE for an external one. Therefore, the new method for 
updating the local variables in externalblockboundariesmpi, will firstly be performed for the external 
blocks, and then secondly, for the other local block boundaries (i.e. excluding the local block itself). 
 
The subroutines packvar_send and recvvar_unpack perform the packing and unpacking of the data 
buffers. Before describing the final developments, it is worthwhile to mention that there will need to 
be some consideration for the order of the blocks when packing and unpacking. This was not 
required with the original allocation of one block per MPI process. So for the ordering, the local 

array rankneigh(1:3, 1:MaxNBlk) has been added for each MPI process. This array contains the 
global indices of the block data that will need to be copied from (from_block), the global indices of 
the block data that needs to be copied to (to_block) and the indices of the neighbouring MPI 
processes (so that the global number of the MPI process can then be determined).  
 
To achieve the correct order when unpacking the buffers for the block data, a further local array, 
unpackord(1: MaxNBlk) was also added. This contains a look up table for the indirect addressing of 
the blocks to be unpacked. It is necessary to perform the unpacking of the blocks in their correct 
order since every single MPI buffer may contain the data for several blocks. Therefore each MPI 
process will need to know the order in which the original data was packed. E.g. if MPI process 1 and 
MPI process 3 contain neighbouring blocks, to send data from process 1 to 3, it may be that data 
from process 1 is packed in the order of (1,8) (1,9) (2,9) (3,7) but received from process 3 as (7,3) 
(8,1) (9,1) (9,2) (i.e. the same order that it was packed on process 3); in this case, the correct 
unpacking order for data from process 3 would be found by accessing unpackord. 
  
Finally, to correctly handle the buffers when packing or unpacking the data, the offset of where the 
new data is to be added to and taken from the buffers, must also be stored. Several local variables 
for the block boundaries need to be communicated to one or more different blocks, therefore the 

array countn(1: MaxNBlk) was added. This is for storing the starting location of where the next local 
block data from each neighbouring MPI process is stored within the data buffer. 
 

3.2 Comparison of Performance 

Performance of the new BOFFS code with the flexible allocation of blocks was demonstrated on 
HECToR Phase 3. The test case was a subsonic jet LES, with 50 million cells and 108 grid blocks. A 
transient state for this case is shown in Figure 1. A complex grid configuration is used, as shown in 
Figure 2(a) and 2(b), where different blocks are represented by separate colours. To avoid an axis 
singularity there are central ‘core’ blocks and this region is represented by the thin rectangular area, 
which is marked in black just above the horizontal line in Figure 2(a).  It is worthwhile to note that 
the non-central ‘core’ blocks contain relatively fewer points in the x and y directions, which is 
extended throughout the domain. The original method of allocating one block per MPI process 
would lead to a large number of neighbouring blocks, as shown by the separately coloured blocks 
which surround the central ‘core’ region in Figure 2(a).  Using the new flexible allocation of blocks, 
the ‘core’ region may be split into many smaller blocks (i.e. multiple ‘core’ blocks), as shown in 
Figure 2(b). Here, assigning localised surrounding blocks to the same MPI processes leads to a similar 
number of neighbours for each MPI process which gives improved load balancing and scalability. 
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Figure 1:  U-velocity contours for a high LES of a jet, using 50 million cells. 
 

 
(a) 

 
(b) 

Figure 2: (a) block structure with single ‘core’ block for the jet mesh, (b) block structure with multiple 
‘core’ blocks for the jet mesh. 

 
The wall clock timings to perform 10 time step iterations are given in Table 1, along with the 
parameters used for  aprun. The results are shown for GCC 4.7.2 and PGI 12.10.0. With PGI, the flags 
used were -fast Mipa=fast, and with GCC, -Ofast -funroll-loops -ftree-vectorize. 
 
The rows where N=108 concern the original method of allocating one block per each MPI process, 
and those with N=54 are for the new flexible allocation of blocks. It is worthwhile to note that GCC 
4.7.2 gives better overall performance than PGI 12.10.0. Also, the maximum number of MPI 
processes per HECToR node is limited to 4 for the block structure with a single ‘core’ block, this is 
because of the memory requirements of the larger blocks. For the block structure with multiple core 
blocks, the memory required per block is less and therefore it is possible to allocate 8 MPI processes 
per node (with a maximum of 2 threads per process). 
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N n d S mppwidth Time(s) GCC Time(s) PGI 

108 4 1 1 864 144.92 151.81 

108 4 2 1 864 102.79 114.13 

108 4 4 1 864 78.76 89.23 

108 4 8 1 864 67.28 78.87 

54 8 1 2 224 231.61 243.08 

54 8 2 2 224 124.05 132.77 

54 4 4 1 448 72.18 77.70 

54 4 8 1 448 50.10 53.84 

 
Table 1: Timings (in seconds) to perform 10 iterations with 50 million cells and 108 grid blocks. 

  
The aim of this work was to be able to show at least 20% reduction in run-time for the new flexible 
decomposition compared with the original one block per MPI process decomposition. Far better 
performance than expected can now be achieved with BOFFS, e.g. comparing the use of 8 threads 
for the single ‘core’ block case (where N=108) with the multiple core blocks (where N=54), the wall 
clock time is reduced from 67.28s to 50.10s (with GCC) using nearly half the number of cores.  

4 Development of OpenMP for the Linear Solvers in NEAT 

4.1 Implementation  
In NEAT, the MPI data decomposition is based on the multi-block structure which works well. 
However, for a typical run at least 50% of the overall run-time is consumed by the linear equations 
solver and subsidiary routines. The two linear solvers available in NEAT: TDMA and GS, may be 
employed in each plane (x,y or z), and either solver may be used in order to achieve optimal 
numerical convergence, depending upon the nature of the flow. Both the TDMA and GS schemes 
consist of calculations over 3D-nested loops, and although these are widely used schemes, NEAT 
uses modified versions in order to exploit flow features for faster convergence. 
   
The TDMA and GS routines are in the subroutine solve3, which consists of over 1400 lines of code 
with around 18 main loops for TDMA x (non-periodic), TDMA x (periodic), GS x, TDMA y, GS y, TDMA 
z (non-periodic), TDMA z (periodic), GS z. Before implementing the OpenMP code, it was noticed 
that restructuring the main loops would be beneficial to performance. 
 
For WP2, the first update for the new code (version 1) was to ensure that the loops for TDMA and GS 
were ordered for improved memory access. The TDMA / GS x with z,y,x; TDMA / GS y with x,z,y  and 
TDMA / GS z with y,x,z (ordered outer most to inner most loop). These calculations use pre-
determined coefficients for the off-diagonal terms and are stored within 3D arrays. Therefore, it was 
only possible to arrange the TDMA and GS calculations for x with the inner most loop accessing the 
first array index. This could not be done for y and z, since each inner most loop has to be performed 
within that particular plane. 
 
Secondly, wherever possible IF … THEN conditions were either moved outside the loops or 
restructured to ensure that the minimum amount of branching was being performed within the 
loops, particularly with the inner-most loops. This was possible as most branches were related to 
boundary conditions which are fixed throughout the run e.g.  
 
DO i=isq,id-1 

IF (i==isq)THEN … ENDIF 

IF (i==id-1)THEN … ENDIF 

END DO 
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was replaced with 
 
computation with i=isq 
DO i=isq+1,id-2 

computation with i=isq+1,id-2 
END DO 

computation with i=id-1 
 
Thirdly, due to the removal of the IF … THEN conditions within the inner-most loop, it was noticed 
that vectorisation was achievable for the loops in TDMA x and GS x. However, a separate branch of 
the code (version 2) was developed for this, due to the routines in solve3 requiring a lot of extra 
code. The main development included the implementation of a new array, nblr, which is used as a 
replacement for an IF … THEN condition related to the boundary. This was achieved by setting nblr 
to 0.0 or 1.0 at each grid point, depending upon whether the point is a boundary one or not. The 
boundary condition can then be set via multiplication, rather than by performing the IF … THEN for 
each grid point.  
 
The next part of the work was to Implement thread safe OpenMP for the outer loops for TDMA x 
(non-periodic), TDMA x (periodic), GS x, TDMA y, GS y, TDMA z (non-periodic) and TDMA z (periodic). 
This was performed using STATIC scheduling, which gave the best performance for the test case 
problem. As well as the addition of OpenMP to these loops, a red-black decomposition was also 
implemented for GS x, GS y and GS z. Initially the loops were in a natural ordering. The red-black 
ordering means that the outer most loops are split in two: one for the odd index and another for the 
even index. The calculation within each of these loops may then be performed in parallel with 
OpenMP, it is a widely used standard approach. A 7-point stencil (3D) is used for the solution of the 
Navier-Stokes equations, therefore care was required to ensure that the actual loop ordering does 
give thread safe answers. 

 
Following a similar approach for WP3, the subsidiary routines in NEAT were also updated. These are 
in the files: p.F, t.F, u.F, v.F and w.F. The routines are used for calculating the coefficients and source 
terms which are used to weight the nodal variables for the U,V,W velocities, the pressure and the 
temperature: coeffu, coeffv, coeffw, coeffp and coefft. Many two-level loops were reordered for 
improved memory access e.g. 
 
      DO i=2,id-1 

        DO k=ks,ke 

          IF(nbl(i,jd,k)==-1.AND.nbl(i-1,jd,k)==-1)THEN 

              IF(((v(i,jd,k)+v(i-1,jd,k))/2)>0.0)THEN … ENDIF 

           ENDIF 

        ENDDO 

      ENDDO  

 

was replaced with 
 

      DO k=ks,ke 

        DO i=2,id-1 

          IF(nbl(i,jd,k)==-1.AND.nbl(i-1,jd,k)==-1)THEN 

             IF(((v(i,jd,k)+v(i-1,jd,k))/2)>0.0)THEN … ENDIF 

           ENDIF 

        ENDDO 

      ENDDO 
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Overall, the OpenMP parallel decomposition works well with the original MPI data decomposition 
and because this level of parallelism is contained only within the TDMA and GS solvers, there is no 
need to be concerned about thread safety with any other parts of the code which use MPI.  

4.2 Comparison of Performance 
Performance of the new code when compared with the original is shown in Figure 3. This test case is 
for an unsteady flow over a structured grid with 12,642,048 points and 128 blocks (i.e. 98,766 grid 
points per block). The results from HECToR are shown for GCC 4.7.2 and PGI 12.10.0. With PGI, the 
flags used were -fast Mipa=fast, and with GCC, -Ofast -funroll-loops -ftree-vectorize. The horizontal 
axis shows results for three versions of the code: the original, new version 1 (with the developments 
described in the previous section, apart from the new array, nblr) and new version 2 (with the 
additional developments for the array nblr, to enable the compilers to achieve some further 
vectorisation).  
 
Each run was performed for 1000 time steps and timings were taken for the computation only, with 
no I/O. The number of MPI processes was fixed at 128, which is also the number of blocks in the 
grid. However, the total number of cores used ranged from 128 to 1024 to vary process placement. 
With more than 128 cores, although some cores are not used, it was observed that between 28%-
36% reduction in run-time can be achieved. With no OpenMP (d=1), it is more costly to run a single-
threaded job in this way, however with OpenMP and for larger problem sizes, this could be 
beneficial. 
 
Overall in Figure 3, even without any OpenMP, there is already a 24% reduction in run-time for the 
new code (version 1 and version 2) compared with the original code. Furthermore, for the MPI only 
NEAT, PGI 12.10.0 gave an overall better performance than GCC 4.7.2.   
   
Performance of the new code with OpenMP is shown in Figure 4. Here, the same test case was used 
as the one used to generate the results shown in Figure 3. This time, NEAT was run in hybrid parallel 
mode, with OpenMP for the TDMA and GS routines, as developed in WP2. The first point to notice 
about the results was that here, GCC 4.7.2 gave an overall better performance than PGI 12.10.0. 
Scalability is reasonable for up to 8 OpenMP threads, comparing the run with mppwidth=1024 and 8 
threads in Figure 4 with the corresponding four runs with mppwidth=1024 in Figure 3. For the 
original code (Figure 3), MPI only timings were 75.1357s with GCC 4.7.2 and 73.9947s with PGI 
12.10.0. For the new version 1 (Figure 3), these were 63.736s with GCC 4.7.2 and 61.3346s with PGI 
12.10.0. In Figure 4, using 8 OpenMP threads (with the same number of cores), the run-time is 
36.1021s with GCC 4.7.2 and 45.7929s with PGI 12.10.0. Comparing these figures with the results for 
the original code, the total run-time for the new version is less than half that of the original. Please 
note that as this comparison is between the original code and new version, there was already a 24% 
reduction in run-time, without any OpenMP. Also, the section of code which has been developed 
consumes just over half of the total run-time, therefore this comparison has been made to highlight 
the original aim of achieving a 20% overall speedup, against the result of 50%, which is better than 
expected. 
 
Performing the same test case again, but with OpenMP for the TDMA and GS routines, and also the 
subsidiary routines as developed in WP3, it was observed that a further 3% reduction in run-time 
could be achieved for this particular test case.  
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Figure 3: Comparison between compilers and versions with no OpenMP (MPI only). 
 

 
 

Figure 4: Comparison between compilers for the improved code with OpenMP. 
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5 Conclusions 
The overall objective of this project was to improve the parallel implementation of two separate 
structured multi-block codes (BOFFS and NEAT) for improved performance on HECToR and future 
high-end HPC architectures. For BOFFS, this was achieved by implementing a flexible parallel data 
decomposition, and for NEAT by implementing hybrid parallelism within the most computational 
part of the code (the tri-diagonal matrix, Gauss-Seidel and subsidiary routines) via the use of 
OpenMP. 
 
For BOFFS, the aim was to demonstrate at least 20% reduction in run-time for a representative 50 
million cell test case using around 100 grid blocks with a complex structure, when comparing the 
new flexible decomposition with the original one block per MPI process decomposition. The new 
flexible data decomposition for BOFFS was successfully implemented, which now allows an arbitrary 
number of blocks to be assigned to the same MPI process. A demonstration of the capability of the 
flexible decomposition for a subsonic jet LES, with 50 million cells and 108 grid blocks showed that 
far better performance than expected can now be achieved with BOFFS. Comparing the use of 8 
threads for the single ‘core’ block case (where N=108) with the multiple ‘core’ blocks (where N=54), 
showed that the wall clock time is reduced from 67.28s to 50.10s (with GCC) using nearly half the 
number of cores. 
 
For NEAT, the aim was to achieve a 20% reduction in run-time for the new mixed-mode developed 
TDMA and GS solvers, for a representative unsteady flow test case with 128 blocks and 8 OpenMP 
threads (128 MPI processes with 8 threads per process), when compared with using 1024 cores for 
the MPI only code. A further 3% reduction in run-time would also be expected for the addition of 
OpenMP to the subsidiary routines.  
 
A new threaded red-black ordering was implemented for the TDMA and GS routines in NEAT, along 
with improved memory access for the main computational loops (including those in subsidiary 
routines).  A test case for an unsteady flow over a structured grid with 12,642,048 points and 128 
blocks (i.e. 98,766 grid points per block) was performed for 1000 time steps. To demonstrate the 
better performance due to the improved memory access and restructured loops (i.e. without 
OpenMP), original and new versions of the MPI only code were compared and a 24% reduction in 
run-time was observed for the new code (version 1 and version 2). This was by a comparison with 
the original MPI only code, using fully populated nodes. Demonstrating performance with more 
cores (mppwidth=1024), only 16-18% reduction in run-time was observed as the original code also 
performed better when nodes were not fully populated. Furthermore, for the MPI only NEAT, PGI 
12.10.0 gave an overall better performance than GCC 4.7.2.   
 
To demonstrate performance of the new code in hybrid parallel mode, with OpenMP for the TDMA 
and GS routines, the same test case was used. Here, GCC 4.7.2 gave an overall better performance 
than PGI 12.10.0. Reasonable scalability for up to 8 OpenMP threads was observed for the run with 
mppwidth=1024 and 8 threads when compared with the four MPI-only runs, with mppwidth=1024. 
Comparing these figures with the results for the original code, the total run-time for the new version 
is less than half that of the original, which is good considering that the original aim was to achieve a 
reduction of 20% of the total run-time. 
 
This work will enable BOFFS and NEAT to be used on high-end HPC architectures for a variety of 
problems for turbomachinery, heat and cooling film technology. In particular, this DCSE project will 
now allow BOFFS to use HECToR and ARCHER to facilitate the development and testing of new ideas 
which have been generated from previous research. So far HECToR usage of BOFFS stands at over 
50,000 kAUs, this has been used for the investigation of the aerodynamics and aeroacoustics of 
complex geometry hot jets through EPSRC research grants EP/G027633/1, EP/G069581/1, 
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EP/F005954/1, EP/I017771/1. The code is also used within groups at Cambridge, Warwick and 
Cranfield Universities, e.g. for simulations of a Boeing Fan in EPSRC project EP/I010440/1. 
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