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Abstract 
  

Advanced research in photonic materials has shown that rapid breakthroughs in device applications go 

hand-in-hand with the development of efficient, computationally powerful software tools. Thus, high 

fabrication costs of complex photonic nano-structures and devices make it imperative to have access to 

computational tools based on efficient algorithms, which can greatly reduce the design-fabrication-testing 

cycle. In this context, computational techniques based on the multiple-scattering formalism have become a 

primary means to model a variety of scientific and engineering problems related to the electromagnetic 

wave interaction with arbitrary distributions of particles and materials. In this work, we have extended 

OPTIMET (OPTIcal METa-materials) code, which is based on the 2D multiple scattering matrix method, 

to allow for the analysis of electromagnetic wave interaction with large ensembles of 3D micro- and nano-

particles that are periodically or arbitrarily distributed in an otherwise homogeneous background. The 

newly developed software, OPTIMET-3D, has the following additional functionalities, which dramatically 

enhance its computational capabilities: (i) The extension of the code capability to 3D photonic structures, 

(ii) The capability to model non-linear (second-order) optical respons of ensembles of particles, (iii) The 

capability to describe efficiently periodically distributed electromagnetic scatterers, (iv) The design and 

development of the software so as to render it suitable to run efficiently on parallel HPC systems. 
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1. Introduction 

Over the past few years we have witnessed tremendous progress in the design of photonic nano-

materials, nano-devices and circuits, which in part has been greatly accelerated by the availability of 

user-friendly, computationally powerful software tools for device simulation and design. Advanced 

research in integrated optics and photonics has shown that rapid, informed advances in photonic device 

applications go hand-in-hand with the development of highly efficient computational simulation tools. 

Thus, high fabrication costs of complex photonic nano-devices make it imperative to have access to 

computational tools based on efficient algorithms, which can greatly accelerate the device design 

process and reduce the design-fabrication-testing cycle. The future photonic computational tools should 

be able to model a distributed multifunctional device “continuum” in which the light is generated, 

processed and collected in the same physical space. This complexity of the architecture of photonics 

circuitry implies that future computational tools must fully integrate the description of physical 

phenomena that take place over multiple temporal, spectral and spatial scales. It is therefore evident that 

in order to achieve rapid advances in nano-photonics, research in computational methods and 

development of new and versatile HPC codes are of crucial importance. 

In recent years, computational techniques based on the multiple-scattering formalism have become a 

primary means for modelling a variety of scientific and engineering problems related to the 

electromagnetic wave interaction with systems of particles and material media [1-5]. Thus, 

computational methods based on the multiple-scattering matrix (MSM) algorithm, also called the T-

matrix method, play a central role in modelling a vast array of applications, such as photonic and 

plasmonic crystals (transmission, reflection, absorption, density of states), metamaterials, nano-

photonics (nano-lasers, plasmonic materials), radar signature technology, wireless communications 

devices, antennae, microwave devices, bio-photonics and biomedical imaging/treatment. The versatility 

of the MSM method allows one to study the electromagnetic waves interaction with distributions of 

scatterers under a broad set of boundary conditions, material parameters and geometries (periodic and 

non-periodic boundary conditions, 2D and 3D geometries, in the time and frequency domains) and can 

be applied to scattering systems that contain both linear and non-linear media. More importantly, there 

is a scarcity of HPC codes currently available on HECToR for electromagnetic simulations (in fact, at 

the time of writing this report we were aware of no such code). Similarly, on Legion (Legion@UCL, 

UCL's HPC compute platform and the HPC system on which the code developed as part of this project 

is intended to be used) there is only one HPC electromagnetic simulator (MEEP), a time domain solver 

based on the FDTD method.   

2. Project Objectives 

A versatile HPC tool for simulation of photonic materials must provide two major capabilities: First, it 

should describe various geometries, which can be 2D or 3D periodically or randomly arranged objects, 

a large variety of basic building blocks of photonic materials and should provide a full characterisation 

of the properties of the material both in the time and frequency domains. Second, the HPC software 

should be efficient and easy to use so as to appeal to a large user base. To this end, the main aim of this 

project was to develop a versatile, easy to use HPC software for massively parallel simulation both in 

the time and frequency domains of 2D and 3D materials that are periodically or randomly structured. 

The proposed software development work has been organised along three major work packages: 

Work package 1: Extension of OPTIMET to 3D structures  
This part of the project was devoted to the extension of the current OPTIMET code [5] to 3D geometry.  

 Incorporate in the code vector spherical wave functions (VSWF) via the addition of spherical 

harmonic functions; 

 Implement the functions that construct the scattering matrix of the system and the 3D fields. The 

scattering matrix of the system is constructed at node level whilst the spectral and time domain 

calculations are implemented via MPI and distributed across the available nodes. 

 Implement the functions that compute the system cross-sections. This task amounted to writing the 

routines for calculating the total, scattering and absorption cross-sections of the system. 

Work package 2: Implementation of periodic boundary conditions  
In this part of the project the periodic boundary conditions capability was added to the code.  

 Implement the routines to compute the transmission/reflection matrices. 

 Implement the functions for the transmission/reflection matrices of a set of layers of scatterers. 

 Implement the routines that compute the transmission and reflection coefficients of a material slab. 
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Work package 3: Extension of OPTIMET so as to incorporate quadratic nonlinearities  
OPTIMET-3D was developed to incorporate the effects induced by quadratic optical nonlinearities.  

 Write a set of routines for computing the nonlinear scattering matrix of the system. 

 Write the functions that compute the total, scattering and absorption cross-sections of the system. 

We want to mention here that originally we intended to implement the simpler case, namely, that of 

cubic (Kerr) optical nonlinearity. However, as the project progressed, it became clear that we would be 

able to develop a branch of the code for modelling the much more complex case (and more important 

from a practical point of view), that of quadratically non-linear optical interactions. The main reason 

for this change in strategy was that the developer of the original version of the code, Dr Claudiu Biris, 

was able to invest in this project more time than it has been originally anticipated. 

3. Project Outcomes 

The main outcomes of the project can be divided in two main categories, namely, a versatile HPC 

software (OPTIMET-3D) that can accurately model the interaction between electromagnetic waves and 

arbitrary distributions of metallic, dielectric and semiconductor particles, and an enhanced capability to 

investigate and solve a multitude of scientific problems that are relevant to several areas of science and 

technology, including optoelectronics, photonics, materials science, plasmonics, nanotechnology, non-

linear optics and surface science. In fact, we have already used OPTIMET-3D to demonstrate for the 

first time that, surprisingly, super-chiral light can be generated in clusters of silicon nano-spheres; a 

conference paper on this topic will be presented shortly after the completion of the project [6]. 

OPTIMET-3D has been developed to be used on Legion (Legion@UCL) UCL's HPC cluster. Legion 

comprises 904 nodes offering over 5600 processor cores, each with between 2GB and 4GB RAM. Most 

of the system is connected by high-performance interconnect. The cluster is coupled to a large-scale 

high-performance file system, with a total capacity of 192 TB. The cluster features a range of best-in-

class compilers and related tools for serial and parallel code development, such as Intel C++ and 

FORTRAN compilers, Pathscale Compiler Suite, a broad set of libraries, such as Intel's Math Kernel 

Library (MKL), BLACS, LAPACK and ScaLAPACK, and software tools for development of parallel 

code, such as MPICH2 and OpenMP. The service is currently further expanded, with new compute 

capacity being added to the cluster. The current version of OPTIMET-3D deployed on Legion was built 

using Intel’s Compiler Collection version 11.1 and uses the OpenMPI 1.4.1 parallel library suite. 

OPTIMET-3D has also been successfully ported and run on two other HPC platforms, specifically, the 

InfraGrid and BlueGene/P clusters at the West University of Timisoara (Romania). InfraGrid is an 

Intel® Xeon cluster with 100 Quad Core CPUs clocked at 2.0 GHz. Each CPU has direct access to 10 

GB of RAM and all share a 145 GB SAS local storage device. The system uses 40Gbps 4xQDR 

Infinipath interconnect to ensure fast and stable inter-node communications. OPTIMET-3D was 

deployed on InfraGrid using Intel’s Compiler Collection version 11.1 and uses Intel’s MPI 4.1 library. 

The second HPC platform is a BlueGene/P rack with 1024 Quad Core PowerPC-450 processors. Each 

CPU has access to 4GB of RAM and the cluster is connected to a 48×320 GB SAS IBM DS3524 

networked storage arrays. Interconnect is provided by a Torus 3D network. To date, OPTIMET-3D has 

been tested on the BlueGene/P cluster but no production code has been run. These tests have been 

performed to ensure compatibility with IBM technologies, specifically, MKL was replaced by IBM’s 

Engineering and Scientific Subroutine Library (ESSL) and the code was compiled with IBM’s XL 

Compiler Suite, version 9.0, and linked with the IBM MPIx parallel library. 

After full testing, OPTIMET-3D will be hosted at http://www.ee.ucl.ac.uk/~npanoiu/Software.html, on 

Dr Panoiu's webpage at UCL, and will be freely available for download. The software will also be made 

freely available to all interested users of Legion. In order to increase the dissemination and potential use 

of the software, we are also preparing a journal article that will be submitted together with the code to 

Comp. Phys. Comm. journal. OPTIMET-3D is currently stored on BitBucket in a Mercurial repository 

(https://bitbucket.org/cbiris/optimet3d). Access to it is available through any compatible Mercurial 

client that can access Mercurial repositories of version 1.4 or higher, such as “hg” for Unix or Tortoise 

HG for Windows. The current version of OPTIMET-3D has about 20500 lines of code. We use the 

following four branches, for development and code release: 

 default – this is the default branch, which contains the current release version of OPTIMET-3D 

and also incorporates the previous software, OPTIMET. This branch would be accessed by 

users who are interested in using OPTIMET-3D, but do not wish to develop code using the API. 

http://www.ee.ucl.ac.uk/~npanoiu/Software.html
https://bitbucket.org/cbiris/optimet3d
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 devel – this is the main development branch for the serial version of the code. This version 

contains all the latest features of the code, as they are first tested in the serial version before 

being pushed onto the parallel development branch. 

 devel-parallel – this is the main development branch for the parallel version of the code. This 

branch is a mirror of the devel branch but contains parallel version of the needed functions and 

classes. Since features are tested in the serial version first, this branch may occasionally have 

less features than the devel branch. 

 forward – this is a private branch which is used only by the OPTIMET-3D developers to 

implement and perform initial tests of new features in future release versions of the code. 

Understandably, some of the features in this branch may be unstable or untested, so users who 

want to use OPTIMET-3D API should synchronise with the devel or devel-parallel branches. 

The software tool developed as part of this project has three major capabilities, which have been 

implemented as part of the three major thrusts (work packages) of the software development work. The 

corresponding blocks of the code that implement these main features are parallelised. All parts of the 

source code are integrated in a single software tool, which makes it particularly easy to use and 

disseminate the code and to further develop it as well.  

First, unlike the previous version (OPTIMET), the HPC code can now model fully 3D electromagnetic 

structures (as schematically shown in Fig. 1). This represents a dramatic improvement of the code, 

particularly from a practical point of view. The electromagnetic scatterers can have rather arbitrary 

shape, including spheres, ellipsoids and pyramids. Additional shapes can be modelled by simply 

providing the parametric representation of the corresponding surface of the scatterer. Moreover, the 

scatterers can have different size, can be arbitrarily distributed and can consist of materials with 

different electromagnetic properties, provided via the electrical permittivity () and magnetic 

permeability (). Once the configuration of the incoming field (direction and polarisation) and 

distribution of scatterers are provided, OPTIMET-3D can compute the main physical quantities of 

interest, namely, electromagnetic field distribution and the scattering cross-section, absorption cross-

section and the total (extinction) cross-section. Importantly, since the frequency enters into the 

computations only through the electromagnetic constants of the particles (scatteres) OPTIMET-3D can 

practically be used for any frequency in the electromagnetic spectrum. 

The second major feature of OPTIMET-3D is that it can describe the interaction of electromagnetic 

waves with periodic distribution of particles. This feature makes it particularly useful in studies of 

optical properties of photonic and plasmonic crystals and, more generally, for modelling photonic meta-

materials. In particular, the software tool can be used to compute the transmission and reflection 

coefficients of a slab of photonic material and, consequently, the optical absorption in the slab, as well 

as the photonic band structure of the photonic material. As in the previous case, the particles in the unit 

 
Figure 1. Schematic representation of the incident field/scattered field 

theoretical model and 3D structure of a cluster of arbitrary scatterers. 
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cell can have arbitrary shape and size and can be made of various optical materials, including metals, 

semiconductors and dielectrics. 

The third major capability of OPTIMET-3D is that it can describe the non-linear interaction between 

electromagnetic waves and arbitrary distributions of particles made of centro-symmetric optical 

materials, such as noble metals and silicon. In this non-linear optical interaction, the electromagnetic 

field at the fundamental frequency () gives rise to a field at the second harmonic (2), the field 

generation being confined primarily at the surface of particles or interfaces. This is perhaps the most 

important optical effect in non-linear optics, with many applications in surface optical spectroscopy, 

surface chemistry and optical biosensing. As in the linear case, the code provides the main physical 

quantities that characterise the (non-linear) interaction between the electromagnetic field and arbitrary 

distributions of particles, that is, the electromagnetic field distribution and the scattering cross-section, 

absorption cross-section and the extinction cross-section. We mention here that originally we intended 

to implement the simpler case, namely, that of cubic optical nonlinearity. 

In addition to a high-performance, versatile code, this project has another major outcome, namely, it 

would play an important role in enhancing current scientific collaborations with worldwide leading 

academic groups working in nano-photonics and help to start new ones as well. In fact, we have already 

identified potential collaborations with Prof Jeremy Baumberg and Dr Ventsislav Valev from the 

University of Cambridge, in which OPTIMET-3D will be used to interpret experimental data regarding 

optical properties of self-assembled clusters of metallic nano-particles (more details about the scientific 

use of OPTIMET-3D are given in Sec. 7). 

 As part of our ongoing research collaboration with Dr Paul Warburton’s Group at UCL and Prof 

Richard Osgood’s Group at Columbia University we plan to use OPTIMET-3D to study the non-

linear optical properties of plasmonic meta-materials and non-linear photonic crystals. In particular, 

the software tool will be instrumental in advancing our work on next-generation solar cells that 

incorporate plasmonic materials. 

 We will use OPTIMET-3D in our ongoing collaboration with Prof Chee Wei Wong's group at 

Columbia University, on multi-colour Anderson wave localisation in disordered ensembles of 

dielectric nano-particles.  

 QPTIMET-3D will be instrumental in our ongoing collaboration with Prof Shuang Zhang's group at 

the University of Birmingham and Prof Xiang Zhang's group at Berkeley University (USA), a 

project supported by EPSRC/NSF (EP/J018473/1), on optical properties of classical and quantum 

meta-materials.   

4. The Multiple Scattering Matrix Method 

In order to facilitate the understanding of the main capabilities of OPTIMET-3D, we briefly present in 

this section the numerical method on which the code is based. Thus, the main steps of the MSM method 

can be described as follows: First, the incident, scattered, and internal (inside the scatterers) fields are 

expanded in Fourier series. The basis functions in 2D and 3D are multipole functions and VSWF, 

respectively [2-5]. Then, one constructs a system of linear equations whose unknowns are the Fourier 

coefficients of the scattered field. These coefficients are the main unknowns of the scattering problem 

as they can be used to compute most of the main physical quantities characterising the wave interaction, 

namely, the electromagnetic field distribution both inside and outside the scatterers, and the scattering, 

absorption and the extinction cross-sections.  

This brief description of the MSM method shows that the main part of this algorithm consists in 

constructing and solving a system of linear equations whose unknowns are the Fourier coefficients of 

the scattered field. The matrix defining this system, also called the transfer matrix (or T-matrix), is 

completely defined by the location, shape and material parameters of the particles. The T-matrix of the 

system has a block structure, the corresponding blocks consisting of single-particle T-matrices and 

matrices that describe inter-particle interactions (coupling between particles). As a consequence of this 

block structure of the T-matrix, the MSM method can be easily applied to clusters with different 

number and distribution of particles. Equally important, the obvious scalability with the number of 

particles renders the MSM algorithm particularly suitable for parallelisation.  

4.1 Mathematical Formulation of the Multiple Scattering Matrix Method 

Consider a cluster of N particles being illuminated by a monochromatic plane electromagnetic wave. 

The origin of the co-ordinate system of the cluster is   and to each particle (j) one associates a co-

ordinate system with the origin,   . The only constraint imposed on the location of the particles is that 
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the circumscribing spheres of the particles do not overlap, i.e.                    ,     

           , where as per Fig. 1    is the radius of the smallest sphere containing the jth particle.  

The solution of the source-free Maxwell equations in 3D can be expanded in a complete basis of 

VSWFs,     
   

    
   

  and     
   

    
   

 . In a practical implementation, the series is truncated to a 

certain order,     . Let         
    

    
    then, the incident, scattered and internal electric fields 

can be expressed as [2-5]: 

incident field 

   
               

              
                                                                                     

internal field 

               
 
     

   
          

 
     

   
                                       

scattered field 

               
 
   

   
         

 
   
   

                                                    

where   and    are the wave vectors in the embedding medium and inside the jth particle, respectively, 

  and   ,          , are the position vectors of a point, P, in the co-ordinate systems   and   , 

respectively. The magnetic field is subsequently obtained from the electric field as      . The 

unknown expansion coefficients of the internal and scattered fields,     
 
    

 
  and     

 
    

 
 , 

respectively, can be expressed in terms of the known expansion coefficients of the incident 

monochromatic plane wave,     
 
    

 
 , by imposing at the surface of the particles the boundary 

conditions satisfied by the electric and magnetic fields. 

In the non-linear case, the corresponding electric field at the fundamental frequency (FF),     , gives 

rise to an electromagnetic field at the second harmonic (SH) frequency,     . This field is generated 

by the non-linear dipoles described by the non-linear polarisation,    [5,7,8]: 

     
    

   
                                                                                   

surface polarization 

   
    

      
                                                                        

bulk polarization 

   
                                                                       

For a rigorous derivation of Eqs. (5) the reader is referred to [8].   

4.1.1 Single Particle Analysis 

Let       
 
   

 
        

 
 
 

, with          
       , be a column vector, and define similarly 

  ,   ,   ,    and   . Here,        ,         and         represent the Fourier expansion coefficients 

of the incident, internal and scattered fields, respectively, defined with respect to  , relative to   , 

          . Moreover, if one assumes that the system contains only the   th particle, a compact 

matrix representation of the Fourier coefficients of the electromagnetic fields, both inside and outside 

the particle, can be cast as follows [2]: 

 
  

  
      

 

  
    

   
     

 

  
 

  
             

 

  
      

 

  
   

    

     
 

  
 

  
                        (6) 

Here,    and   ,          , are the scatterer-centred T-matrix of the jth particle and a matrix that 

relates the Fourier coefficients of the inside and outside fields, respectively. Note that the block-

diagonal structure of the    and    matrices is valid only for spherical particles. 

4.1.2 Multiple Particles System 

The central idea of the Foldy–Lax multiple scattering theory [9] is that in the vicinity of any scatterer   
in the   particle system, there is a local field that is the superposition of the incident field and the field 

scattered by all the other scatterers in the system, except the scatterer itself. Using the definition of the 

single-particle T-matrix,   ,          , the Fourier expansion coefficients of the scattered and 

incident fields,         and        , respectively, obey the following equation: 
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The coefficients         and          , where        
  
   

  
        

  
 
 

, and similarly for    , need 

to be expressed in terms of the known expansion coefficients of the incoming field and        , 

respectively, which are calculated in the system with the origin in  . This is achieved by using the 

vector translation-addition theorem [2, 4]. Thus, let us consider the matrix coefficients, 

        
                    

                    
                                                   

        
                    

                    
                                                         

where          and         ,      , represent the vector translation-addition coefficients, which are 

evaluated using an efficient recursive implementation as proposed in [4]. Let           
 

 and 

        . Then, the single-particle scattering expansion coefficients,   , can now be expressed in 

terms of   and   ,                , as: 

                         

   

                                                                                      

In terms of the known Fourier expansion coefficients of the incident field,  , the resulting system of 

linear equations for the   particle system for the unknown Fourier expansion coefficients of the scattered 

field,   ,          , can be expressed in the following form: 

 
 
 
 
 
 

                                      

                                      

                                      

                                      

      
                                       

 
 
 
 
 

 
 
 
 
 
 
  

  

  

  

 
   
 
 
 
 
 

 

 
 
 
 
 
 
 
         

         

         

         
 

          
 
 
 
 
 
 

                 

The system (10) can be expressed in a compact matrix form,        , where                 ,  

                                    
 

 and    denotes the FF (linear) scattering matrix of the 

system. Constructing the system matrix    and solving Eq. (10) represent the core parts of the MSM 

method. Similarly, in the non-linear case the scattering problem is reduced to solving a system of linear 

equations,        , where    and    are the (non-linear) scattering matrix of the system and the 

Fourier expansion coefficients of the (non-linear) scattered field, respectively. 

4.1.3 Periodic Arrays of Particles 

Consider an infinitely extended, 2D periodic lattice of particles situated in the xy-plane, defined by the 

Bravais lattice vectors             , where                and         are the basis 

vectors of the lattice. The corresponding reciprocal lattice is defined by             , where 

               and         are the basis vectors of the reciprocal lattice.         and          
are related through the relations                    .  

The solution for the scattered electromagnetic field for an arbitrary 2D lattice can be efficiently 

obtained via the lattice-centre translation-addition theorem, which replaces the contribution of each 

particle with an equivalent contribution of a particle located at      [10,11]. Then, the total scattered 

field,   
  , is obtained from the reciprocal lattice identity relationship, which expresses the VSWFs 

expansion in the    lattice in the limit      in an equivalent form as a truncated expansion in the 

reciprocal lattice [10,11]: 

scattered field 
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where   and    denote Cartesian components,         denote the direction of the incident field,     , 

for           and            . The analytical expressions for  
       
    

 are given in [10,11]. 

From these expressions the transmitted and reflected fields from the 2D lattice are: 

transmitted field 

    
        

       
   

     

 
     
                                                                                                      

reflected field 

    
    

   
       
   

     

 
     
                                                                                                      

where the corresponding transmittance and reflectivity of the 2D lattice (slab) are defined as the ratio of 

the fluxes of   
      and   

    
, respectively, to the flux of      (note that the sum over the diffraction 

orders   has been taken out). The details of the implemented code, OPTIMET-3D, and the associated 

parallelisation strategy are presented in the next section. 

5. Technical Implementation of OPTIMET-3D 

In this section, the technical implementation of OPTIMET-3D and several parallelisation strategies 

employed for its numerical acceleration are presented. Then, the structural framework of the software is 

given with a comprehensive description of the major building blocks of the code. 

5.1 Technical Overview 

OPTIMET-3D is written in C++ programming language. We have employed the standard Object 

Oriented Programming (OOP) framework, namely, the one class, one source file, one header strategy is 

followed (see also Fig. 2), in order to allow increased flexibility in the code writing, code extension and 

its future development, as well as to facilitate a distributed revision control.  

In the code development work, we used DOXYGEN documentation system, which integrates very well 

within the OOP framework. It dynamically generates an interactive documentation of the resulting API. 

The associated documentation is available in both HTML and PDF formats.  

 
Figure 2. Structural block-diagram of OPTIMET-3D. Each block in the framework of the 

code corresponds to a single C++ class. 
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For the end users, those who do not intend to develop their own simulations using the API, OPTIMET-

3D has a very simple and flexible input system based on a single XML file. For this, we use pugixml, a 

lightweight and fast, open source XML parser that can be found at https://code.google.com/p/pugixml/. 

The user is required to define XML blocks such as simulation parameters, geometry and incoming 

wave. Each of these blocks contains sub-blocks, which can hold, for example, object definitions such as 

position, electromagnetic properties, particle size, etc. A short guide explaining how to write an input 

file is made available with the code. It should be noted that due to the popularity of XML as a data 

description solution, many graphical interfaces exist for building XML files. Therefore, it would be 

trivial to create a user-friendly GUI for all data input. 

In terms of deployment, we use the CMake system in order to enhance the portability of OPTIMET-3D 

and facilitate its installation on a given HPC system. CMake is an automated makefile generator, which 

searches for existing libraries on the target system and builds an appropriate makefile to compile the 

software. Currently, OPTIMET-3D requires four major components for it to work: an MPI library, a 

mathematical library that offers LAPACK and BLAS (ScaLAPACK, PBLAS and BLACS for the 

parallel version), the GNU Scientific Library and the HDF5 library. CMake uses finders, which are 

simple script files, to locate static and dynamic objects, as well as header files. Currently, the finders 

support OpenMPI, Intel's MPI and MPICH for the parallel communication libraries, and Intel’s MKL, 

IBM’s ESSL and the Armadillo Linear Algebra Pack for accessing the mathematical subroutines. 

Finally, it should be noted that both GSL and HDF5 are open-source packages, which are available on 

most scientific computing systems. 

In order not to burden the user with editing makefiles or to be concerned over the resulting linkage order 

and linking targets, the CMake system provides ideal functionality for improved code portability. The 

associated CMake scripts have been tested on several HPC platforms, so far, including UCL’s Legion 

and the InfraGrid and BlueGene/P HPC systems at the West University of Timisoara. Moreover, it is 

rather straightforward to manually add additional support for a new system or library. For example, in 

order to add support for the AMD’s mathematical libraries, the user simply has to change the linear 

algebra finder script in order to point to these new libraries. In addition, in the use of CMake, the user 

has the option to specify a number of  flags in order to indicate support for the statically or dynamically 

linked libraries and to choose the parallel or serial branch of the code. 

Finally, we use the Mercurial revision control system in order to facilitate access to all revisions of the 

code, as well as the up to date API documentation. 

5.2 Structural Framework 

As we have explained, OPTIMET-3D strictly follows OOP framework guidelines. Specifically, each 

single component of the code is defined as a separate class with its own header file. Classes that have to 

perform data storage operations are given two main access methods, an init() method, which 

allocates any necessary memory for the data storage and initialises the object, and a populate() 

method, which populates the data storage attributes of the object based on the initialisation parameters 

and the role of the object. Classes that have no data storage role are declared with all members static 

 
Figure 3. Workflow of an OPTIMET-3D simulation. 

 

https://code.google.com/p/pugixml/
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in order to allow easy access to them and eliminate any confusion as to the need of instantiation. A 

schematic overview of the structural framework of OPTIMET-3D is presented in Fig. 2, whereas the 

workflow associated with a typical OPTIMET-3D simulation and the corresponding features of the 

code are shown in Fig. 3. 

The main classes defined in the framework of OPTIMET-3D are: 

 Algebra – defines wrappers to linear algebra and vector-vector and vector-matrix operations 

solvers based on the available mathematical libraries (currently supports BLAS, LAPACK, 

GSL, MKL, ESSL, Armadillo); includes parallel version. 

 Coefficients – computes all expansion coefficients needed for vector spherical 

components, including the   and   vector functions, and the Wigner d-functions. 

 Coupling – computes electromagnetic coupling coefficients between particles, specifically, 

       and        transfer matrix coefficients, which are used to transform vector spherical 

functions between co-ordinate systems. 

 PeriodicCoupling – this class is identical to the Coupling class in terms of usage and 

scope, but it is used as a replacement for the former when periodic boundary conditions are 

employed in simulations. 

 Excitation – defines an incoming electromagnetic excitation, including expansion 

coefficients and polarisation state (currently supports plane wave excitations with Gaussian 

pulsed excitation [12] being planned for a future release). 

 Geometry – stores all data defining the cluster geometry (including electromagnetic 

properties). It also stores for each scatterer the Fourier expansion coefficients of the internal 

electromagnetic fields. 

 Output – provides a versatile interface to set up the internal structure of the HDF5 output file 

of the simulation, as well as input/output data transfer to this file; includes parallel version. 

 OutputGrid – defines spatial grids for 3D field output and visualisation. The current version 

supports regular and iregular cartesian grids. Spherical and cylindrical co-ordinate grids will be 

provided in a future release. 

 Reader – parses the simulation XML file and sets up all of the needed objects, including the 

Geometry, Excitation, Output and OutputGrid objects (the latter one is used only in 

cases where field results are requested). 

 Result – calculates required physical data from the Fourier expansion coefficients (i.e. 

scattering and internal expansion coefficients) provided by the Solver. Currently the software 

calculates field profiles, near- and far-field cross-sections, and performs wavelength scans; 

includes parallel version. 

 Run – provides an interface to run a single instance of the solver (i.e. using a fixed geometry 

and excitation source). 

 Simulation – overall control and monitoring class. Ideally, this should be the only class 

with which a user of the API needs to interact directly, as once instantiated it provides access to 

the Geometry, Excitation, Solver, Result and Output classes. 

 Solver – solves system of linear equations corresponding to the linear or non-linear 

scattering problem and feeds the solution to a Result object; includes parallel version. 

 Symbol - provides static members to compute several symbols and special functions required 

by the numerical formalism (e.g., 3j, 6j and 9j Wigner symbols, Clebsch-Gordan coefficients 

and the  -symbols required for computing the non-linear sources). 

 Sequence – provides an interface that allows the user to create a series of requests from the 

simulation point of view (e.g., specific field profiles, cross-sections, wavelength scans, etc.). 

The role of this class is to ensure that no extra work is being spent on computing any data that 

may not be needed (e.g., there is no point in calculating the internal field coefficients when only 

the linear far-field response is requested). 

 Balancer – provides a dynamic balancer that, for each scatterer, automatically calculates the 

maximum number of harmonics required for convergence (based on the electromagnetic and 

geometrical properties of the particular scatterer). This in turn determines the level of 

parallelisation required, based on the number of scatterers and nodes available, as well as the 

resources allocated to each node. The outcome is then fed back to the Sequence controller; 

this class is planned for a future release as it requires comprehensive testing. 
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5.3 Parallel Implementation 

The basic characteristics of the multiple scattering matrix method renders the algorithm implemented as 

OPTIMET-3D highly parallelisable, scalable and stable. The software setup does not suffer from race 

conditions and encapsulates highly uniform data structures, which potentially allow for straightforward 

achievement of load balancing.  

The primary challenge that arises when performing complex numerical simulations, namely, those 
which involve the study of a large number of scatterers, is the need for a large amount of memory 
required for storing the system scattering matrix, i.e.    or   . In order to illustrate these memory 
requirements, the size of the scattering matrix approaches 6 GB for a cluster of 13 particles with 
        harmonics. In our calibration, this is considered a large memory requirement, in particular, 
when considering a parallel clusters where, typically, the per node memory size ranges between 2 GB 
and 4 GB. In addition, as the distance between any two scatterers in the cluster increases, in order to 
obtain accurate convergence in the VSWF translation calculations,       must be increased as well. To 
be more specific, in some cases up to 40 harmonics or more may be required. Furthermore, as several of 
our envisioned science related applications of OPTIMET-3D will require randomly distributed 
ensembles of hundreds of particles, employing a distributed computing method relying on splitting the 
memory cost of storing the scattering matrix among available nodes becomes mandatory.  

The algorithm used to distribute the memory is schematically depicted in Fig. 4. The most basic and 

most natural memory split is per bi-particle interaction level. Each node holds the part of the matrix 

that describes either the single scattering matrix,   , or the inter-particle interaction matrix. We denote 

this scheme as Level 1 (L1) parallelisation strategy. While L1 is straightforward to implement and uses 

efficiently the intrinsic symmetries in the scattering matrix formalism, it has several drawbacks. First, 

whilst the cluster scattering matrix is large, the distributed components only take a few hundreds of MB 

in memory storage, thus, each node only uses a fraction of its available resources. Second, the number 

of required nodes scales quadratically with the number of scatterers in the system. As a result, for the 

relatively simple case of a cluster with 20 particles, 400 nodes are required to implement an L1 

parallelisation strategy. For HPC systems of the size of Legion this might not be practical (on Legion 

the cores requirement of a typical job cannot exceed ~200). 

In addition to the L1 parallelisation scheme, where each basic block is distributed to a node, higher 

levels of matrix distribution have been considered, as illustrated in Fig. 4. Each level Lm distributes an 

    block matrix to each node. In this notation, for a given cluster with   particles, when     

the algorithm implementation simply becomes a serial one. Thus, by allowing a flexible use of higher-

order parallelisation levels, OPTIMET-3D software can use efficiently the available resources whilst 

allowing complex simulations to run on smaller number of nodes. We refer to this type of parallel 

mapping as balanced mapping. 

One issue that arises with a higher level of parallelisation is the unbalanced distribution of the scattering 

matrix when it is not exactly mapped to the available nodes by square-block matrices (i.e. when the 

 
Figure 4. Diagram of the parallelisation scheme for the cluster scattering matrix for N 

scatterers. Depending on the mapping level, each node stores and processes from 1 to N blocks 

of the global matrix. 
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number of scatterers N is not an integer multiple of the parallelisation level m). This situation is 

illustrated in Fig. 5. To simplify the presentation of this case, consider a very basic cluster of 5 

scatterers, whose scattering matrix contains        elemental blocks. The first 16 elemental blocks 

of the 25 block matrix are distributed according to an L2 mapping, whereas the remaining 9 blocks are 

mapped as a column and row block matrices. Note that the last node will have an additional block to 

process. This is usually of a limited concern since the corresponding block components are 

independent. Therefore, no race condition occurs. It has been observed during our numerical 

experiments that for        , a     matrix requires less than 2 GB, thus making very useful the 

L4 and L3 mapping schemes. As a consequence, this edge mapping scheme can be used for particle 

clusters that have the property       , where   is an arbitrary integer. In addition, edge mapping 

can be used for any odd number of scatterers. Nevertheless, for        , the resulting size of a block 

is less than 1 GB. This makes the Lm scheme practical for the relatively older generation of computing 

systems; however, it may lead to resource wasting on newer clusters. To this end, the following hybrid 

mapping scheme is proposed. 

The hybrid mapping scheme combines several balanced mapped areas of different levels, as well as row 

and column mapping in order to cover the entire scattering matrix of the system, as per Fig. 6. The 

hybrid mapping scheme proves to be the most effective mapping model in terms of resource balancing. 

However, one does not expect the user to create the corresponding map, so that an automatic mapping 

scheme must be implemented. As a result, this is no longer as simple a matter as it is in the case of the 

edge and balanced mapping schemes, so that its implementation has been left for a future release. 

 
Figure 5. Example of “edge” distribution of the scattering matrix elements in an unbalanced 

mapping case. The geometry consists of 5 particles. The first 4 blocks of the scattering matrix are 

mapped with the L2 scheme whilst the remaining blocks are distributed as shown. 

 

 

 

 
Figure 6. Schematic of the hybrid mapping strategy. The example considered is for     particles. 

Note that this is one of several possible hybrid mapping strategies for this particular N. 
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At the time of writing this report, OPTIMET-3D software supports L1 and all the balanced mapping 

schemes. The edge mapping scheme is currently being investigated for implementation. As such, the 

hybrid mapping scheme will be made available at a later release of the software. It is also noted that the 

issue of matrix mapping is a well-known research topic in parallel computing, where several algorithms 

and engines are available for this purpose. In the future development of OPTIMET-3D, we intend to use 

such technologies as seen feasible. 

The inter-node communication processes of OPTIMET-3D are illustrated in Fig. 7. In what follows, we 

give a brief description of these processes. After the Master node initialises the simulation and chooses 

the appropriate parallelisation strategy, the Worker nodes are each assigned a piece of the scattering 

matrix to be build, i.e, a part of    or   . Each Worker builds independently its assigned piece of the 

matrix. The first   nodes,   being the number of particles in the system, are then assigned the system 

matrix    or   , at which point ScaLAPACK is called to solve the scattering matrix equation. Finally, 

the Master node gathers the individual results from each of the   nodes and builds the solution vector 

containing the Fourier expansion coefficients of the scattered field. The Master node also calculates the 

internal field coefficients for each particle. This last step can also be computed in parallel; however, 

numerical tests have shown it to be of a reduced computational cost. Thus, in order to keep the inter-

node communication to a minimum, this operation is performed on the Master node only. Finally, the 

Master node updates the Geometry object to include the newly computed internal coefficients, which 

then broadcasts both the internal coefficients and the solution vector to the remaining     nodes.  

At this point, the nodes are ready to perform all other calculations that the user has requested. For the 

field profile, for example, each node calculates the contribution from its own assigned object and then 

the Master performs a reduce operation in order to retrieve the total field on the grid. As the field point 

locations are independent, more than   nodes can be used for this computation, where the individual 

grid points for each node to compute are selected. In the case of a wavelength scan, for example, each 

node is assigned a portion of the spectrum for which it calculates the far- and/or near-field responses. 

Each node can then individually output the result to a single HDF5 file by using the parallel output 

system, which is implicitly implemented by HDF5. It is reiterated that no race condition occurs and that 

the load balancing is ensured by enforcing  that each node is assigned to compute an equal work load 

from the desired spectrum of frequencies. 

 
Figure 7. Inter-node communication scheme. Note that after the scattering and internal field 

coefficients are calculated and stored, the system is essentially “reset” and the next phase is 

independent of the previous mapping. The example here is for a cluster with   particles, which are 

initially mapped to   nodes. The final result will be an electromagnetic field profile. 
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For the non-linear response calculations, a parallelisation strategy similar to the one employed in the 

linear case is used. However, in this case each node needs to communicate the corresponding non-linear 

source terms of their assigned particle(s) to all the other nodes. The Master process does not require any 

additional information to compute the non-linear response because once the non-linear scattering 

coefficients are known, the formalism is identical to that of the linear response calculations. 

The parallelisation tasks in OPTIMET-3D are provided via MPI. The mathematical computations (i.e. 

linear algebra operations), which require parallelisation are implemented through ScaLAPACK. In this 

particular case, all associated inter-process communications are invoked by BLACS, which provides a 

very cost effective interface for transferring among the nodes all data required. In this implementation, 

ScaLAPACK and BLACS are chosen because they are provided as the standard implementation of 

parallel algebra computations in all major mathematical library distributions, including Intel’s MKL and 

IBM’s ESSL. In addition, both packages are freely available from the netlib repository. 

Finally, it should be mentioned that we have also explored briefly the possibility of porting OPTIMET-

3D onto GPU-based clusters, such as nVidia’s Fermi architecture. Preliminary investigations have 

shown that this code development would be very attractive, both due to the enhancement of the 

functionality of the software, and, equally important, because of the increase in the deployment base 

and potential of the software. 

6. Performance and Scalability Analysis 

As presented in the previous section, due to the high degree of parallelisability of the MSM algorithm 

OPTIMET-3D is expected to perform very well when ported onto a parallel computing environment. 

We have performed several performance tests for the level of mapping,           , using a series 

of clusters of spherical particles. The number of particles in the cluster was                  The 

output data was the field profile on a     grid section located at the centre of the cluster but outside of 

any of the spheres. This was done in order to ensure that the actual performance data was related to the 

solver and not to any I/O processes. In addition, the strong scalability of the parallelised OPTIMET-3D 

solver was tested for the case of       .  

6.1 Performance Analysis 

The focus of this section is the investigation of the parallelised branch of OPTIMET-3D when different 

mapping levels, Lm, and corresponding number of nodes,    are used. In Sec. 5.3, it was explained that 

different Lm schemes would lead to different resource usage conditions. In particular, it was concluded 

that the number of processing nodes required,     decreases as Lm increases. Moreover, when one 

considers modern HPC systems, where the associated memory available is typically below 4 GB per 

  , our tests have demonstrated that L3 is an optimal choice. However, L2 can also be used efficiently 

in conjunction with the edge mapping strategy, if all possible distribution scenarios can be accounted 

for. Finally, L1 mapping is the most efficient mapping strategy in terms of total execution time,     ; 

 
Figure 8. a) Number of required nodes,      vs. the number of particles,   , for three mapping levels, L1, L2 

and L3.           
 . b) Total execution time,     , vs.   , for the same mapping levels, L1, L2 and L3. 
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however, this is achieved at the expense of a larger number    of  nodes being used. Thus, one has to 

bear in mind this trade-off when using L1, as overall it could be regarded as being the least cost 

effective of all schemes. In all simulations performed in this work,      includes both the computation 

time and communication time. 

In order to illustrate how the number of required computing nodes,   , scale with the number of 

particles in the cluster,   , we plot in Fig. 8(a) the dependence           
  for three mapping 

orders,           . The cluster size is characterised by the number of spheres,          . For 

the case with       particles, it is observed that the L1 strategy requires        nodes, whilst    

decreases to       and       for the L2 and L3 schemes, respectively. 

In terms of the total execution time,     , we have run the test cases detailed above, as per Fig. 8(b), on 

the Legion cluster at UCL. The number of harmonics used was          which provides a typical 

value for simulations of average complexity. We would expect that in most cases       ranges from 

        if dielectric particles are considered to         in the case of metallic particles. In the 

latter case a larger       is required both due to increased permittivity of metals and the excitation of 

strong optical resonances. As expected, L1 mapping level offers the lowest execution time, for example, 

for the cluster with        spheres,         s. L3, on the other hand, shows on average a 9 fold 

increase of the same simulation, namely, for      ,           s. This result is explained by the 

fact that for      , L3 scheme employs only       nodes, as opposed to the L1 schemes, which 

requires        nodes. It can be seen that the decrease in the number of required nodes is exactly 

equal to 9. It should be noted that the small discrepancies are attributable to non-uniform execution 

times due to ScaLAPACK’s speed improvements, which are found to slightly depend on the particular 

content of the scattering matrix and the associated inter-node communication costs.  

For a more in-depth analysis of the performance of OPTIMET-3D, the examination of the per node 

execution time,   , is considered as shown in Fig. 9(a). This analysis clearly demonstrates that as one 

moves from the serial code execution corresponding to the single-sphere problem (and therefore from 

single-node execution) to the parallel branch of the software, one observes a steep increase in the 

corresponding per node execution time,   . In addition, this increase in    is considerably larger in the 

case of L3 scheme as compared to those of L2 and L1 levels. This is attributed to the fact that, for the 

cases studied here, the total simulation time for the serial case is about               , namely, the 

communication costs greatly dominate over the computation time. Moreover, as the mapping level 

increases, the number of required nodes    decreases, and therefore the size of the message per 

communication also increases. Therefore, it is expected to observe a higher increase in    as   

increases, as in fact Fig. 9(a) illustrates. It should also be noted that the L1 scheme was characterised by 

a smaller increase in    for an arbitrary   . This suggests that the L1 scheme provides the fastest and 

 
Figure 9. a) Execution time per node,   , vs. the number of particles,             , for the case considered 

in Fig. 8, with three mapping levels,           . b) Strong scalability trend for a cluster of   =12 

particles simulated with parallel mapping levels                 corresponding to   =4, 9, 16, 36, 144  

nodes, respectively. 
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most uniform CPU performance when compared to       . Nevertheless, this is achieved at the 

expense of an increased   , which is regarded as a drawback of using only L1. Thus, OPTIMET-3D 

offers great flexibility in the levels of achievable parallelisation, as seen suitable by the user, based on 

the desired simulation and hardware availability. 

6.2 Scalability Analysis 

In this section, the strong scalability of the parallelised branch of OPTIMET-3D is demonstrated. For 

this, we consider a fixed problem size,      , and measure the required computation time 

corresponding to increasingly larger number of nodes,   . Because of the particular characteristics of 

OPTIMET-3D’s parallel mapping schemes, the number of associated processing nodes,   , is 

determined by the level of mapping applied,       . In this test, we chose              , which 

resulted in   = {4, 9, 16, 36, 144} processes, respectively. Constrained by the per node memory 

limitations of the available HPC clusters (e.g., each node on the Legion cluster can access only 4 GB of 

RAM), in this study we limited the number of angular harmonics to        , thus allowing for the 

L6 test case. It should be noted that this relatively small value of      has a very limited influence on 

the overall scalability of the parallelised solver. Moreover, the use of         is usually well suited 

for cases in which the electromagnetic field is not too spatially inhomogeneous, such as clusters of large 

dielectric particles separated by distances of around 1/10 the size of the operating wavelength. In cases 

where higher precision requirements are needed, the user can use the L4 or L3 mapping levels.  

The strong scalability of the parallel branch of OPTIMET-3D is clearly demonstrated by the plots in 

Fig. 9(b). The linear reduction in the total execution time as the order   of the parallelisation level is 

reduced (i.e., number of nodes is increased) is a direct consequence of the nature of the employed 

parallelisation mappings, as well as the way in which the corresponding levels evenly balance out all of 

the additional work load and related inter-process communication. The higher mapping levels require 

fewer nodes, thus, they require less inter-node communication. On the other hand, the work load 

distributed to each node has now increased. This is clearly demonstrated when comparing the total 

execution time as    increases, where the per node computation time dominates over the 

communication costs. In fact, even for lower Lm, where the contribution of inter-node communications 

becomes more important, the strong scalability still holds. To conclude, the OPTIMET-3D software 

demonstrates an excellent parallel performance, where various mapping levels can be applied with 

similar effectiveness, thus, allowing the user to target a desired execution time. 

7. Code Validation and Practical Examples 

In this section we present the results of a few tests we performed in order to validate the code 

implementation and give an example of a scientific problem that OPTIMET-3D can be used to 

investigate. Thus, we first examine the electromagnetic wave scattering from a sphere and compare 

analytical results based on Mie theory with those obtained using OPTIMET-3D. Then, we show the 

results of some numerical experiments illustrating convergence of the translated VSWFs, which are 

used throughout the code. Finally, we illustrate how OPTIMET-3D can be used to investigate a nano-

photonics problem, namely, light scattering from a dimer and chiral clusters of silicon nano-spheres. 

 
Figure 10. a)    

     computed using OPTIMET-3D solver and the Mie analytical solution for the single-

particle (sphere) problem. b) VSWFs translation-addition relative error vs. truncation limit,     . 
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7.1 Single Particle Problem - Sphere 

Consider a homogeneous sphere of radius         , made of nonmagnetic, lossless and non-

dispersive material with relative permittivity        , embedded in a homogeneous medium with 

    and       . The sphere is excited with a monochromatic electromagnetic plane wave with 

frequency,          . The scattered electric field,        ,          , is calculated using 

OPTIMET-3D and the analytical formalism based on the Mie theory [2]. The field    
     calculated by 

using these two methods is plotted in Fig. 10(a). These results clearly demonstrate the accuracy with 

which OPTIMET-3D can perform these field calculations. 

7.2 Validation of code implementation of the Vector Translation-Addition Theorem  

At the heart of the MSM algorithm is the ability to translate incoming and outgoing VSWFs, expressed 

in the co-ordinate system with origin in   , to a co-ordinate system with origin in   . This is achieved 

by using the vector translation-addition theorem: 

   
                 

   
         

   
            

   
         

   
      

  

                                      

where          and         ,      , represent the vector translation-addition coefficients [2, 4]. In 

order to illustrate the validity of our computer implementation of these relations, we plot in Fig. 10(b) 

the relative error as function of the truncation limit used in calculating the sum in Eq. (14),     , for a 

translation distance       ,        , and     . Note that such convergence tests are extremely 

useful in assessing the size of particle clusters that can be modelled with OPTIMET-3D, as well as the 

number of harmonics that one must include to study clusters of particles made of specific materials. 

This information, in turn, will be used when the Balancer class will be fully implemented. 

7.3 Two Particles Problem – Dimer 

In a more complex test, we calculated the spatial distribution of the electromagnetic field scattered by 

two dielectric spheres made of silicon, at both the FF and SH. This allowed us to test both the linear and 

non-linear branches of OPTIMET-3D. The results are plotted in Fig. 11. As expected, the field profile 

at the FF has a symmetric scattering pattern that suggests the interference between the incoming and 

scattered waves, whereas at the SH the field originates at the surface of the two spheres made of silicon. 

The field profiles in Fig. 11 also show the field discontinuities at the surface of the two spheres, which 

illustrates that the boundary conditions are properly incorporated in the code. 

7.4 Super-Chirality from a Cluster of Dielectric Nano-Spheres 

As an example of how OPTIMET-3D is used to study a problem of practical importance, we present in 

this section the results of a few simulations pertaining to light interaction with a chiral nano-optical 

structure. In particular, we demonstrate that the scattered optical field of photonic nanostructures with 

intrinsic chirality, which are made of silicon spheres, exhibits strong optical chirality as well as 

enhanced circular differential scattering. In addition, this analysis shows that using such resonant chiral 

nanostructures allows one to easily achieve super-chiral optical fields whose optical chirality is more 

than two orders of magnitude larger than that of circularly polarised plane waves.  

The nano-cluster consists of silicon spheres with radius         , arranged in a chiral pattern. The 

cluster is excited by a circularly polarized plane wave with wavelength,         , which is chosen 

to coincide with one of the optical resonances (TE mode) of the spheres. The optical resonances are 

 
Figure 11. Field profile at FF (left) and SH (right), 

respectively, generated by scattering from two silicon spheres. 
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determined by computing the spectrum of the field enhancement at an arbitrary position near one of the 

spheres, as indicated in Fig. 12. The chirality of the optical field,  , can be calculated once the field 

distribution is known. For super-chiral fields,      . Our analysis shows that the chirality of the 

optical field is strongly enhanced at the resonance wavelength when the cluster is perpendicularly 

illuminated by circularly polarized plane waves, the field being highly super-chiral in large domains. In 

particular, more than two orders of magnitude enhancement of the chirality is observed. Importantly, 

the chirality of the optical near-field also indicates a strong circular differential scattering of the chiral 

cluster we investigated. 

8. Project Impact 

The main aim of this project, which has been fully accomplished, was to develop an open source HPC 

software to be used on UCL's HPC main system, Legion. Because of its portability and easy to use 

features, OPTIMET-3D can be easily installed and used on HPC systems with different configurations. 

The software was designed to model both the linear and non-linear interaction of electromagnetic waves 

with arbitrary distributions of 2D and 3D particles.  In the 3D case one can impose periodic boundary 

conditions, which enhances the spectrum of science and engineering problems that can be studied. 

Equally important, the range of materials that can be described by OPTIMET-3D covers most cases of 

practical interest, including, metals, dielectrics, polaritonic materials and semiconductors. 

As illustrated in Fig. 13, by extending OPTIMET to 3D structures we have dramatically increased the 

spectrum of science and engineering problems that we can investigate. Thus, to outline just a few of its 

 
Figure 12. Electromagnetic field distribution and optical chirality of the scattered field of a chiral 

nano-sphere cluster for left- (top panels) and right- (bottom panels) circularly polarised light. 

 

 
Figure 13. By extending OPTIMET to OPTIMET-3D the applications 

space has increased dramatically. 
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features important for practical applications, OPTIMET-3D can now be used to investigate linear and 

non-linear optical properties of realistic, 3D photonic systems and devices, which are randomly or 

periodically structured, it can be used to compute effective linear and non-linear optical constants, such 

as effective permittivity and effective non-linear susceptibilities of metamaterials and it can be used to 

calculate the optical absorption in systems of particles. These functionalities make OPTIMET-3D 

extremely useful in studying a series of problems pertaining to linear and non-linear photonic and 

plasmonic crystals, absorption engineering (with applications to solar cells and other photovoltaic 

devices), transformation optics, optical tomography, colloidal chemistry and many others. 

We intend to use OPTIMET-3D in a series of research projects, as part of ongoing collaborations and 

new ones. A brief outline of such projects is presented in what follows. 

 We plan to use OPTIMET-3D to study the non-linear optical properties of non-linear plasmonic 

metamaterials (in collaboration with Dr Paul Warburton’s Group at UCL). 

 We will use OPTIMET-3D to study the absorption/emission properties of molecules placed at 

nanometre distance from metallic nano-particles (in collaboration with Prof Richard Osgood’s 

Group at Columbia University). This work is particularly relevant to the design of next-generation 

solar cells that incorporate plasmonic materials. 

 In collaboration with Prof Jeremy Baumberg and Dr Ventsislav Valev (University of Cambridge) 

we will use OPTIMET-3D to interpret experimental data regarding optical properties of self-

assembled clusters of metallic nano-particles. 

 We will use OPTIMET-3D to study multi-colour Anderson wave localisation in disordered 

ensembles of dielectric nano-particles (in collaboration with Prof Chee Wei Wong's Group at 

Columbia University). 

 We will use OPTIMET-3D to study optical properties of quantum meta-materials, a project 

supported by EPSRC/NSF (EP/J018473/1) (in collaboration with Prof Shuang Zhang's Group at the 

University of Birmingham and Prof Xiang Zhang's Group at Berkeley University). 

9. Conclusions and Future Work 

In this report we have described the structure, code implementation (parallel and serial), validation tests 

and a few application examples of OPTIMET-3D. This HPC software package has been developed with 

support from EPSRC's University distributed Computational Science and Engineering (dCSE) 

Programme. OPTIMET-3D has been written and tested for validity and scalability, as illustrated in this 

report, with strong scalability being proven. It can be used to model a broad array of science and 

engineering problems, including photonic and plasmonic crystals, absorption engineering, nanoscience 

and nanotechnology, plasmonics, transformation optics, optical tomography and colloidal chemistry. 

The HPC code has been developed for Legion, UCL's main HPC cluster, but has been tested on two 

other HPC systems, the InfraGrid and BlueGene/P clusters at the West University of Timisoara. The 

fully verified and tested code will be made available through the BitBucket website, a dedicated 

webpage at UCL and through the program library of Computer Physics Communications journal via a 

peer-reviewed journal article. The uni-dCSE support was for 12 months FTE divided between two 

people, Dr Ahmed Al-Jarro and Dr Claudiu Biris. A conference paper based on OPTIMET-3D will be 

presented shortly after the project has ended [6]. 

In order to further advance the functional capabilities of OPTIMET-3D, while building on the success 

of this initial project, we plan a set of future code development activities. 

 We plan to port OPTIMET-3D on massively parallel architectures, including UK's HECToR and 

ARCHER, the next national HPC facility for academic research. For this, subsequent uni-dCSE 

projects, when called for, or future dCSE support will be sought.  

 We will explore the portability of OPTIMET-3D to multi-GPU HPC clusters (one such cluster is 

available at UCL). 

 We plan to make OPTIMET-3D the electromagnetic solver, which when combined with a quantum 

mechanical solver, will provide the unique functionality of modelling hybrid classical/quantum 

mechanical physical systems [13-15]. 

 We will implement the dynamical Balancer described in Sec. 5, which will help distribute 

among the nodes the work load in a more balanced way. 
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 We will implement the hybrid mapping scheme for parallelisation, which could prove to be more 

effective in both balancing the work load among the nodes and offering the highest flexibility in the 

available computing resource.  

 In order to make the code easier to use, we plan to add a GUI that would allow graphical input of 

the simulation parameters. Note that since we use XML standards, such a GUI could be easily 

adapted from existing XML editors. 
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