
1 

 

 

 

 

Molecular Dynamics Simulation  

of Multi-Scale Flows on GPUs 

A dCSE project 

 

S. Mulla, S. Ivekovic and J.M. Reese 

 

James Weir Fluids Lab, 

University of Strathclyde, 

Glasgow, UK 

 

 

 

 

23 July, 2013 

  



2 

Abstract 

The aim of the project described in this report was to integrate the Molecular Fluid Dynamics 
simulation package OpenFOAM with the molecular-modelling library OpenMM, in order to enable 
the execution of Molecular Fluid Dynamics simulations on Graphics Processing Units (GPUs). The 
reason for this integration, rather than a straightforward substitution of OpenFOAM with OpenMM, 
was to combine the pre- and post-processing functionality of OpenFOAM (running on CPUs) with 
fast, GPU-based, Molecular Dynamics implementation provided by OpenMM. The result was a GPU-
accelerated Molecular Fluid Dynamics simulation package with a pre- and post-processing capability.  

Running engineering time- and length-scale Molecular Dynamics simulations entails a considerable 
computational effort and currently requires computational times that are prohibitively long for 
transformational advances in fluids engineering to be possible. GPU-accelerated Molecular Fluid 
Dynamics will enable faster and longer simulations, as well as better exploitation of computational 
resources. Not only does running simulations on GPUs relieve existing, CPU-based, high-
performance computational resources, but it also enables simulations to be run on personal 
workstations equipped with suitable GPUs, thereby saving on large CPU-cluster waiting times and 
execution costs. 

The emphasis of this project was on nano-scale fluid dynamics. The resulting software package will 
thus be of particular relevance to researchers interested in flows at the smallest scales.  
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1. Introduction 

This report describes the outcomes of a project conducted to accelerate the Molecular Dynamics 
simulations needed to perform research in nano-scale flows of engineering interest.  
 
The tool of choice for running such simulations at the start of this project was the OpenFOAM 
library5 (Section 2.1). OpenFOAM had already been parallelised using the Message Passing Interface 
(MPI) framework2 and the MPI implementation was regularly used to run simulations on the in-
house high-performance computer, ARCHIE-WeSt3. However, despite the MPI capability, simulations 
on engineering time- and length-scales still took prohibitively long to complete. To illustrate this, 
Figure 1 shows a graph of the performance of the standard OpenFOAM Molecular Dynamics solver 
at the start of the project. The graph shows the duration in seconds of a Molecular Dynamics 
simulation time step over a fluid system as a function of the number of Intel Xeon X5650 2.66 GHz 
CPU cores (with 12 cores per node) used to perform the simulation with MPI on ARCHIE-WeSt. The 
simulation is of a simple 3D box with periodic boundary conditions and containing 382,228 argon 
atoms. 

 

Figure 1: Strong scaling of the OpenFOAM MD solver on ARCHIE-WeSt (Intel Xeon X5650 2.66 GHz). 

It can be seen from this figure that the computational time per MD time step decreases with the 
increasing number of CPU cores until the number of cores exceeds, in this particular case, 960. At 
this point, the MPI communication time exceeds that of the computation time per CPU core and it 
becomes counter-productive to split the computation between an even greater number of cores. 
The computational time per time step that was achieved with 960 cores was 0.1118 s. With the 
Molecular Dynamics time step of 5.4015 fs, the fastest we could simulate 5.4015 ns of problem time 
on a high-performance computer with OpenFOAM was on 960 cores, and this would take more than 
31 hours. 

Simulation of problem times of engineering interest is currently prohibitive, not only because we are 
not the sole users of the high performance computer and therefore cannot regularly request 960 
cores, but also because, e.g., 5 μs of problem time for even this simple fluid problem would require 
3.5 years to simulate at this computational speed. Longer time-scales (seconds, minutes) are well 
out of reach. 
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2. Hybrid Solver (OpenFOAM, accelerated with OpenMM) 

In order to reduce the computational time of running Molecular Dynamics simulations, this project 
aimed to accelerate the simulations by porting the simulation code to the GPU platform. An existing 
GPU-based molecular modelling library, OpenMM4 (Section 2.2), was chosen to help achieve this aim. 
  
The strategy adopted during this project was to substitute the CPU-based Molecular Dynamics 
functionality of OpenFOAM with the equivalent OpenMM GPU-based functionality in such a way 
that the end user need not be aware of the modification in order to continue running MD 
simulations in OpenFOAM. This was done by keeping the OpenFOAM framework as the front end of 
the accelerated simulation interface, meaning that the pre- and post-processing capabilities, as well 
as the simulation setup tools of OpenFOAM, could continue to be used while the actual Molecular 
Dynamics algorithm was executed on a GPU platform, using the (appropriately extended) OpenMM 
library.  

To achieve this, two main implementation stages were required. In the first stage, the core 
OpenFOAM Molecular Dynamics algorithm was replaced with the equivalent part of the OpenMM 
toolkit by using the OpenMM C++ API. In the second stage, the OpenMM functionality was extended 
in order to match that of the CPU-based OpenFOAM by adding fluid dynamics control and 
measurement tools. The final result was a GPU-accelerated simulation package for Molecular Fluid 
Dynamics with OpenFOAM as a front end — called the hybrid solver. An additional outcome of the 
project is a stand-alone OpenMM library with added control and measurement tools, which can be 
used either independently or to accelerate other simulation packages. 

2.1 OpenFOAM 

OpenFOAM5,7 is an open-source Computational Fluid Dynamics (CFD) C++ software package, 
developed by OpenCFD Ltd at the ESI group. In addition to its core CFD functionality, it also contains 
a Molecular Dynamics (MD) module which enables fluid dynamics simulations at the nano-scale. This 
module was initiated, and is being actively developed, by researchers in the James Weir Fluids Lab1 
at the University of Strathclyde. In its standard MPI implementation, OpenFOAM enables CFD and 
MD simulations to be run on single and multiple CPUs. Strong scaling is effective for up to 1000 CPU 
cores, after which the communication bottleneck reduces the efficiency of the parallelised code. At 
the start of this project, MPI implementation of the OpenFOAM MD module was the main tool for 
running nano-scale fluid dynamics simulations in the James Weir Fluids Lab.  

2.2 OpenMM 

OpenMM4,6,8,9 is an open-source molecular simulation C++ toolkit developed by the Simbios National 
Center for Biomedical Computation and supported by the US National Institutes of Health. It has 
been developed with a strong emphasis on hardware acceleration, and greatly facilitates running 
general-purpose Molecular Dynamics (MD) simulations on GPUs. The toolkit uses C++, Cuda and 
OpenCL and currently allows accelerated MD simulations to be run on NVidia and AMD graphics 
cards, as well as on CPUs. The focus of the toolkit’s functionality is on biomedical simulation; 
nevertheless, its well-designed, layered architecture allows for the necessary code extensions to be 
made in a structured way.  
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3. Hybrid Solver Implementation Steps 

As stated above, the goal set during this project was to embed the GPU functionality provided by the 
OpenMM library into the software architecture of OpenFOAM in such a way that the pre- and post-
processing capability and the simulation-setup interface of OpenFOAM could continue to be used.  
 
This goal was achieved by using the OpenFOAM interface to set up and initialise the simulation and 
then automatically extracting the necessary information to initialise and run an equivalent Molecular 
Dynamics simulation in OpenMM. The OpenMM library took care of running the simulation as well 
as performing the necessary measurements and control. When the simulation finished, the data 
structures and execution control were returned to OpenFOAM for post-processing. 
  
In order to achieve the proposed OpenFOAM-OpenMM integration, a number of consecutive 
implementation steps were identified. These helped guide the project to its completion and are 
briefly summarised next. 

3.1 Choice of accelerator platform 

The OpenMM library GPU implementation is available in two sub-libraries (also called platforms): 
CUDA and OpenCL. When this project began, the OpenCL sub-library was more advanced and 
computationally much more efficient than its CUDA counterpart. At the same time, the OpenMM 
development team announced they would support OpenCL more actively in the future, and hence 
the OpenCL sub-library was adopted also for this project. 

3.2 Delegation of the pairwise force calculations to GPU 
The first step involved linking the OpenMM OpenCL platform with OpenFOAM through the OpenMM 
API and delegating the pairwise force calculations to OpenMM. All the remaining Molecular 
Dynamics algorithm steps continued to be executed in OpenFOAM. At every time step, molecular 
positions were communicated from OpenFOAM to OpenMM and pairwise forces were 
communicated back from OpenMM to OpenFOAM. 

3.3 Port of the particle trajectory integration algorithm to OpenMM 
Once the pairwise force calculation step was successfully delegated to OpenMM’s OpenCL platform, 
the next step was to delegate also the particle trajectory integration. This enabled the core 
Molecular Dynamics algorithm to be completely executed on the OpenMM GPU platform. 

3.4 Implementation of the Molecular Dynamics measurement tools in OpenMM 
The Molecular Dynamics simulations that are run in the James Weir Fluids Lab use a variety of 
runtime measurement tools during the simulation run. Most of these measurements were not 
available in the OpenMM library. In this step, the runtime measurements were added to the 
OpenMM library. 

3.5 Implementation of the Molecular Dynamics control tools in OpenMM 
The OpenFOAM Molecular Dynamics module uses control tools, such as the Berendsen thermostat, 
which were not available in OpenMM. In this step, the missing control tools were implemented in 
OpenMM. 

3.6 Implementation of fine-grained control and measurement tools  
An important aspect of the measurement and control process is to be able to partition the 
simulation domain into bins and then to apply the control and measurement tools in each individual 
bin. In this step, the measurement and control tools that were added to the OpenMM library in 
Steps 3.4 and 3.5 were extended to work in bins. 
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4. Work Packages 

The starting point of the project described in this report was a Molecular Dynamics algorithm 
running in MPI-enabled OpenFOAM on one or multiple CPUs and an OpenMM 3.1 CUDA-based 
hybrid CPU-GPU solver with force calculations – but not the remainder of the MD algorithm – 
performed on the GPU. The end point was the OpenFOAM Molecular Dynamics algorithm ported to 
the GPU platform. This was achieved by using the functionality provided by the OpenMM 4.1 library 
and by writing extensions to the OpenMM 4.1 library where the required functionality was not 
available. In order to enable full integration of the two libraries, modifications were also made to the 
OpenFOAM code. Unlike the original CUDA-based hybrid solver, the final hybrid CPU-GPU solver 
used the OpenCL platform of OpenMM 4.1. Wherever possible, attempts were made to replicate the 
original OpenFOAM functionality in the GPU version as closely as possible.  

In order to enable structured progress through the code development needed to complete this 
project, the work was divided into three main work packages. This section describes these work 
packages and the work done in detail. 

WORK PACKAGE 1: OpenMM/OpenFOAM hybrid solver using the OpenMM-OpenCL platform 
The very first version of the OpenFOAM-OpenMM hybrid Molecular Dynamics solver, with the 
pairwise force interactions calculated on the GPU, pre-dated this project and was implemented 
using the OpenMM-Cuda platform. However, at the time of initiating the present project the focus 
of the development work and support of the OpenMM team had shifted to the OpenCL platform due 
to its open and standardised nature and its applicability to multiple accelerator platforms and CPUs. 
Owing to this shift in strategy of the OpenMM team, we decided to replicate the Cuda solution in 
OpenCL, and then to implement the rest of the work proposed using the OpenMM-OpenCL platform. 

Work package 1a: Incorporate the OpenMM-OpenCL platform into OpenFOAM 
The changeover from using CUDA to using the OpenCL platform was thought to be possible through 
simply changing an API call. An OpenMM API call getPlatformByName was provided which made 
switching between target platforms straightforward. However, when coupled with OpenFOAM, 
unlike the CUDA platform which ran without problems, the OpenCL platform produced a Floating 
Point Signal Exception (SIGFPE). Further investigation revealed that the exception was raised by a 
NaN operation in the OpenCL code which was intercepted by the OpenFOAM SIGFPE exception class. 
It was eventually discovered that the fault lay in the OpenCL Context class which ran an accuracy 
check kernel in order to determine which platform it was running on and then to select the most 
appropriate set of mathematics functions to use in the simulation. The check consisted of 
performing a number of test calculations on the CPU, using the built-in CPU Math library, and then 
copying the resulting values to the GPU, running the same test calculations with the built-in GPU 
Math library functions, and then comparing the results to determine the floating-point error. As it 
was known that the code would be run on the GPU platform, this accuracy check was disabled and 
the appropriate Math library was selected explicitly. This removed the SIGFPE error problem and 
successfully integrated the OpenMM-OpenCL platform with the OpenFOAM front end.  

Work package 1b: Custom Lennard-Jones parameters and the virial coefficient in OpenCL 
The simulation-setup interface in OpenFOAM enables the configuration of Lennard-Jones interaction 
potentials with custom (for example, experimentally-obtained) cross-species potential parameters, 
rather than requiring the use of the Lorentz-Berthelot mixing rules to calculate them from single-
species values. To replicate this functionality in OpenMM, the CustomNonbondedForce class was 
used. This class accepts as an input a string specifying the pairwise interaction-potential equation 
which is then parsed inside OpenMM, using the Lepton parser. The potential equation can be 
customised to represent a wide range of different interaction potentials. In the hybrid solver, the 
Lennard-Jones parameters were automatically extracted from the simulation that was set up 
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through the OpenFOAM front end. An appropriate string was then created automatically which 
could be passed to the CustomNonbondedForce class in OpenMM. 

This work package also dealt with the calculation of the virial tensor, used to measure pressure in 
Molecular Dynamics simulations. The computational complexity of the virial tensor calculation is of 
order N2, where N is the number of atoms in the simulation. Since the pairwise force calculation is 
also of order N2, in the CPU-based OpenFOAM the virial tensor calculation is implemented inside the 
pairwise force calculation step to avoid unnecessary and expensive duplication of computational 
effort. To achieve the same in OpenMM, the OpenCL force-calculation kernel had to be augmented 
with the virial calculation. As the force calculation had already been delegated to the GPU platform 
at this stage, it made sense to proceed with the calculation of the virial tensor next, in order to 
complete the transition of the force calculation step to the GPU platform. As the OpenMM library is 
atom-centred and OpenFOAM is molecule-centred, an additional kernel, calculating the centres of 
mass of every molecule, also had to be implemented. Once the kernels were suitably modified, the 
necessary API modifications were made to enable the resulting virial tensor to be communicated to 
the top layer of the OpenMM hierarchical software architecture. The requisite modifications to the 
OpenCLContext class and OpenCLNonbondedUtilities class were also made. 

WORK PACKAGE 2: Port remaining MD simulation steps to OpenMM-OpenCL platform 
Work Package 1 had taken care of delegating the pairwise force calculation and the associated virial 
tensor calculation to the OpenMM-OpenCL platform. The Molecular Dynamics algorithm consists of 
a pairwise force calculation, velocity and position integration and appropriate control and 
measurement steps (Figure 2(a)). At this stage, only the most expensive step in the MD simulation, 
the pairwise force calculation, was being performed on the GPU (in OpenMM) and the remaining 
steps on the CPU (in OpenFOAM), as shown in Figure 2(b). This required OpenFOAM and OpenMM 
to communicate data to each other at every time step of the simulation. Profiling the hybrid 
implementation at this stage highlighted that, in addition to the speedup already achieved by 
porting the force calculation to the GPU, around 50% of the computational time was now being 
spent in communicating the information between CPU (OpenFOAM) and GPU (OpenMM). It was 
thought that removing this communication would allow for another significant increase in 
computational efficiency (Figure 2(c)). The sub-packages in this work package each addressed the 
GPU port of one of the remaining steps of the Molecular Dynamics algorithm.  

 
Figure 2: Transition from a pure-CPU to a hybrid-GPU-CPU MD solver 

Work Package 2a: Connect the OpenFOAM and OpenMM molecular representation. 
OpenFOAM contains a powerful set of algorithms for initialising Molecular Dynamics simulations in 
custom-defined simulation domains of arbitrary geometry. While the intention was for the main part 
of the MD simulation algorithm to be fully delegated to the OpenMM-OpenCL platform, OpenFOAM 
would remain the front end responsible for initialising the simulation and performing the necessary 



9 

post-processing. OpenFOAM’s data representation is molecule-based and OpenMM’s is atom-based 
and thus a solution was needed to bridge this difference. 

Given the amount of data exchange necessary between the two libraries, a careful analysis of the 
OpenFOAM data structures was done at this stage and it was decided that the best way to proceed 
would be to replicate the OpenFOAM data management style inside OpenMM and, in so doing, to 
make the OpenMM data management routines customisable through the OpenFOAM front end. As 
a result, the OpenFOAM design patterns (in particular, the abstract-factory design pattern) were 
adopted and incorporated in OpenMM. The details of the implementation are strongly linked to 
Work Packages 2c and 2d and are described in the appropriate sections of this report.  

Work package 2b: Verlet integration algorithm 
The next step in the Molecular Dynamics algorithm is the particle trajectory integration algorithm 
(see Figure 2). In OpenFOAM, the default integration algorithm is Velocity Verlet, while the OpenMM 
toolkit uses Leapfrog Verlet. As the intention was to make the GPU port fully compatible with the 
original OpenFOAM version, this work package implemented the Velocity Verlet algorithm in 
OpenMM. In the OpenMM API, a new subclass of the Integrator class was implemented and 
customised to follow the Velocity Verlet integration approach and the appropriate modifications 
were then made to the OpenMM-OpenCL kernels. 

Work package 2c: Measurement tools 
In Molecular Dynamics applied to fluids engineering problems, measuring various fluid-dynamic 
properties during the simulation run is commonplace and is a crucial research tool. As the focus of 
OpenMM was primarily on biological and biochemical simulations, most of the measurement tools 
that were required for applying Molecular Dynamics to fluid flow systems were not available and so 
had to be implemented.  

A number of measurement tools were proposed; only a subset of these were eventually 
implemented. The main obstacle to the implementation of measurement tools was the size of the 
data gathered in the measurement process and its storage. The measurements could either be kept 
in the GPU memory until the end of the simulation and then returned to CPU for processing and 
storage, or communicated to CPU every write interval and stored to disk to save on memory space. 
As the GPU memory space is limited and best used to run larger simulations, a decision was made to 
limit the measurements that were implemented to those requiring less memory for storage and to 
communicate the data back to CPU at either every time step or every write interval, as appropriate. 

The measurements that were eventually implemented in OpenMM included the total number of 
molecules, number density, mass density, total mass, kinetic energy, potential energy, total energy 
and total momentum. Other measurements were considered, but were found to require 
downloading large arrays of data. This was found to be counterproductive due to the slow nature of 
the CPU-GPU communication. 
 
In terms of the detail of implementation, an abstract-factory design pattern was used in the 
OpenMM Low-Level API to create the skeleton for the measurement tools, and a factory design 
pattern was implemented at the API level. In order to add a new measurement tool, a subclass of 
the pure base class (called Measure) was created and the appropriate measurement functionality 
implemented in the form of OpenCL kernels. The measured properties were then communicated 
back to the OpenMM API layer through access functions of the MeasurementTools class. 
Appropriate access functions had to be written for each new measurement. 

Work package 2d: Control tools 
OpenFOAM contains several control tools, all of which were proposed to be re-implemented for the 
GPU platform. The implementation of control tools followed a similar design pattern approach to 



10 

that adopted for the measurement tools described in the previous section. The access functions for 
each of the measurement tools were implemented inside the ControlTools class in the OpenMM API 
layer. 

Due to the limited time available within this project, a priority list had to be established, and it was 
decided that the most important control tools to be implemented were the Berendsen thermostat 
and the external force controller. However, the design pattern which allows for addition of new 
control tools is fully in place and further tools can be added if and when they become necessary. 

WORK PACKAGE 3: Additional functionality for complex engineering simulations on the GPU 
The focus of the previous work packages was on porting the Molecular Dynamics algorithm to the 
GPU platform and adding the necessary control and measurement tools that were used to control 
and measure the average fluid-dynamic properties in the simulation domain as a whole. In Work 
Package 3, attention was turned to implementing additional functionality, which would enable more 
complex simulations to be run. 

Work package 3a: Application of controllers to sub-domains and measurements in zones and bins 
The aim of this work package was to provide a fine-grained measurement and control capability, 
necessary to enable control and measurement in sub-sections of the simulation domain. Fine-
grained control enables complex simulation domains, for example, reservoirs connected with 
nanotubes, while fine-grained measurement enables a more detailed profiling of the fluid-dynamic 
properties during the simulation. 

The fine-grained control and measurement were implemented by appropriately modifying the 
abstract-factory design pattern, MeasurementTools and ControlTools classes, written as a part of 
Work Package 2, to measure and control inside spatially-defined bins. The bin coordinates were set 
up at the beginning of the simulation by the OpenFOAM front end and the measurement and control 
classes accepted the bin information as input parameters. 

Three new classes were created at the OpenMM Low-Level API: MeasurementInBins, derived from 
the abstract class Measure, as well as BerendsenInBins and ExternalForceInBins, both derived from 
the abstract class Control. 

The measurement tools implemented in Work Package 2 efficiently used the shared memory on the 
GPU to reduce memory-access times. When a similar strategy was attempted for the fine-grained 
measurement, it was found that the size of the shared memory (48 KB per streaming multi-
processor on NVidia Tesla M2075) became too restrictive, particularly when the number of spatial 
bins used by the simulation increased. A decision was made to use the global memory to perform 
measurements in bins and this incurred the associated global-memory access time penalty when 
compared to the optimised shared-memory implementation of Work Package 2. 

Storing the measurement bin arrays in the global GPU memory also decreased the amount of 
memory available to the simulation and consequently, when fine-grained measurements were 
required, the size of the simulation (the number of atoms/molecules) decreased proportionally to 
the number of bins used. The measurements which are available in the fine-grained mode include 
total number of molecules, total mass of molecules, total momentum, kinetic energy and number of 
degrees of freedom. Tests on a GeForce GPU with 4GB GDDR5 showed that, using global memory to 
store the binned measurement information, up to 25 bins could be used. 

Work package 3b: Custom boundary conditions 
This work package was the last proposed work package in the work plan and it was intended to 
address the implementation of non-periodic boundary conditions that would have enabled 
simulations with complex boundaries. Due to time constraints, this part of the work programme was 
not implemented and is left as future work. 
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5. Performance Evaluation 

In order to provide an up-to-date appraisal of the difference in performance between the newly-
developed hybrid solver and the CPU-based OpenFOAM library, OpenFOAM’s performance has been 
re-tested to provide a new baseline for this report. This re-testing was necessary because, within the 
duration of this project, the MPI-based OpenFOAM also underwent significant revision to improve 
its performance.  

The OpenFOAM version used in the James Weir Fluids Lab is 1.7.x. Although the official OpenFOAM 
version has moved on to version 2.2.1 at the time of writing this report, that version does not 
include the MD functionality developed inside the Lab. Porting this functionality from version 1.7.x 
to version 2.2.1 would require a major programming effort, but may indeed happen in the near 
future.  

Table 1 shows the performance (time per MD time step, in seconds) of the currently -used state-of-
the-art pure-CPU OpenFOAM 1.7.x MD solver on a simple atomistic case without measurements and 
control tools. 

No. of cores → 
Simulation size (no. of atoms) ↓ 

12 
 

24 
 

36 
 

48 
 

60 
 

72 
 

96 
 

119,164 0.394 0.361 0.225 0.196 0.157 0.115 0.085 

238,328 0.706 0.653 0.457 0.351 0.267 0.208 0.153 

Table 1: Pure-CPU OpenFOAM solver performance on a varying number of ARCHIE-WeSt Intel Xeon 
X5650 2.66 GHz CPU cores (12 cores per node). 

Tests performed on NVidia Tesla M2075 (448 cores, 6GB GDDR5), available in ARCHIE-WeSt, showed 
that the choice of the OpenCL platform as the more optimised platform at the time was a sensible 
one. The hybrid solver at the end of Work Package 1, with force calculations performed on GPU, was 
around 2.2× faster than the equivalent solver implemented using the OpenMM-CUDA platform, 
which was a precursor to this project (see Table 2). Due to circumstances beyond our control, it was 
not possible to use identical test cases for both tests. The simulation sizes shown in Table 2 differ 
slightly, with the test cases used for the new OpenCL-based solver being slightly larger than the ones 
used with the old CUDA-based solver. Table 2 also shows that, at this stage, the performance of the 
hybrid solver rivalled that of the MPI-OpenFOAM when run on approximately 58 CPU cores.  

Simulation size 
in atoms 

Time per time-step in 
seconds using the original 

CUDA hybrid code 

Simulation size in 
atoms 

Time per time-step in seconds 
using the new OpenCL hybrid 

code 

118,638 0.35341 119,164 0.164 

237,276 0.68253 238,328 0.2962 

Table 2: OpenMM-CUDA platform versus OpenMM-OpenCL platform 

The port of the Verlet integration algorithm to the GPU platform (Work Package 2b) provided an 
additional speedup which meant that the new hybrid solver was then 3.3× faster than the original 
CUDA solver (Table 3). The performance of the hybrid solver at this stage rivalled that of the MPI-
OpenFOAM when run on approximately 79 CPU cores (cf. Table 1). 
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Simulation size 
in atoms 

Force calculation on the GPU 
(Work Package 1a) 

Force calculation + Verlet integration on 
the GPU (Work Package 2b) 

119,164 0.164 0.106 

Table 3: Verlet integration on the GPU platform. 

The addition of measurements to the GPU platform (Work Package 2c) increased the computational 
time step slightly, as shown in Table 4. The time shown includes the time required to download the 
measurement data structure from GPU to CPU at every time step. As the measurements were then 
being performed on GPU, it was no longer necessary to download the molecular positions, velocities 
and forces to CPU at every time step. The hybrid solver was then equivalent to MPI-OpenFOAM 
when run on approximately 73 CPU cores. 

Simulation size 
in atoms 

Force calculation + Verlet integration 
on the GPU (Work Package 2b) 

Force calculation + Verlet integration + 
Measurements on the GPU (Work 

Package 2c) 

119,164 0.106 0.113 

Table 4: Measurement tools on the GPU platform. 

The addition of the control tools to the GPU platform (Work Package 2d) increased the 
computational time again, as shown in Table 5. The time reported includes the time necessary to 
perform control and measurement on GPU and the time required to download the measurement 
data structure to CPU every time step. The performance of the hybrid solver then compared to MPI-
OpenFOAM when run on 71 CPU cores. 

Simulation size 
in atoms 

Force calculation + Verlet integration + 
Measurements on the GPU (Work 

Package 2c) 

Force calculation + Verlet integration + 
Measurements + Control Tools on the 

GPU (Work Package 2d) 

119,164 0.113 0.1151 

Table 5: Control tools ported to the GPU platform. 

Expanding the functionality of the measurement tools to apply in bins increased the computational 
time to that shown in Table 6. When compared to the implementation of the measurement tools 
across the entire simulation domain, the increase in computational time could be explained in terms 
of the overhead of assigning the calculated measurements to appropriate bins, the GPU memory 
management required to maintain a bin data structure and the download of the bin measurement 
array to CPU every time step. The number of bins used for this test case was 10 and the performance 
was comparable to MPI-OpenFOAM when run on 63 CPU cores. 

Simulation size 
in atoms 

Force calculation + Verlet integration + 
Measurements on the GPU (Work 

Package 2c) 

Force calculation + Verlet integration + 
Measurements in bins on the GPU (Work 

Package 3a) 

119,164 0.113 0.1449 

Table 6: Measurement tools in bins. 

 



13 

The control tools were also extended to work in bins, however, coding issues prevented reliable test 
results for the Berendsen thermostat from being obtained at this stage and the related work is on-
going. As this information may still be relevant to the prospective user of the code, the 
computational time per time step for measurements computed in 10 bins, the external force 
controller applied in 10 bins and the Berendsen thermostat applied to the entire simulation domain 
is reported in Table 7 instead. As in the previous cases, the reported computational time includes 
the time taken to perform measurements in bins, control in bins and in the entire domain, and the 
time necessary to download the measurement data structure to CPU every time step. The 
performance is comparable to MPI-OpenFOAM when run on approximately 63 CPU cores. 

Simulation size 
in atoms 

Force calculation + Verlet integration + 
Measurements in bins on the GPU (Work 

Package 3a, part 1) 

Force calculation + Verlet integration + 
Measurements in bins + Control in bins* 

on the GPU (Work Package 3a, part 2) 

119,164 0.1449 0.1454 

Table 7: Control tools in bins. *Berendsen thermostat is applied to the entire domain. 

The virial tensor calculation on the GPU was the subject of Work Package 1b, since its 
implementation fitted naturally with the force calculation stage. However, as the process of 
calculating the virial tensor is also an instance of applying a measurement tool, development of the 
virial persisted throughout the work programme. Despite inserting the virial calculation code into a 
GPU-optimised force calculation kernel, already available in OpenMM, the addition of the virial 
calculation resulted in a heavy computational load. The reason was the size of the virial tensor (3x3) 
which implied not only a large computational burden, but also significantly longer GPU-CPU 
communication times. Table 8 shows the increase in computational time per time step when 
calculating the virial tensor inside the force kernel on GPU. To highlight the computational 
complexity of this particular stage, the time reported includes that for performing the pairwise force 
calculation, Verlet integration and virial tensor calculation on the GPU, as well as the time required 
to download the virial tensor for all molecules at every time step. The computational performance 
compares to MPI-OpenFOAM when run on 63 CPU cores. 

Simulation size 
in atoms 

Force calculation + Verlet integration 
(Work Package 2b) 

Force calculation + Verlet integration + 
Virial measurement (Work Package 

2b+1b) 

119,164 0.106 0.1455 

Table 8: Virial tensor calculation on GPU. 

Table 9 shows an overview of the computational time per time step measured for the new hybrid 
solver at its various stages of development. It can be seen that the hybrid solver with force 
calculation and Verlet integration run on a GPU rivals the performance of MPI-OpenFOAM when run 
on 79 ARCHIE-WeSt CPU cores. The addition of measurements and control increases the 
computational time, as expected. Performing the measurements in bins increases the computational 
time even further, bringing the hybrid-solver performance in line with MPI-OpenFOAM when run on 
63 CPU cores. Finally, computing the virial tensor slows down the calculation to a stage where the 
hybrid solver consisting of only the core MD algorithm (pairwise force calculation and Verlet 
integration) and the virial calculations becomes equivalent to MPI-OpenFOAM when run on only 63 
CPU cores. A graph of these values is shown in Figure 3. 
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Simulation 
size in atoms 

WP 1a WP 2b WP 2c WP 2d 
WP 3a 

measurements 
WP 3a 

control* 
Virial 

119,164 0.164 0.106 0.113 0.1155 0.1449 0.1454 0.1455 

Table 9: Overview of the computational performance across the work packages. *Berendsen 
thermostat not applied in bins for WP 3a, as described in the text. 

 

Figure 3: Comparison of the computational performance of MPI-OpenFOAM on varying number of 
ARCHIE-WeSt Intel Xeon X5650 2.66 GHz CPU cores and the hybrid OpenFOAM-OpenMM solver on 
ARCHIE-WeSt NVidia M2075. 

6. Discussion 

The initial intention of the project described in this report was a straightforward port of an existing 
Molecular Dynamics algorithm available in pure-CPU OpenFOAM to a different platform, namely the 
GPU platform. As is always the case, however, many obstacles were encountered on the way and 
new areas for investigation were identified.  

In the authors’ view, the results shown in this report demonstrate the computational power of the 
GPU platform and highlight the fact that GPUs should be taken seriously as a co-processing tool for 
computational fluid dynamics at the nano-scale. Completed tests show that the main computational 
gain was achieved by porting the force calculations and the particle trajectory integration onto the 
GPU platform. The remaining work packages did not contribute a significant increase in efficiency, 
yet they did not increase the computational time either. Given further time, Work Packages 1b and 
2c-3a could be revisited, allowing the relevant algorithms to be optimised further to better exploit 
the parallel nature of the GPU platform.  

One of the main obstacles experienced during this project was the communication time required to 
download data from GPU to CPU on a regular basis. More could be achieved by hiding 
communication behind computation where possible, as well as by performing as much of the 
computation on the GPU as possible, thereby reducing the need to communicate with the CPU at 
every time step. This is not easily achievable though, as not communicating data to CPU means 
storing it in the (already limited) GPU memory instead, as well as putting GPU in charge of averaging, 
something that CPU is much better suited to. Investigating the best balance between the amount of 
computation done on GPU and that done on CPU would yield a useful separate project in its own 
right. It may well be that the GPUs are best suited to running the core MD algorithm efficiently and 
that any measurements would better be left to the post-processing stage. 
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The OpenMM version used and extended for the purposes of this project was version 4.1. The latest 
version of the official OpenMM library available at the time of writing this report is a highly-
optimised version 5.1 which quite significantly outperforms the previous OpenMM versions. It is 
expected that incorporating the work described in this report into OpenMM 5.1 would provide an 
additional and significant computational speedup. 

When comparing the performance of the hybrid solver to that of pure-CPU OpenFOAM, the CPU 
times were reported for only a very simple simulation case. Ideally, every stage of the hybrid solver 
should be compared to an equivalent simulation run in pure-CPU OpenFOAM through a strong-
scaling experiment. Unfortunately, such insights could not be obtained, because the required 
number of ARCHIE-WeSt CPU cores was seldom readily available. In addition, the time required to 
run such thorough tests well exceeded the time that was available for the completion of the project. 

At its best, the computational performance of the hybrid solver on one NVidia Tesla M2075 GPU, 
evaluated on an example test case, was comparable to MPI-OpenFOAM when run on 79 ARCHIE-
WeSt CPU cores. Given that GPUs can be used as co-processors in desktop computers, this 
represents a significant increase in computational efficiency when compared to the typical number 
of CPU cores (8-12) available in such computers. In addition, the fact that high performance 
computers, like ARCHIE-WeSt, are a shared resource means that it is unlikely that 79 CPU cores will 
be regularly available to MD fluids engineers. It is much more likely that a single GPU node will be 
available consistently instead and, as this report demonstrates, one GPU node can provide a 
computational power equivalent to between 63 and 79 CPU cores, depending on the details of the 
simulated case. A further case in point is the cost of running simulations on high-performance 
computers, where the charge is levied per number of computational nodes occupied by the 
simulation. Replacing 6 CPU nodes (72 CPU cores) with 1 GPU node makes a noticeable difference to 
the simulation cost. Last, but not least, the advantage of running small-to-medium-size simulations 
on the GPU platform should not be overlooked, in particular, those simulations which are too small 
to be effectively decomposed on a large set of MPI cores because the communication slow-down is 
encountered early in the strong-scaling test. Such simulations may easily fit into the memory of a 
single GPU and are likely to run faster because the network communication is not required. In 
practice, the computational efficiency of the GPU code will always depend on the particular 
simulation case and a thorough understanding of the advantages and limitations of the GPU 
platform is of paramount importance if its computational power is to be exploited fully. 

7. End users 

The project described in this report was implemented to increase the computational speed of 
Molecular Dynamics simulations used to conduct engineering research in molecular fluid dynamics. 
It directly benefits the activities of the researchers in the James Weir Fluids Lab, and other research 
groups or individuals with similar interests. Various research publications or presentations whose 
results use the code described in this report have already been, or are being, produced10-12. 

8. Licensing 

OpenFOAM and OpenMM libraries are open source and developed under the GPL licence. In this 
spirit, the newly-developed source code will be made freely available. Currently, the code is 
undergoing further validation and testing, particularly in its interactions with OpenFOAM and 
stability for general release. The plan is to release it as an open source package on GitHub in late 
2013, following this validation period. The authors are in regular communication with OpenCFD (ESI) 
Ltd, the OpenFOAM project architects, with a view to including this improved particle functionality 
into future releases of OpenFOAM. The authors are also communicating with the developers of 
OpenMM with the aim of introducing the additional functionality developed in this project into 
future standard releases of OpenMM. This is expected to come to fruition in 2014. 
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