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Abstract

The present project was funded through a dCSE grant to improve the parallel performance of the open-source spectral/hp el-
ement framework, Nektar++ , on HPC systems. Two particular tasks were undertaken: implementation of low energy basis
preconditioning for substructure solvers and assess its parallel performance on the University clusters; and implementation
of hybrid MPI/threading parallelism. Both these tasks have been successfully completed in Nektar++ . The precondition-
ing strategies showed excellent performance; in particular, a fifteen-fold speed-up in solver performance was observed with
the low energy basis preconditioning compared with the original implementation (prior to the dCSE funding). Additionally,
the performance of the preconditioned conjugate gradient solver for the solution of the Navier-Stokes equations showed good
scaling as the number of cores was increased (up to 432 cores) on Imperial College London based HPC systems. The initial
implementation of the second task, to implement threading parallelism, has shown promise for future endeavours utilising this
framework.

1 Overview

Nektar++ is an open-source spectral/hp element framework (www.nektar.info) designed to allow the numerical solution of
partial differential equations using low- and high-order finite element discretisations, and is a complete rewrite of the Nektar
Incompressible Navier-Stokes flow solver. The framework supports both continuous and discontinuous finite element methods,
multiple element types and is cross platform in nature.

This dCSE funded project was concerned with the extension of Nektar++ onto large parallel systems. In particular two
algorithmic extensions were implemented:

• Low-energy block preconditioning for substructure solvers in Nektar++ with assessment of its parallel performance on the
University clusters.

• Hybrid MPI/threading parallelism.

This report details the outcome of these algorithmic improvements to Nektar++ . In section 2 the implementation and bench-
marking of the low-energy block preconditioner is discussed, whilst in section 3 the implementation of hybrid MPI/threading
parallelism is discussed.

2 Implementation of an effective h and p scaling preconditioner into the con-
jugate gradient solver.

Low-energy block preconditioning has been implemented into the conjugate gradient solver of Nektar++ . In accordance with
the proposal the preconditioner has been implemented to support multiple element types, that is hexahedral, tetrahedral and
prismatic elements. The preconditioner has been thoroughly tested on multiple parallel systems based at Imperial College
London. A detailed discussion of the theory, implementation and parallel performance is given in the following.

2.1 Preconditioning of the conjugate gradient method

In solving problems in engineering applications, such as the Navier-Stokes equations, it is required that the following elliptic
boundary value problem is solved every time-step:

∇2u(x) + λu(x) = f(x) (1)

defined on a domain Ω of Nel non-overlapping elements. The standard spectral/hp approach is defined by,

uδ(x) =

Ndof∑
n=1

ûnΦn(x) =

Nel∑
e=1

dim(V δ)∑
n=1

ûenφ
e
n(x) (2)
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where Ndof is the number of degrees of freedom, ûn are the global expansion coefficients, φn(x) the polynomials defined in a
space V δ of order P, ûen is the nth local expansion coefficient within the element e. Approximating the solution of (2) and using
a Galerkin discretisation of equation (1), i.e., find uδ ∈ V δ such that

L (v, u) =

∫
Ω

∇vδ · ∇uδ + λvδuδdx =

∫
Ω

vδfdx ∀vδ ∈ V δ (3)

This can be formulated in matrix terms as

Hû = f̂ (4)

where H represents the Helmholtz matrix, û the unknown global coefficients and f the inner product of the expansion basis
with the forcing function. Additionally, a C0-continuous expansion is obtained by decomposing the expansion basis into interior
(having support in the interior of the element) and boundary modes (remaining modes on the element boundaries to make a
complete expansion), and matching the boundary modes across the interface of the elements. The boundary modes can be
further decomposed into vertex, edge and face modes, defined as follows: Vertex modes have support on a single vertex and
the three adjacent edges and faces as well as the interior of the element; Edge modes have support on a single edge and two
adjacent faces as well as the interior of the element; Face modes have support on a single face and the interior of the element. It
is precisely this strong coupling between vertices, edges and faces that leads to a matrix of high condition number (κ). Utilising
the above-mentioned decomposition, we can write the matrix equation as:

[
Hbb Hbi

Hib Hii

] [
ûb
ûi

]
=

[
f̂b
f̂i

]
(5)

where the subscripts b and i are the boundary and interior degrees of freedom, respectively. This system then can be statically
condensed allowing us to solve for the boundary and interior degrees of freedom in a decoupled manor. The statically condensed
matrix is given by

[
Hbb −HbiH

−1
ii Hib 0

Hib Hii

] [
ûb
ûi

]
=

[
f̂b −HbiH

−1
ii f̂i

f̂i

]
(6)

This is highly advantageous since by definition of our interior expansion this vanishes on the boundary hence Hiiis block diagonal
and hence can be easily inverted. The above sub-structuring has reduced our problem to solving the boundary problem:

S1û = f̂1 (7)

where S1 = Hbb − HbiH
−1
ii Hib and f̂1 = f̂b − HbiH

−1
ii f̂i). The decoupling of the boundary and interior degrees of freedom

means the Schur complement matrix can be constructed at an elemental level. Although this new system typically has better
convergence properties i.e lower κ, the system is still ill-conditioned leading to a convergence rate of the conjugate gradient (CG)
routine that is prohibitively slow. For this reason we need to precondition S1. To do this an equivalent system is solved of the
form:

M−1
(
S1û− f̂1

)
= 0 (8)

where the preconditioning matrix M) is such that κ
(
M−1S1

)
is less than κ (S1) and speeds up the convergence rate. Within the

conjugate gradient routine the same preconditioner M is applied to the residual vector r̂k+1 of the CG routine every iteration:

ẑk+1 = M−1r̂k+1 (9)

The key step is finding the appropriate choice of M to speed up the conjugate gradient routine. For the spectral/hp element
method care must be taken with respect to the scalability of h and p.

2.2 Preconditioners

In the following an appropriate preconditioner for the spectral/hp element method scaling with both h and p will be discussed.
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2.2.1 Low Energy block preconditioning - p preconditioner

Low energy block preconditioning follows the methodology proposed by Sherwin & Casarin [2]. In this method a new basis is
numerically constructed from the original basis, which allows the schur complement matrix to be preconditioned using a block
preconditioner. The method is outlined briefly in the following.

Elementally it is possible to express the local approximation (uδ) as different expansions lying in the same discrete space (Vδ)

uδ(x) =

dim(V δ)∑
i=1

û1iφ1i(x) =

dim(V δ)∑
i=1

û2iφ2j(x) (10)

Since both expansions lie in the same space it’s possible to express one basis in terms of the other via a transformation, i.e.

φ2 = Cφ1 =⇒ û1 = CTû2 (11)

Applying this to the Helmholtz operator it is possible to show that,

H2 = CH1C
T (12)

For sub-structured matrices (S) the transformation matrix (C) becomes:

C =

[
R 0
0 I

]
(13)

Hence the transformation in terms of the Schur complement matrices is:

S2 = RS1R
T (14)

Typically the choice of expansion basis (φ1) can lead to a Helmholtz matrix that has undesirable properties i.e poor condition
number. By choosing a suitable transformation matrix (C) it is possible to construct a new basis, numerically, that is amenable
to block diagonal preconditioning.

S1 =

 Svv Sve Svf

ST
ve See Sef

ST
vf ST

ef Sff

 =

[
Svv Sv,ef

ST
v,ef Sef ,ef

]
(15)

Applying the transformation (S2 = RS1R
T) leads to the following matrix

S2 =

[
Svv + RvS

T
v,ef + Sv,efR

T
v + RvSef ,efR

T
v [Sv,ef + RvSef ,ef ]AT

A[ST
v,ef + Sef ,efR

T
v ] ASef ,efA

T

]
(16)

where (ASef ,efA
T) is given by

ASef ,efA
T =

[
See + RefS

T
ef + SefR

T
ef + RefSffR

T
ef Sef + RefSff

ST
ef + SffR

T
ef Sff

]
(17)

To orthogonalise the vertex-edge and vertex face modes, it can be seen from the above that

RT
ef = −S−1

ff ST
ef (18)

and for the edge-face modes:
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RT
v = −S−1

ef ,efS
T
v,ef (19)

Here it is important to consider the form of the expansion basis since the presence of (S−1
ff ) will lead to a new basis which has

support on all other faces; this is problematic when creating a C0 continuous global basis. To circumvent this problem when
forming the new basis, the decoupling is only performed between a specific edge and the two adjacent faces in a symmetric
standard region. Since the decoupling is performed in a rotationally symmetric standard region the basis does not take into
account the jacobian mapping between the local element and global coordinates, hence the final expansion will not be completely
orthogonal. Figure 1 demonstrates the elemental Schur complement matrix in the original basis and the new low energy basis,
clearly the transformed Schur complement is more diagonally dominant.

(a) Original Schur complement matrix (b) Transformed Schur complement matrix

Figure 1: Comparison of Schur complement matrices in the two different bases. The low energy form of the Schur complement
is more diagonally dominant.

The low energy basis creates a Schur complement matrix that although it is not completely orthogonal can be spectrally
approximated by its block diagonal contribution. The final form of the p preconditioner is:

M−1 =

 diag[(S2)vv] 0 0
0 (S2)eb 0
0 0 (S2)fb

−1

(20)

where diag[(S2)vv] is the diagonal of the vertex modes, (S2)eb and (S2)fb are block diagonal matrices corresponding to coupling
of an edge ( or face) with itself i.e ignoring the coupling to other edges and faces.

2.2.2 Coarse space preconditioning - h preconditioner

Preconditioning of the linear space is achieved by inverting only the vertex degrees of freedom (the linear finite element subspace)
and has the form:

M−1 = (S−1
1 )vv (21)

Since the mesh associated with higher order methods is relatively coarse compared with traditional finite element discretisations,
the linear space can usually be directly inverted without memory issues. However such a methodology can be prohibitive on
large parallel systems, due to a bottleneck in communication. Previously, for large parallel computations the preconditioning of
the course space has been handled using ScaLapack [1]. In the present implementation this is handled using the XXT library
[3]. XXT is a parallel direct solver for problems of the form Ax̂ = b̂ based around a sparse factorisation of the inverse of A.
To precondition utilising this methodology the linear sub-space is gathered from the expansion and the preconditioned residual
within the CG routine is determined by solving:
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(S1)vvẑ = r̂ (22)

The preconditioned residual (ẑ) is then scattered back to the respective location in the global degrees of freedom.

2.2.3 h & p preconditioner

To combine the aforementioned h and p preconditioners an additive Schwarz preconditioner is utilised. This preconditioner is
constructed by adding the two separate preconditioners i.e. the coarse space linear vertex block and the low energy block. To
include this in the conjugate gradient routine a number of modifications must be made. Firstly, the system must be transformed
to the low energy equivalent. Starting with the Schur complement system defined in the original basis:

S1û = f̂ (23)

and utilising the transformation equations (14) and (11) the following is obtained:

S2û2 = f̂2 (24)

The above means that the conjugate gradient solver is in the low energy space; hence care must be taken when applying
the different preconditioners i.e. the low energy basis preconditioner works on the low energy system whilst the linear space
preconditioner works on the original system. This means when the residual vector (r̂) is preconditioned the system must be
transformed back to the original basis in order to precondition the linear degrees of freedom. This methodology is outlined
in Figure 2. To summarise the low energy basis preconditioner is first applied to the residual vector and stored in ẑLE. The
non-preconditioned residual (r̂) is then transformed from the low energy space to the original space. The linear space is then
preconditioned using XXT . The output (ẑXXT) is then transformed back to the low energy space. Finally the contributions of
the two preconditioners are added together.

Figure 2: Strategy for applying both the low energy block and linear space preconditioner in the conjugate gradient routine.

2.3 Helmholtz cube - A simple serial example

The first benchmark is to demonstrate the performance of the LEBP (without linear space preconditioning) for a small serial
simulation; this is primarily to demonstrate the effect of the p preconditioner on the convergence rate of the CG solver.

Problem setup

The cube domain was discretised with of 6 tetrahedral elements. The following Helmholtz equation was considered:

∇2u(x) + λu(x) = −(λ+ 6)sin(x)sin(y)sin(z) (25)
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where ∇2 is the Laplacian and λ is a real positive constant. An initial condition of u = 0 was used. For each preconditioning
approach (No preconditioning, Diagonal preconditioning and Low energy basis preconditioning) the number of conjugate gradient
iterations (CG) required to reach convergence was recorded. The simulations were performed for polynomial order of 3, 5, 7&9.

Results

Figure 3 demonstrates the number of CG iterations to reach convergence for the aforementioned preconditioning strategies. It
is evident that LEBP excels over the other approaches as the polynomial order increases; this is indicated by a reduced number
of CG iterations. The primary reason for the large reduction is due to the decoupling of boundary modes, which improves the
condition number of the Schur complement matrix.

Figure 3: Performance of the Spectral/hp code Nektar++ with LEBP. Discretisation: 6 tetrahedral elements with 3rd, 5th,
7th and 9th order polynomial approximation. Each entry represents the number of CG iterations to reach convergence for the
different preconditioning strategies.

2.4 Implementation of the above preconditioner for use on massively parallel systems.

2.4.1 Cerebral aneurysm - A demonstration of mixed meshes and parallel scaling

As a second example the performance of the incompressible Navier-Stokes solver in a cerebral aneurysm (shown below with the
pressure overlaid) for different preconditioning strategies is considered. This example demonstrates both the performance of the
LEBP preconditioner on a mixed mesh as well as the scaling on a parallel system.

Figure 4: Cerebral aneurysm geometry with pressure contours overlain

2.4.2 Problem setup

The solution of the Navier-Stokes was achieved utilising a splitting scheme, for more details see the description in the incompress-
ible Navier-Stokes tutorial (www.nektar.info). In this approach four elliptic solves are required every time-step (one pressure
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Poisson and three Helmholtz equations) which require preconditioning. The domain was discretised with ∼ 6000 prismatic
and ∼ 20000 tetrahedral elements and an expansion order of 5 within each element. The solver performance was analysed
for three different preconditioning strategies (LEBP, Diagonal and Diagonal with linear space preconditioning) at different
polynomial order (p=1,3,5 & 7). For each case, the solver was integrated in time for 110 time-steps and the mean time per
time-step was calculated as the mean of 100 steps; the first ten steps were disregarded due to the effect of start-up transients.
The comparisons were performed on the Imperial college HPC system cx1 (http://www3.imperial.ac.uk/ict/services/hpc/
highperformancecomputing ) using 72 cores.

2.4.3 Results

Figure 5 demonstrates the relative speed-up of low energy basis preconditioning for the aneurysm on 72 cores. From Figure 5(a)
it is evident that as polynomial order increases there is a significant speed up over both diagonal preconditioning (labelled in
Figure 5(a) as ’Diagonal’) and diagonal with the linear space preconditioner (labelled in Figure 5(a)as ’Diagonal with XXT ).
In particular, at polynomial order 7 there is nearly an 8 times speed up over diagonal preconditioning and just over a 4 times
with the addition of the linear space preconditioner.

(a) Relative speed up on 72 cores. (b) CG iterations per timestep.

Figure 5: Relative speed up and CG iteration count for low energy basis preconditioning compared with diagonal preconditioning
with and without the linear space preconditioner XXT . Discretisation: ∼ 6000 prismatic and ∼ 20000 tetrahedral elements with
5th order polynomial expansion.

To consider the comparison in more detail Figure 5(b) outlines the number of CG iterations required for the pressure Poisson and
Helmholtz equations. There is approximately a fifteen-fold reduction in the number of CG pressure iterations between diagonal
and low-energy preconditioning. This reduction is limited to a fourfold difference when the linear space preconditioner (XXT )
is enabled. For the Helmholtz equation there is a 13.9 and 13.4 fold reduction going from diagonal to low energy and diagonal
with the linear space to low energy, respectively.

Figure 6: Parallel speed up of the Spectral/hp code Nektar++ with low energy block preconditioning on cx1.

Figure 6 shows the parallel speed up (mean time per time-step compared with a reference time) of this example with the low
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energy basis preconditioning enabled over a different number of cores: 24, 48 & 72. In the figure the reference time is taken as
the time per time step for 24 cores From the figure below the scaling is very close to ideal (solid black line) over the range of
cores considered. Overall, with low energy basis preconditioning the solver seems to demonstrate very competitive performance.
For example, for the 72 core scenario the time per times step is 1.2s (∆t = 0.001).

2.5 Rabbit aorta - A demonstration on a large parallel system

In this section the speed up of the incompressible Navier-Stokes solver is analysed in a rabbit aorta (geometry and velocity field
are shown in figure 8); this is a commonly used model for studying blood flow and the relationship with atherosclerosis. This
example demonstrates the performance of low energy basis preconditioning on a large example and how this scales over many
cores.

2.5.1 Problem setup

The domain consisted of ∼ 20000 prismatic and ∼ 80000 tetrahedral elements and an expansion order of 5 within each element.
An example slice of the geometry and flow solution is shown below. As mentioned in the previous section the Navier-Stokes
equations were solved using a splitting scheme. The solver was integrated in time for 110 time-steps and the mean time per time-
step was calculated every ten steps (starting at step 10 in order to avoid any start-up transients). The simulations were performed
on the Imperial College HPC system cx2 (http://www3.imperial.ac.uk/ict/services/hpc/highperformancecomputing) for
three different core counts (192,288 & 432)

Figure 7: Aorta geometry used for benchmarking Nektar++ on a large parallel system.

2.5.2 Results

Figure 8 demonstrates that the parallel speed-up of low energy basis preconditioning is rather good over the range of cores
considered. In particular, for the maximum number of cores considered (432) the speed up is 2.05 (with the theoretical speed
up being 2.25). Again, this example demonstrates very competitive performance of the incompressible Navier-Stokes solver with
the time per time step at 432 cores being 0.7s (∆t = 0.001)

Figure 8: Parallel speed up of the Spectral/hp code Nektar++ with low energy block preconditioning on cx2. Discretisation:
∼ 20000 prismatic and ∼ 80000 tetrahedral elements with 5th order polynomial expansion.
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3 Implementation of hybrid MPI/threading parallelism.

MPI parallelism has multiple processes that exchange data using network or network-like communications. Each process retains
its own memory space and cannot affect any other process’s memory space except through the MPI API. A thread, on the other
hand, is a separately scheduled set of instructions that still resides within a single process’s memory space. Therefore threads
can communicate with one another simply by directly altering the process’s memory space. The project’s goal was to attempt
to utilise this difference to speed up communications in parallel code.

A design decision was made to add threading in an implementation independent fashion. This was achieved by using the standard
factory methods which instantiate an abstract thread manager, which is then implemented by a concrete class. For the reference
implementation it was decided to use the Boost library rather than native p-threads because Nektar++ already depends on the
Boost libraries, and Boost implements threading in terms of p-threads anyway.

It was decided that the best approach would be to use a thread pool. This resulted in the abstract classes ThreadManager
and ThreadJob. ThreadManager is a singleton class and provides an interface for the Nektar++ programmer to start, control,
and interact with threads. ThreadJob has only one method, the virtual method run(). Subclasses of ThreadJob must override
run() and provide a suitable constructor. Instances of these subclasses are then handed to the ThreadManager which dispatches
them to the running threads. Many thousands of ThreadJobs may be queued up with the ThreadManager and strategies may
be selected by which the running threads take jobs from the queue. Synchronisation methods are also provided within the
ThreadManager such as wait(), which waits for the thread queue to become empty, and hold(), which pauses a thread that calls
it until all the threads have called hold(). The API was thoroughly documented in Nektar++ ’s existing Javadoc style.

Classes were then written for a concrete implementation of ThreadManager using the Boost library. Boost has the advantage of
being available on all Nektar++ ’s supported platforms. It would not be difficult, however, to implement ThreadManager using
some other functionality, such as native p-threads.

Two approaches to utilising these thread classes were then investigated. The bottom-up approach identifies likely regions of the
code for parallelisation, usually loops around a simple and independent operation. The top-down approach seeks to run as much
of the code as is possible within a threaded environment.

The former approach was investigated first due to its ease of implementation. The operation chosen was the multiplication of a
very large sparse block diagonal matrix with a vector, where the matrix is stored as its many smaller sub matrices. The original
algorithm iterated over the sub matrices multiplying each by the vector and accumulating the result. The new parallel algorithm
sends ThreadJobs consisting of batches of sub matrices to the thread pool. The worker threads pick up the ThreadJobs and
iterate over the sub matrices in the job accumulating the result in a thread specific result vector. This latter detail helps to
avoid the problem of cache ping-pong which is where multiple threads try to write to the same memory location, repeatedly
invalidating one another’s caches.

Clearly this approach will work best when the sub matrices are large and there are many of them . However, even for test cases
that would be considered large it became clear that the code was still spending too much time in its scalar regions.

This led to the investigation of the top-down approach. Here the intent is to run as much of the code as possible in multiple
threads. This is a much more complicated approach as it requires that the overall problem can be partitioned suitably, that a
mechanism be available to exchange data between the threads, and that any code using shared resources be thread safe. As
Nektar++ already has MPI parallelism the first two requirements (data partitioning and exchange) are already largely met.
However since MPI parallelism is implemented by having multiple independent processes that do not share memory space, global
data in the Nektar++ code, such as class static members or singleton instances, are now vulnerable to change by all the threads
running in a process.

A new class, ThreadComm, was added to the existing communication class, Comm, of Nektar++ . This class encapsulates a
Comm object and provides extra functionality without altering the API of Comm (this is the Decorator pattern). To the rest of
the Nektar++ library this Comm object behaves the same whether it is a purely MPI Comm object or a hybrid threading plus
MPI object. The existing data partitioning code can be used with very little modification and the parts of the Nektar++ library
that exchange data are unchanged. When a call is made to exchange data with other workers ThreadedComm first has the
master thread on each process (i.e. the first thread) use the encapsulated Comm object (typically an MPI object) to exchange
the necessary data between the other processes, and then exchanges data with the local threads using direct memory to memory
copies.

As an example: take the situation where there are two processes A and B, possibly running on different computers, each with
two threads 1 and 2. A typical data exchange in Nektar++ uses the Comm method AllToAll(...) in which each worker sends
data to each of the other workers. Thread A1 will send data from itself and thread A2 via the embedded MPI Comm to thread
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B1, receiving in turn data from threads B1 and B2. Each thread will then pick up the data it needs from the master thread on
its process using direct memory to memory copies. Compared to the situation where there are four MPI processes the number of
communications that actually pass over the network is reduced. Even MPI implementations that are clever enough to recognise
when processes are on the same host must make a system call to transfer data between processes.

The code was then audited for situations where threads would be attempting to modify global data. Where possible such
situations were refactored so that each thread has a copy of the global data. Where the original design of Nektar++ did not
permit this access to global data was mediated through locking and synchronisation. This latter approach is not favoured except
for global data that is used infrequently because locking reduces concurrency.

The code has been tested on the Imperial College cluster cx1 and has shown good scaling. However it is not yet clear that
the threading approach outperforms the MPI approach; it is possible that the speedups gained through avoiding network
operations are lost due to locking and synchronisation issues. These losses could be mitigated through more in-depth refactoring
of Nektar++ .

4 Conclusion

With the aforementioned algorithmic implementations, Nektar++ is now a modern spectral/hp element framework capable of
solving a broad range of real-world engineering problems in an efficient manner. In particular, problems that are frequently
encountered in many of the industrial and academic applications e.g. Formula One, bio-medical and acoustics, are now able to
be solved efficiently using the framework.
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