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Abstract

The aim of this dCSE project was to improve the TBE code which is based on the tight
binding model with self consistent multipole charge transfer. Given an appropriate parameteri-
sation, the code is general and can be used to simulate a wide variety of systems and phenomena
such as bond breaking, charge and magnetic polarisation.

The first goal was to achieve better performance through parallelising all suitable rou-
tines with MPI. The next step was to integrate ScaLAPACK’s parallel diagonalisation routines
transparently and with minimal communication, thus allowing the code to run on multi-node
machines as opposed to a single node which was already possible thanks to threaded LA-
PACK/BLAS libraries. The third and last task was to utilise GPUs as accelerators for the
heavy linear algebra calculations and subsequently integrate with the MPI parallelisation.

The goals in the first two work packages were achieved mostly as planned with significant ben-
efit gained from exploiting the sparsity of the tight binding Hamiltonian and reformulating the
algorithms for calculations of the density matrix elements and related quantities. The electro-
statics routines have also seen a significant reduction of memory usage and parallel speedup. A
generic diagonalisation interface for all required diagonalisation routines was developed together
with the related transparent communication routines. This is now available for all programs in
the LMTO suite of which TBE is part. Nearly all of the code has been updated to Fortran 90
and later standards making it easier and much safer to work with.

The third task, GPU porting of TBE, was the more exciting and riskier part of the project
and it did not dissappoint in term of the challenges it provided. The original intention was to
minimise risk by avoiding native development as much as possible by using established libraries
instead. Unexpectedly the diagonalisation routines were nowhere near as fast as expected and
this steered us in slightly uncharted territory, writing CUDA code for a number of matrix
operations and researching completely different algorithms for obtaining the density matrix.
Eventually, the goals were accomplished even though the acceleration is still far from what it
was hoped to be.
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1 Introduction

1.1 General description

The tight binding (TB) model is a quantum mechanical method for electronic structure de-
scription within the one-particle and adiabatic approximations[1]. The Hamiltonian (H) of a
system and other operators in TB are expanded in a minimal, localised, atom centered basis
set resulting in the smallest possible matrix sizes (as in ASA-LMTO). In the semiempirical TB
models a further assumption is made for implicit basis functions. The H and overlap (S) matrix
elements

HRLR′L′ = 〈φRL|VR′′L′′ |φR′L′〉 → VRLR′L′(|R−R′|)YRLR′L′(φR−R′ , θR−R′) (1)

SRLR′L′ = 〈φRL|φR′L′〉 → V sRLR′L′(|R−R′|)YRLR′L′(φR−R′ , θR−R′) (2)

are thus are never explicitly calculated, instead they are approximated by parametrised radial
pair functions and tabulated angular factors1. Usually only the 1 and 2-centre integrals are given
in this manner and the 3-centre integrals are completely ignored for reasons of sanity or because
they are deemed negligble, for example in metals. While localised atom based functions are
not quite orthogonal a further approximation is often made such that the implicit function are
orthogonal, further simplifying the underlying eigenvalue problem. Often only the bonding part
of the energy is treated quantum mechanically and most of the repulsive part is combined with
the core (ion) repulsion term in a parametrised classical pairwise potential, however there are
exceptions, for example adding Hubbard terms will act as an approximation to the correlation
energy and in magnetic models the exchange is included through parametrised onsite energy
shifts. These are usually included in self consistent models. Another important ingredient, and
one unique to our TB model, is the more detailed description of the charge density through
multipole expansions[3].

The significant amount of approximations leads to what may be called the most transparent
and simplest to implement quantum mechanical model. This however comes with the cost and
responsibility of providing an appropriate parameterisation. The empirical parameterisation on
the other hand provides freedom to fit important quantities to desired values and thus often
gives a significantly better description of the modelled system than more advanced ab initio
methods. This combined with the lower computational cost and also the significantly better
forces/energy consistency of TB means that system size and time length dependent quantities
(e.g. diffusion coefficient) can be calculated quantum mechanically on a small computing cluster,
within acceptable statistical errors, given a capable implementation.

The advantage over the much faster classical methods stems from the quantum nature of TB
and the ability to properly describe the formation and dissociation of bonds (including H-bonds
on the same footing), charge transfers and polarisability, magnetism and also negative Cauchy
pressures occuring in certain intermetallics.

1.2 Practical implementation

Starting from a given set of parameters the H and S matrices are built. The objective is then
to solve the nonlinear problem of finding a charge distribution consistent with the induced
potential. This process consists of iteratively recalculating the charge shifts

δqR =
∑
L

ρRLRL −NR (3)

and the resulting update to the Hamiltonian matrix:

H = H0 + VU + Vxc; V U
R = URδqR; (4)

1The Slater-Koster tables[2]
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There are aditional terms originating from the electrostatics and spin polarisation which
shall be expanded upon later.

Generally, either the potential or the density or charges are mixed with certain amounts of
previous values to avoid instability and accelerate convergence. The mixing is a very complex
problem on its own and shall not be addressed further here. The traditional approach to
calculate the charges from H is by solving the secular equations in matrix form:

HZ = SZΛ (5)

through diagonalisation. Here Z is the matrix containing the eigenvectors of H in its columns
and Λ is a diagonal matrix holding the respective eigenvalues. A Fermi level εf and occupancy
function f(ε) is then found such that its integral is the total number of electrons in the system.
The diagonal matrix f is the matrix representation of the occupancy in the basis of Z. The
representation in basis of the implicit local atomic basis functions ρ is calculated, using the
overlap condition ZZ∗ = S−1, by:

ρ = SZfZ−1 = SZf(SZ)∗ = SZfZ∗S (6)

or

(S−1ρ) = ZfZ∗S (7)

The occupancy at 0K is a step function equal to 2 for an occupied state and 0 for unoccupied.
If uncoupled spin polarisation is also allowed then the occupancy of each spin orbital, (restricted
to up and down only) is 1 and 0 respectively. If there are states very close to, or on the
discontinuity, smearing may be applied to avoid problems. This yields an entropic contribution
to the energy corresponding to the temperature of the smearing.

The density which is calculated separately for different spins is called spin density, and the
difference between the two spin densities gives the magnetic moment m of the system:

m = ρ↑ − ρ↓ (8)

the magnetic moment induces a potential to be added to the Hamiltonian

HI↑ = −1

2
Im; HI↓ =

1

2
Im (9)

the Stoner I is a model parameter. Since spins are uncoupled there are actually two separate
Hamiltonians and subsequent quantities must be treated independently. If there is a coupling
through additional parameters then the basis functions double in number simply creating larger
matrices. Detailed derivation is provided in [4].

1.2.1 Electrostatics

The electrostatic potential is parametrised with respect to ∆``′`′′ parameters which we shall call
polarisabilities.

Firstly a matrix with structure dependent constants and one with their radial derivatives (if
the calculation of pressure is required), are built before the start of the self-consistency loop:

BRLR′L′ =

L+L′∑
L′′=1

4(−1)`(2`′′ − 1)!!

(2`+ 1)!!(2`′ + 1)!!
CLL′L′′KL′′(R′ −R) (10)

The Gaunt coefficients:

CLL′L′′ =

∫∫
YLYL′YL′′dΩ (11)

are precalculated in the beginning and reused. The Hankel functions

KL(r) = r−`−1YL(r) (12)
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are the actual structure dependent factors. During the self-consistency the charge multipoles Q
are calculated on every step:

QRL =
∑
L′L′′

ρRL′RL′′∆`′`′′`CL′L′′L (13)

The components of the potential in a spherical wave expansion are a straightforward product
of the structure matrix and the multipole block vector:

VM
RL = e2

∑
R′L′

BRLR′L′QR′L′ (14)

and the update to the Hamiltonian onsite elements and the contribution to the energy are:

HM
RLRL′ =

∑
L′′

VM
RL∆``′`′′CLL′L′′ (15)

EM
2 =

∑
RL

QRLV
M
RL (16)

L+ 1 in B is required for accurate calculation of the forces and this tends to increase its size
very significantly for d elements. The forces due to the Madelung terms are:

FM
R = −e

2

2

∑
R′L′R′′L′′

QR′L′∇RBR′L′R′′L′′QR′′L′′ (17)

A complication arises however in the nonorthogonal case due to offsite contributions:

HM
RLR′L′ =

1

2
(DR +DR′)(S − 1); DR = V U

R +
∑
R′

URR
′QR′0 (18)

And additional forces:

FM
R = −

∑
R′

(VM
R0 + VM

R′0)∂ρ
S
RR′ (19)

FU
R = −

∑
R′

(V U
R0 + V U

R′0)∂ρ
S
RR′ (20)

The quantity ∂ρSRR′ needs to be calculated in every iteration:

∂ρSRR′ =
∑
LL′

S
′r
RLR′L′ρRLR′L′ (21)

1.2.2 Quantities of interest

Once at self-consistency the bandstructure energy can be calculated by occupying the energy
levels corresponding to Eb =

∑
n fnεn or expanded in the implicit basis:

Eb = ρS−1H = ZfΛZ∗ (22)

where the quantities without indices are matrices to be multiplied as such.
A more smoothly varying quantity is the first order energy:

E1 = Tr(ρH0) =
∑

RLR′L′

ρRLR′L′H0
RLR′L′ = ρ : H0 (23)

Together with the second order energy,

EU
2 =

1

2

∑
R

(
(UR −

1

2
IR)δq2R −

1

2
IRm

2
R

)
(24)
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the classical term Eclass = 1
2

∑
RR′ V class

RR′ (R′ − R) and the electrostatics contribution combine
to form the total energy.

The corresponding forces are given by:

FR = −2
∑
LR′L′

H ′RLR′L′ρRLR′L′ + 2
∑
LR′L′

S′RLR′L′Eb
RLR′L′ −

∑
R′

V ′classRR′ (|R′ −R|) (25)

Where FR, H ′RLR′L′ = ∂HRLR′L′/∂R and S′RLR′L′ = ∂SRLR′L′/∂R are 3D vectors. Addi-
tionally the pressure may be obtained through the radial derivatives:

P = −
∑

RLR′L′

H
′r
RLR′L′ρRLR′L′ +

∑
RLR′L′

S
′r
RLR′L′Eb

RLR′L′ = −H ′r : ρ+ S
′r : Eb (26)

NB There is no magnetic contribution to the forces.

1.2.3 Periodicity

For periodic systems the case of solving one problem for an infinitely large system is transposed
to infinitely many problems, each one for a small system. The ‘infinitely many’ part is of course
interpolated by a finite number of sampling points.

The H and S are Bloch transformed[5] for each point k of the Brillouin zone:

Hk
RLR′L′ =

∑
T

H(R+T )LR′L′eikT (27)

where T is the translation vector.
The density matrix and other quantities are integrated over the k index to yield the real

valued matrices, as described. Each k index is entirely independent from all others in TB and
this is a great opportunity for efficient and simple parallelisation. Furthermore the number of
k-points can be reduced by a significant factor if symmetry is present. This is employed by
providing symmetry weight factors for the eventual summation.

The practical complication is that matrices turn from real symmetric to complex Hermitian
and the transposition becomes a conjugate transposition.

To summarise, a general schematic view of the workflow in a typical TB calculation is shown
in Fig 1.

2 Project overview

The TBE code originally had k-point MPI parallelisation which worked excellently for systems
requiring plenty of k-points. There was also an atom based MPI parallelisation for the sec-
ond(last) step of the electrostatic potential calculation. Linking with a threaded BLAS and
LAPACK libraries did benefit the parts using their routines on multiprocessor/core shared
memory machines. Therefore the aim of this project is to modernise and speedup the code
for larger systems with few k-points by allowing access to clusters with fast interconnects and
modern accelerators such as graphics cards.

The following milestones were set out at the beginning of the project:

• Parallelise serial segments of the TBE code with MPI until diagonalisation is the bottleneck
(as it should be in TB).

• Parallelise diagonalisation with available standard routines for all combinations of real
symmetric and complex Hermitian type, and orthogonal and generalised problems.

• Accelerate the code by initially exporting the heavy linear operations to MAGMA/CUBLAS
running on a GPU chip, then rewrite specific routines to minimise memory transfers and
integrate with the MPI paralelisation to enable multinode multiGPU operation.
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Figure 1: General diagram of the workflow in a typical TB calculation

At the start of the project, the existing independent parallelisation over k-points and atoms
in the electrostatic potential were overhauled. Firstly, mpi comm world was replaced with a
communicator with 3D cartesian topology in row-major order. The first dimension now defines
how many 2D process arrays will be dealing with the separate k-points and spin. Each array
is then allocated a contiguous range of k-points. The dimensioning is performed by an algo-
rithm designed to use the largest possible number of process arrays while keeping the size of
these arrays to the minimum necessary and their dimensions as close to square as possible, for
efficiency and simplicity. When square 2D arrays cannot be achieved the first dimension is set
to be smaller than the second for greater efficiency. The parallel linear algebra routines dealing
with Hk,Sk, and ρk execute within the 2D process arrays, then a small number of vectors and
scalars is reduced across 1D arrays of processes, perpendicular to the 2D arrays, to obtain the
integrated quantities. The 2D arrays use a block distribution for the matrix quantities and
independent atom distribution density matrix related vector or scalar observables. Outside the
k-point/spin loop the electrostatic potential is handled by the 3D communicator containing all
active processes.

Since the effort for every k-point is exactly the same in TB the blocks are allocated evenly
by number. The atom parallellised regions use more sophisticated but still static allocation
because the cost remains the same for diferent iterations and k-points. All communicators: 3D,
2D and 1D and the respective offset, count and blocking related arrays are set once and reused
throughout. To enable the reuse of an offsets and counts array in mpi gatherv, block vectors of
differing first dimension and type specific MPI contiguous derived types are defined. Although
Gatherv is generally slower than gather, the data consists of comparatively thin vectors, so the
effort of packing/repacking outweighs any time difference between the two routines.

2.1 Test systems

The test systems used during development have been a variety of water cells and anatase clus-
ters for symmetric orthogonal cases and FeCr, steel with hydrogen for complex nonorthogonal
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cases. Fresh ‘stable’ versions were successfully deployed by researchers for lengthy simulations of
organic compounds immersed in water and other organic solvents and titania/water interfaces.

Figure 2: (a) TiO2 cluster, 1233 atoms, (b) H2O cell, 3072 atoms

2.2 Hardware and software

The machines used for testing and development during this project include the QUB Linux
cluster with over 900 cores in a configuration of dual socket nodes (each with a quadcore Xeon
E5530 2.40GHz) and up to 24GB RAM available per node with an Infiniband interconnect; two
group owned 16 core dual socket, Xeon E5-2690 2.90GHz systems, each with 64GB of RAM and
QDR Infiniband; a 16 core dual socket, Xeon E5-2650 2.00GHz machine with 16 GB of RAM
and 2 Tesla K20c GPU cards having 4.8 GB RAM each. It is worthwhile to note that on the
E5 range of processors, vectorised FP applications may benefit from the now expanded 256 bit
registers and fused multiply add and also the new 3 argument instructions provided by Intel’s
AVX.

2.2.1 GPU Highlights

The K20c cards implement the latest Kepler GK110 architecture and provide a few useful
capabilities over previous generations. A device process/thread is now capable of launching
new grids of threads (branding name: ‘dynamic parallelism’), up to 32 system processes can
now hold contexts on a single device (named ‘Hyper-Q’). Another important feature is the direct
access to device memory through the kernel driver (conveniently called ‘GPUDirect’). The GPU
architecture is significantly different from the traditional multi CPU model.

There are 13 multiprocessors (SMX) on one K20c chip, each supplying 192 single precision
cores, 64 double precision units, 32 special functions units and 32 load/store units and large
shared dynamic register file. Each core executes instructions in-order without preemptive spec-
ulative evaluation (similar to the famed but now discontinued Itanium processors) at rather low
frequency hence the strength is only in numbers and low utilisation translates directly to low
performance.

The software environment is somewhat abstracted away from the lower level grouping details.
The execution starts by launching an, up to 3D, ‘grid’ of again, up to 3D blocks of threads. A
thread block can contain up to 1024 threads. Each thread has access to private static memory
on one level then to a shared block memory (in configurations of 16, 32 or 48 KB) and on the
3rd level to the global grid memory. The latency and transfer slowdown increase in the same
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order. A grid can contain up to 231 − 1 blocks and the management is handled by the system.
How many blocks/threads run simultaneously will depend greatly on the static thread memory
and static shared memory allocation besides the limitations on the thread and block numbers /
multiprocessor. It is worth noting that every 32 threads share a scheduler and grave inefficiently
will be incured if there is any divergence in the instructions they execute. Such a bundle is called
a ‘warp’ and it is a good idea to allocate block sizes in multiples of these and generally keep
in mind. Useful tips and best practices may be found in the official documentation and the
numerous examples, guides, and tutorials published by NVIDIA.

2.2.2 Software

The clusters previously described use ScientificLinux 5.x and 6.x, and OpenSUSE 12.2 respec-
tively. The Intel compilers and libraries are kept up to date and the OpenSUSE machine benefits
from a recent version of gcc/gfortran. MKL’s optimised BLAS and LAPACK routines are also
available along with precompiled PBLAS/ScaLAPACK/BLACS libraries. The MPI implemen-
tation available is OpenMPI 1.6.x with 1.7.1 (testing) only used for the GPU code since it is the
only implementation known so far to accept pointers to divide memory and utilise the driver
interface for direct memory access. This feature reduces the latency of transfers and is also
significant for one part of the code.

3 Parallelise serial segments of the TBE code

The major points in need of improvement are the routines for charges, band energy energies,
and force calculations and the structure constant generation. We will start with the structure
constants since it is outside the self-consistency loop and is largely independent of the rest, as
can be seen from the diagram in Fig 1.

In the early stages of the development, routines for conversions between the global actual
and virtual (represented through local pieces) arrays were written avoiding p{d,z}elset{,2}
and thus saving on the immense latency of millions of connections. Initially for a scatter style
routine a single block buffer was formed from the global value and set to the appropriate position
in the local array, for a gather, the buffer was sent to a root process which then broadcasts the
global array after the complete assembly. A more elegant approach was implemented later by
employing the MPI darray type and mpi alltoallw. There is now a trifold speedup compared
to the buffer implementation which is likely to be due to the blocking blacks routines. Since
alltoallw is very general, an attempt was made to configure it so that all processes would receive
the result instead of just the root but this showed significantly worse performance than the
broadcast approach. This is now integrated in the basic library (slatsm), which is used by all
programs in the LMTO suite together with a wrapper around the unified diagonalising routine
which scatters the input matrices, calls the diagonaliser then gathers and broadcasts them. The
overhead is small for the gather operation and negligble for the scatter on a QDR Infiniband
network. The gather approach is likely to be faster than the reduce one which is used in the
PLATO code, due to a difference in the basic operations but it was not tested.

3.1 Parallel structure constants matrix with MPI

The structure constants were stored in a 4 index fortran array (L,L′, R,R′). This way the
atom pair with the largest (L,L′) block defines the memory requirements which may be of
substantial size since the maximal L = (` + 1)2, in this case may reach 2`, as used in the
basis functions for the operators and 2` + 1, for when forces or pressure also needs to be
calculated in the end of the last self-consistency iteration. For example, a d element like Ti
is given up to a d orbital ` = 2 resulting in structure block size for the pair Ti- Ti of up to
((2 × 2 + 1) + 1)2 × (2 × 2 + 1)2 = 36 × 25 compared with (2 + 1)2 × (2 + 1)2 = 9 × 9 for a
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Hamiltonian block. To reduce the memory requirements the original implementation exploited
two symmetry properties: BRLR′L′ = BR′L′RL and BRLR′L′ = (−1)`+`′BR′LRL′ .

Figure 3: Example B block with the first symmetry rule applied.

The second rule means that the extra L+ 1 part may be calculated only once then obtained
from this for the reverse pair. The calculation of a single block consists of first evaluating the
Hankel functions for R − R′, L′′ = L + L′ then calculating a dot product over L′′ with the
Gaunt coefficients stored in packed format. The Hankel function is directly computed for a non
periodic case while Ewald summation is performed in the periodic case. This is the slowest part
of the calculation.

The electrostatic potential calculation computation consists of a matrix by block vector
product between the structure constants and the charge multipoles along the R′L′ indices. A
convenient optimisation is to swap the indices, resulting in (L′, L,R′, R) and then spread the
R atoms over all available processes as evenly as possible without splitting a block to avoid
doubling of the effort for the Hankels. In this way the storage is distributed over the processes
and only a small gather operation for the final potential block vector is needed. This strategy
was implemented and showed superlinear performance which is most likely due to the decreased
memory requirements per process, see Fig 4.

Figure 4: Parallel structure constants generation times.

Since often one needs to study systems containing atoms of different type e.g. H2O, Ti2O,
etc., the pair with lower L requirements waste a significant portion of the allocated block size.
For example in a H2O molecule we would allocate (3 × 9 × 3 ∗ 16) ∗ 8/210 = 10.125KB and
only use ((9 + 1 + 1) × (16 + 4 + 4)) × 8/210 = 2.0625KB. The difference is striking and for
this reason the fixed block format was abandoned. Having the block structure however is more
convenient and cache friendly than dealing with the normal array so the solution was to create
an index of pointers and preserve the storage format while achieving a fivefold decrease the total
memory requirements. This was actually a second revision due to difficulty interfacing the first
implementation, which was based on a 2D Fortran pointer array with C/CUDA.
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3.2 Density matrix from eigenvectors and occupancies

The density matrix has a fundamental place in the derivation of the nearly all other properties
of interest as shown in section 1.2.2. In the original implementation however, the band/state
index in the outermost summation results in a repeated recalculation of quantities which require
regular updates to wide areas of memory for the charges array, the site energies and forces. Issues
were severely complicated by the presence of a non unit overlap matrix.

There is an elegant and efficient way to obtain the full ρ for a positive occupancy function e.g.
as in Methfessell-Paxton[6] with N=0, or a plain step function. Each occupied state’s eigenvector
can be scaled efficiently by the square root of the occupancy function then the array containing
all occupied eigenvectors may be transposed. Then an equivalent of dgemm(’t’,’n’, .., ..,

nstates, 1.0d0, Z̃, .., Z̃,...) will access elements sequentially and will be efficient in
obtaining ρ. The positive occupancy requirement can be relaxed when the eigenvectors are
complex (i.e. not at the Γ point).

Z̃ =
(
Z
√
f
)∗

; ρ =
(
Z̃∗
)
Z̃ (28)

A second conclusion from section 1.2.2 is that the full density matrix is not actually needed.
For all listed properties of interest it will suffice to know of only the blocks matching a corre-
sponding nonzero Hamiltonian block. Fortunately the Hamiltonian (and overlap) matrix in TB
is fairly sparse, often no more than 10% filling2 which decreases with system size. Furthermore
the density matrix blocks required need not be saved, except for the diagonal ones necessary
for the electrostatics. They can be used on the spot to accumulate a local contribution to the
quantities of interest which are only diagonal, and then overwritten on the loop for the next
atom. This leads to a walk over the atoms and their neighbours, performing a dot product
between block columns of Z̃, the effort for which scales linearly with the number of atoms since
the hoppings are short ranged. Additionally if the site energies and forces are not strictly re-
quired during self-consistency, the diagonal density matrix blocks will suffice further and reduce
the effort by a factor equal to the average number of neighbours per atom. Since a block may
be dimensioned anywhere from 1 to 9 by 1 to 9, the dot product is performed by either the
dot/c, gemv or gemm routine, depending on the case.

Separate versions for real and complex handling were originally written. Since this was
mostly a duplication, one approach would be to use the preprocessor to produce two object
files from one source (as done in the ScaLAPACK diagonalisation tester) but a more convenient
solution was to use the real(8) type and then add an extra index of passed size on the left
side of the arrays, which is either 1 for the real case or 2 for the complex. Then procedure
pointers dot, gemv and gemm are associated with the appropriate ‘d’ or ‘z’ version. Since dot
is a function which returns the result in a register, a generic subroutine was defined to work
around Fortran’s strong typing and type compatibility rules. The overhead of dealing with the
extra index and function pointers is not significant and in the author’s opinion this solution
provides better maintainability. However, since an assumption is made about the storage of the
complex type there may be problems with platforms which do not follow this.

3.3 Direct space Hamiltonian

The Hamiltonian building routine has seen a significant rewrite which has resulted in a tenfold
speedup, due to memory access optimisations. The cost of the routine was already linear and
the real space Hamiltonian storage format sparse. Parallelisation over the atoms did show a
speedup but the necessary gather negated any gains. This was not because the gather was slow
but rather due to the routine being particularly fast. The time for this routine is now negligble
and it is executed only once before the self-consistency takes place.

2This may not be considered sparse at all for finite difference style matrices but the total sizes are also of vastly
different scale.
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The Bloch transform applied at each k-point produces k-dependent matrices which use
the real space ones. This routine has also been modified, such that only the necessary local
pieces of the global 2D block cyclic distributed arrays are built, thus avoiding the usage of
darray scatter.

atoms/edge k-pts/edge atoms 1 k-pt all k-pts B B′

1 16 1 0.00 0.06 0.00 0.00
2 8 8 0.00 0.51 0.00 0.00
3 6 27 0.01 2.47 0.00 0.00
4 4 64 0.06 4.11 0.03 0.02
5 4 125 0.25 15.69 0.10 0.07
6 4 216 0.73 46.85 0.31 0.22
7 2 343 1.85 14.77 0.79 0.55
8 2 512 4.11 32.91 1.76 1.22
9 1 729 8.34 8.34 3.56 2.47
10 1 1000 15.69 15.69 6.71 4.66
11 1 1331 27.80 27.80 11.88 8.25
12 1 1728 46.85 46.85 20.02 13.90

Table 1: Projected minimal memory requirements in GB if all Hk and Sk are
stored instead of recalculated. Structure constants sizes are also included. Atoms
are assumed to be d-elements,

It is possible to avoid the repeated Bloch transforms during self-consistency by saving the
matrices for all k-points then only transform the diagonal blocks. This is because the off diagonal
updates, when needed, are applied directly to Hk. Table 1 lists the estimated requirements for
typical use scenarios. There are cases with few atoms, 100-300, which should be possible to
execute on small computers but the memory usage will be prohibitively high.

3.4 Parallelisation

The most efficient parallelisation in view of the above developments was to let each process,
of the passed 2D communicator, handle a contiguous sequence of atoms, and not communicate
anything globally until the end of the k-point/spin loop. Afterwards a reduce operation may
then be performed across the 1D communicators followed by a gather operation for the vector
quantities. For the scalars the reduce is then performed on the 3D communicator. The 2D array
quantity ∂ρSRR′ is only required in rare cases and is treated as a rather thick block vector. Inside
the 2D communicators the scheduling is similar to the one used for the structure constants, for
the generally smaller 2D communicator. This is static by the external routine with a view on
spreading the effort evenly, rather than the number of atoms.

4 Diagonalisation with ScaLAPACK and ELPA

Arrays with a block cyclic distribution were mentioned earlier, and in particular with a 1D block
cyclic distribution, a vector (or block vector) may be split into blocks of equal size, given by a
blocking factor and the blocks are then asigned to a vector of processes in cyclic manner. The
concept is simple to extend to an N-dimensional array distributed over a process array of the
same dimensionality.

ScaLAPACK works with such 2D arrays and the spread of a square matrix on a square
process array is shown in Fig 5. Operations are performed on the blocks with a single process,
single or multithreaded, routines from BLAS and LAPACK. The distributed storage format
reduces both communication and data duplication.
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Figure 5: Square virtual matrix with a block cyclic distribution on a square pro-
cess array. Left: global view of the array split in blocks, right: local parts as
stored on each process in the p-array. Block coordinates in parentheses, process
coordinate in square brackets and its corresponding linear ’rank’ in the water-
marks.

A generic wrapper routine was written which mimics closely the ’advanced’ type diagonali-
sation drivers from ScaLAPACK with a few practical deviations. The routine manages all work
arrays necessary internally and handles all combinations of { ,p}{dsy,zhe}{e,g}v{z,d,r} cov-
ering all cases of interest. It is also an interface to the diagonalisation routines in ELPA[7] since
these use the same 2D block cyclic distribution as ScaLAPACK.

Figure 6: Two stage tridiagonalisation diagram in the context of diagonalisation
of symmetric/Hermitian matrices

The ELPA library attempts to speedup the tridiagonalisation step (the bottleneck in di-
agonalisation) by replacing the BLAS2 *mv routines with BLAS3 *mm 6 at the cost of slower
backsubstitution and the hope that not all eigenvectors will be required, which is the case in
TB, especially for insulators. The optimal blocking factor was found to be 32.

The wrapper routine accepts 2D block cyclic distributed local arrays with respective descrip-
tors and in the serial case calls the appropriate LAPACK routine instead of the parallel ones.
This allows one to use exact wrappers or null libraries and thus produce single object file which
can be packaged into a purely serial or parallel executable.

Since the Bloch transform is fast, local only and relatively simple even when one atom was
spread across 2 or 4 processes and since the cubic scaling cost of diagonalisation with respect to
the matrix dimensions a decision was made to not apply any padding and in this way minimise
the size. The time for diagonalising genuine sparse Hamiltonian atoms or a randomly generated
one is the same and any diagonal padding entries will increase the effort unnecessarily.
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Figure 7: dpsyevd speedup on: (a) QUB’s cluster and (b) HECToR. 1024 H2O
molecules corresponds to matrix size 6144× 6144.

4.1 Modifications to the density matrix procedure

It is more appropriate to apply any padding during the calculation of the density matrix from
the eigenvectors. This is because some communication will be necessary either from there, or
from the libraries, or from both. It is not straightforward to determine the best approach, after
the developments in tbfrce from section 3.2, specifically this is due to the linear scaling atom
parallellisation. The tbfrce routine has been modified to accept virtual global array for the
eigenvectors and the transposition is now done with a single mpi sendrecv replace/process
on the local block for the square process array case and blockwise with an asynchonous ready
mode send and recv for the general case of the rectangular process array. p{d,z}tran was not
used because it relies on blocking communication. A further optimisation is also possible when
the process array dimensions have a common multiple. The blocks to communicate will them
be aligned in columns or rows but this was not pursued since the general case is not slow by
any means.

The neighbour table walk for the off-diagonal density matrix derived quantities was paral-
lelised over the atoms in WP1. This is such that there is now a choice of keeping this paral-
lelisation and then communicating the necessary blocks of eigenvectors spanning all neighbours
of an atom, or alternatively use PBLAS’s pdgemm to multiply the necessary block columns.
However, the second option will result in plenty of small implicit communications:

(number of neighbour pairs)× ((nstates/blocking factor) modulo column processes)

while the first will require more networking in the beginning it will then be able to use local
BLAS gemm for better load balancing. The first idea was chosen for both its simplicity and
better efficiency. On a side note, testing pdgemm and multithreaded dgemm revealed that
surprisingly dgemm is up to 2× faster (on a single, 16 core E5 machine) than pdgemm, while
a similar benchmark of the diagonalisation routines showed either close timing or an advantage
for the ScaLAPACK routine. It is thought that the threaded MKL that dgemm uses employs an
algorithm which is faster than O(N3) and can therefore gain an advantage on larger sizes, while
the process management and communication slows down the ScaLAPACK version at smaller
sizes.

Overall the set target of a twenty fold speedup of the whole code over the serial version on a
24 core machine was not achieved. At least 32 cores were required to reach anything near this
performance.
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Figure 8: pdgemm vs threaded MKL dgemm times for small and larger matrices.
pdgemm blocking factor=32

5 Porting to GPU(s)

The initial aim of this task was to speedup the slowest part of the TB calculations, the diago-
nalisation, by offloading it to a single GPU. Once achieved, the plan would then be to utilise
more GPUs which could possibly be connected to the nodes of a cluster. This would enable the
combining of ScaLAPACK’s MPI parallelisation with accelerated CUBLAS executing locally on
the GPUs. Later, the other two heavy parts of the code: the structure constants evaluation and
the density matrix were also to be ported. The Hamiltonian assembly involves rather divergent
code paths. It is also very quick on a CPU and it was therefore deemed unnecessary to port it.

Initial testing of the new GPU revealed disappointing results for our greatest hope: the
diagonalisation routines. While one card was nearly twice as fast, for sizes of ≈10000, when
compared with performance on the 16 cores of the Xeon E5-2650 2.0GHz machine. But it was
also slower than on the Xeon E5-2690 2.90Hz machine. It was originally thought that this may
have been due to a problem with either the test or setup. However, this was dissolved after
the results were confirmed by the MAGMA team. The 2.0GHz cores are not twice slower than
the 2.9GHz cores of the same model but the memory availability, latency and frequency do
differ. Memory access affects dgemv severely and this is the major cause of the difference in the
performance of the diagonalisation drivers.

N E5 2.9GHz K20c E5 2.0 GHz
6144 11.58 12.23 27.27
10240 47.62 50.45 121.7

Table 2: Time for diagonalisation with pdsyevd and MAGMA’s dsyevd in s.

For matrix multiplication however the situation was more satisfactory with one card being
from 2 to 4 times faster, for sizes ranging in the mid thousands. For smaller sizes a CPU may
still outperform a K20 card even with the highly optimised cublasDgemm. This is likely to be
the reason why simply plugging CUBLAS/MAGMA in TBE to replace the BLAS/LAPACK in
ScaLAPACK showed a significant slowdown. In this case, it is feeding matrices of block size
equal to the single process BLAS/LAPACK and block sizes of 2048-3072 are impractical for
TBE just to break even, on the slower Xeon E5-2650 2.0GHz CPU.
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N E5 2.9GHz K20c E5 2.0 GHz
6144 3.70 0.45 4.16
10240 9.82 2.05 16.93

Table 3: Time for dgemm from MKL and CUBLAS in s.

5.1 Direct density matrix solution

Therefore, the solution was to use the cards for what they were good at, namely large matrix
multiplication (dgemm)3, with an algorithm for obtaining the density matrix only through
multiplication and no diagonalisation.

The basic idea behind the method is as follows. The Hamiltonian matrix and the eigenvalue
diagonal matrix are representations of the same operator but in different bases. Exactly the
same transformation links the occupancy function and the density matrix. The occupancy is a
function of the eigenvalues and for the simple case of insulators it is a Heaviside step function
positioned anywhere within the band gap. If a fast converging polynomial approximation is
found for the occupancy function and its position (Fermi level) is known a priori, then evaluating
the polynomial directly on the Hamiltonian by only using matrix multiplications and scaling
will result in the full density matrix. A suitable polynomial may be generated by recursively
applying f(X) = X2(3I − 2X)[8]. Each iteration brings the resultant polynomial closer to
the step function. For water and titania approximately 7 iterations are enough to converge ρ
to within machine precision, from the one computed through diagonalisation. There are two
matrix multiplications per iteration and a serial diagonalisation is roughly 5-6 times slower
than a matrix multiplication in the same conditions. In the end a full density matrix obtained
from a single GPU card was about 1.5-2 times faster than one obtained from the fast Xeon
E5-2690 2.90Hz machine. A number of polynomials were found or developed and tested and
the most efficient and convenient is the sign function approximation: Xn+1 = 1

2Xn

(
3I −X2

n

)
with a subsequent flip and shift of the resulting array. It is desirable to pick the chemical
potential closer to the centre because the order of the polynomial will be lower and the number
of operations will be reduced.

5.1.1 Multi GPU

An attempt was made to cautiously use source code from pdgemm and its associated routines
to develop an MPI parallel matrix multiplication routine using cublasDgemm, but this did not
perform well. Eventually, a custom block column distributed routine did show an acceptable
speedup over a single card. This was then developed to duplicate the full matrix on all devices
by using OpenMPI 1.7b’s ability to work with GPU memory addresses directly.

5.2 Structure constants on GPUs and MPI

With the density matrix obtained, albeit in a way not envisioned in the beginning, the next
and final challenge was the structure constants matrix. All code necessary for the structure
constants was rewritten in C and tested for bugs and performance on the CPU. An initial naive
implementation on a single GPU using a single thread for a block corresponding to one atom
pair was developed first. However, the performance was an order of magnitude slower than
what could be achieved with 16 CPUs. After a number of incremental improvements, the time
to build the full matrix on the GPU was brought lower than the one from the CPUs. The
final implementation check was to determine the maximal block size available in the matrix
and then launch an appropriate template function instance which is known to give reasonable
performance. It is worthwhile to note that a thread block size set to the maximal B block size
is fairly wasteful, but on the other hand a thread block too small (i.e. less than 32) may be

3surprisingly dsymm was slower than dgemm
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divergent and will also overload the threads with the local memory requirements, thus resulting
in not very many being launched, so there is a balance to be struck. Therefore, inside each
thread block, one thread initialises all shared variables to the appropriate values and all threads
cooperate in the evaluation of the Hankel function. Afterwards each thread computes one or
more elements of the structure constants. This routine is integrated within the overarching MPI
parallelisation giving each GPU a proportionally lower amount of data to be set. This setup
gives a significant performance increase over the 16 core system.

6 Conclusion and future work

The parallel scaling of the diagonalisation routines is not particularly impressive at about 40%,
however on a machine with a lower CPU/network performance ratio than an Intel Xeon E5
with a QuickPath Interconnect, it would be expected to be better. But, what is most important
to researchers is the wall clock time and this will not improve. The greatest speedup in this
project was obtained from using the sparsity of the Hamiltonian, H, to enable a selective density
matrix calculation with an efficient parallelisation, turning the O(N3) problem into a linear
one. The other significant benefit was from the changes in storage and parallelisation of the
structure constants generation. The size of the matrix of structure dependent constants, B, was
previously a significant barrier to the amount of atoms simulated. This is now fully distributed
and is therefore significantly smaller, particularly if there are only few heavy atoms in a system
of predominantly light ones.

Even though the GPU platform results were far off the set target it is likely, as the phe-
nomenal performance of the cublasDgemm shows, that in future versions the libraries could be
improved. The exploration of the iterative methods for obtaining the density matrix led to
plenty of experimentation and ideas for extentions to metals which are worth exploring in the
future. During this project, contact was also made with two international groups, who have each
developed their own H → ρ sparse libraries, one of them with a novel algorithm different than
the classical approach implemented here. In view of the intrinsic limits of dense diagonalisation
and the inefficiencies of its parallel implementations it may turn out that the direct iterative
procedures are a better solution for simulating larger numbers of atoms in the tight binding
framework.

In closing, the CUDA development was an interesting experience and one definitely worth
having.
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