
Final Report

Numerical Algorithms Group Ltd

Parallel Software Development Project

Uncertainty Quantification using Differential Geometric

Population MCMC

Ben Calderhead∗1, Gary Macindoe2 and Mark Girolami†2

1CoMPLEX, University College London, UK
2Department of Statistical Science, University College London, UK

9 August 2013

∗Gratefully acknowledges support through the EPSRC “2020 Science” Fellowship Programme.
†Gratefully acknowledges support through the EPSRC Established Career Research Fellowship

EP/J016934/1 and a Royal Society Wolfson Research Merit Award.

1



Abstract

Uncertainty quantification is vital in many scientific areas. In particular, the Bayesian
approach provides a consistent inductive logic for reasoning about systems where mea-
surements and models contain often high degrees of uncertainty. A number of competing
hypotheses regarding the underlying structure of a system of interest can be encoded
as mathematical models, and we may use this Bayesian statistical framework to decide
systematically which model is best supported by the observed data and may therefore
be best employed for predictive purposes.

This project developed an efficient C implementation of a parallel Differential Geo-
metric Markov Chain Monte Carlo (MCMC) sampler within a general population MCMC
framework using MPI. This state of the art statistical methodology allows key Bayesian
quantities to be accurately estimated by drawing samples from a sequence of tempered
probability distributions bridging from the prior to the posterior. The posterior proba-
bility distribution gives estimates of unknown parameter values in the statistical model
given the available data, and samples from the additional tempered distributions may
be used to estimate the marginal likelihood for comparing models.

The software developed enables systematic comparison of model hypotheses for sys-
tems described using coupled systems of nonlinear differential equations, such as gene
regulatory networks, and systems described using aggregated Markov processes, such as
ligand-gated ion channel mechanisms in the biological sciences. This software can be
deployed on any modelling problem where nonlinear differential equations or Markov
processes are used and as such has the potential to have a widespread impact especially
as the size and complexity of such models is growing.

The C codes in this project deliver scalable performance, which is up to 2 orders of
magnitude faster than the original Matlab implementation. Further, its modular design
allows it to be easily extended to enable statistical inference over additional classes of
models thus ensuring it widespread utility to practising scientists and engineers.

2



Contents

1 Introduction 4
1.1 Motivating Scientific Examples . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Benchmark Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Cluster Configuration and Compiler Settings . . . . . . . . . . . . . . . . 5
1.4 Key Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Work Package 1 7
2.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Work Package 2 8
3.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 Uptake and Dissemination of Software 12

5 Conclusions and Future Work 13

3



1 Introduction

The quantification of uncertainty is now being widely recognised as essential to the en-
quiry and development process in the fields of science and engineering1. Such approaches
drive a wide range of decision-making within industry, academia and government, and
there is consequently a very strong demand for software to support this aim. In particu-
lar, the use of Bayesian methodology for making predictions and quantifying uncertainty
both in data and models has massively increased over the last 15 years, in part due to the
increased computing power available. Alongside this increase in computational ability,
advances in Bayesian algorithms also play a significant role in making inference more
feasible over complex statistical models.

The Bayesian paradigm involves representing unknown variables or parameters of a
statistical model in terms of probability distributions, which are then updated according
to the rules of conditional probability (Bayes Rule) to take into account the available
data. This approach provides a consistent inductive logic for reasoning about systems
where measurements and models often contain high degrees of uncertainty. The main
scientific question that we wish to answer may be posed as follows: Given a number
of competing hypotheses regarding the underlying structure of a system, how may we
decide which statistical model is best supported by the observed data and may therefore
be best employed for predictive purposes? The Bayesian approach offers a systematic
and quantitative way of answering this, whilst avoiding overfitting to the data. However,
such an approach is computationally intensive; rather than calculating a single value via
optimisation, the answer instead takes the form of a probability distribution, which must
then be integrated to obtain the required marginal likelihood for model comparison. For
more realistic nonlinear models the resulting densities and integrals are generally not
analytic and must be approximated.

Markov chain Monte Carlo (MCMC) methods allow samples to be drawn from arbi-
trary probability distributions and therefore provide a general approach to performing
Bayesian analysis for wide classes of statistical models. In this project we have pro-
duced efficient parallelised C code which translates the original Matlab implementation
of state-of-the-art MCMC methodology based on incorporating the Riemannian geome-
try induced by the statistical model of interest. This “Differential Geometric MCMC”
methodology uses geometric information to explore the target distribution up to 2 or-
ders of magnitude more efficiently than previous state-of-the-art MCMC methods, par-
ticularly for high dimensional and strongly correlated densities. However, despite this
dramatic improvement in statistical efficiency the original Matlab code was still too slow
to allow realistically complex models to be analysed within a reasonable timeframe.

This C code delivers the capability of allowing such models to be analysed within a
Bayesian framework in hours rather than days by exploiting the speed-ups that may be
obtained through parallelisation on a High-Performance Computing Cluster using MPI

1The NSF and SIAM in the USA are supporting national initiatives in formalising research in Un-
certainty Quantification. Likewise the EPSRC in the UK has recently funded a large Programme grant
on Uncertainty Quantification in engineering inverse problems led by Prof. A. Stuart, University of
Warwick, of which M.A. Girolami is a co-investigator EP/K034154/1

4



and OpenMP.

1.1 Motivating Scientific Examples

We chose particular scientific applications to be the motivating examples for driving this
software development; biochemical models described by nonlinear differential equations
and ligand-gated ion channel models described by aggregated Markov processes. These
examples are based on current active research areas within Computational Statistics (and
collaborators) at UCL, and have the potential to make a large impact within in the wider
international research community. The software’s framework has been designed to be
general enough to allow arbitrary models to be analysed by specifying functions defining
their likelihood and corresponding geometric quantities. This allows the computer code
to be easily extendible to other statistical and scientific applications in the physical
sciences and engineering.

1.2 Benchmark Models

Two differential equation models were used for benchmarking the improvement in speed
over the original Matlab code. The Fitzhugh-Nagumo model consists of a system of
nonlinear differential equations with 3 parameters and 2 initial conditions, resulting in
a 5 dimensional probability distribution to be inferred. 1000 data points were generated
from this model by solving the system with parameters [0.2, 0.2, 3] and initial conditions
[−1, 1], and then adding Gaussian distributed perturbations to simulate noise. The
full details of this model may be found in [1]. The second nonlinear differential equa-
tion model describes a circadian biochemical network in the plant Arabidopsis thaliana,
which consists of 22 parameters and 6 initial conditions and results in a 28 dimensional
probability distribution to be inferred. 10 data points were generated for each species (in
order to simulate realistic experimental data) by solving the system using the parameter
values detailed in [2], where full details of the model may also be found. In both cases,
the standard deviation of the noise was chosen to be 1 percent of the standard deviation
of the model output for each species.

We also considered an ion channel model described by an aggregated Markov process.
The Markov process used consists of 5 states with 10 parameters, the full details of which
are available in [3]. A dataset consisting of 6700 data points was generated to represent
a realistically sized data set for the purpose of benchmarking.

The settings for the population MCMC sampler are described in the Sections 2 and
3, and the test scripts and datasets are also included in the code release for reproduction
of results.

1.3 Cluster Configuration and Compiler Settings

All benchmarks were performed on the Statistical Science Computer Cluster at UCL.
This cluster consists of 52 nodes, each with 2 quad-core 2.7GHz Opteron AMD processors
with 8GB of memory. The nodes are connected using 10Gbit ethernet and based around

5



the open source linux distribution Rocks 5.3 (www.rocksclusters.org). Our software was
compiled using gcc version 4.1.2 with LAPACK version 3.4.2, which includes BLAS
and CBLAS, and with the ODE solver package Sundials version 2.5.0. We also used
OpenMPI version 1.6 to enable parallelism on the cluster. The following flags were
employed during compilation:

-std=c99 -pedantic -Wall -Wextra -march=opteron -02 -pipe

1.4 Key Objectives

The main objectives for this project were as follows:

• Implementation of test suite for MCMC update functions.

• C implementation of MCMC update functions using OpenMP.

• C implementation of population MCMC using MPI.

• Matlab and R wrappers to run the developed C code.

The first three of these objectives were successfully completed resulting in a usable C
implementation that offers up to 2 orders of magnitude speed improvement over the
original Matlab code. The last objective of writing wrappers to allow Matlab and R to
directly run the C code was not achieved due to time constraints, however this would
be a useful addition for future work. In the following sections, an overview of each of
these objectives is given in the order they appear in the work packages. The outcomes of
the key objectives and resulting speed improvements compared with the baseline Matlab
code are also presented.

6



2 Work Package 1

The first task involved refactoring the existing Matlab code and planning the structure
of the C implementation. The MCMC update functions were then implemented in C
using OpenMP to accelerate the computation using multiple cores. It was decided not to
implement the Matlab wrappers at this stage, but to leave all interfaces to other software
packages until the end of Work Package 2, once the full sampler had been implemented
in C. This decision was taken to ensure we would have time to deliver a fully working
piece of software coded entirely in C and took into account the reviewers’ comments of
our original proposal, where it was mentioned that delivering the wrappers for Matlab
and R, in addition to the entire C implementation, would be rather ambitious. This
proved to be a wise decision, as we eventually ran out of time to deliver the wrappers,
but did successfully complete a fully working sampler in C, which we describe further in
Work Package 2.

Unit tests were written to ensure correct outputs from the MCMC update functions
were obtained after being rewritten in C. In particular, tests were written to confirm
correct model outputs, likelihood functions and geometric information required for the
MCMC sampler, such as gradients and metric tensors, for 100 randomly chosen inputs
and the required tolerance for passing each test was set to 1e-6. The test suite was fully
automated in CUnit using random inputs and their corresponding outputs generated
from the original Matlab code.

2.1 Results

For this work package, the C implementations of the MCMC update functions were com-
pared against the corresponding update functions in Matlab for each of the benchmark
models. The update functions calculate the likelihood function of each model for a given
set of parameters and dataset, along with gradient and geometric quantities required for
the sampler. Timings were averaged over 1000 different parameter sets and performed
on 4 cores using OpenMP enabled code. These functions represent the main workload
of a Monte Carlo sampler, as they must be evaluated many hundreds of thousands of
times.

Model Matlab (sec) C (sec) Speed Improvement

10 Parameter Ion Channel 0.250678 0.003683 ×68
5 Parameter ODE 0.061808 0.001818 ×33
28 Parameter ODE 0.106800 0.019113 ×6

7



3 Work Package 2

The main item of work in this section was the development of the full population MCMC
framework in C using MPI, which utilises the MCMC update and likelihood functions
developed in Work Package 1. The outputs of the software are samples drawn from a
posterior probability distribution, and summary statistics (mean and standard deviation)
of these outputs were checked against those obtained from the original Matlab code to
ensure correctness of the overall algorithm. This part of the algorithm was structured
in a modular form that allows additional ODE and aggregated Markov models to be
quickly added, as well as enabling easy integration of different classes of models in the
future.

An additional item in this Work Package was the development of wrapper codes for
accessing the accelerated C code from Matlab and R. Unfortunately this was not possible
to achieve within the timeframe of the project, however we were able to include the
functionality that the software output can be saved in a native Matlab and R-readable
format for easy post-processing of results.

3.1 Results

We first compared the performance of our C code with the original Matlab code using
the ion channel model, where baseline performance is given by the Matlab code running
on a single core. We observed that the C code offers much higher performance, as we
might expect from the results in Work Package 1, and exhibits better efficiency than
Matlab when scaled up to 8 cores, as shown in Figure 1. Of course the advantage of
a C implementation is that we may use many more cores for computation, without the
need for expensive Matlab toolboxes to allow this. Figure 2 demonstrates the scaling
efficiency up to 100 cores, where performance is 60 times better than using a single core.

We also compared the performance of our C implementation using the two ODE
model benchmarks. Figure 3 shows the scaling of the Fitzhugh Nagumo model with 5
parameters, compared to Matlab on up to 8 cores. Once again, above the increase in
speed due to the likelihood and geometry calculations, the performance of the C imple-
mentation also scales more efficiently, as shown in Figure 4. Finally, we observed that
the efficiency of our largest ODE model with 28 parameters across increasing numbers
of cores scaled in a similar manner to the previous two example models, as may be seen
in Figure 5. In all cases the communication overhead is perhaps fairly large relative to
the individual computation on each core, and so we might expect this performance to
improve as we consider larger models in future.

It is worth noting that these results will have a real and immediate impact on in-
creasing the rate at which many of our motivating scientific questions may be answered;
for example, our C implementation can now generate 100,000 samples for the Circadian
model with 100 Markov chains in around 1 hour using 100 cores, whereas the fastest
previous Matlab version would take around 2 days with 8 cores. This offers a signifi-
cant advantage when there are large numbers of structural hypotheses to be tested and
compared.

8



Figure 1: Comparative results using the ion channel model with single core Matlab as
the baseline performance measure.

0.0	
  

100.0	
  

200.0	
  

300.0	
  

400.0	
  

1	
  Core	
  
4	
  Cores	
  

8	
  Cores	
  Re
la
%v

e	
  
sp
ee
d	
  
in
cr
ea
se
	
  o
ve
r	
  

si
ng
le
	
  c
or
e	
  
M
at
la
b	
  
ba

se
lin

e	
  

1	
  Core	
   4	
  Cores	
   8	
  Cores	
  
C	
  Code	
   69.2	
   229.9	
   374.7	
  

Matlab	
  Code	
   1.0	
   2.2	
   4.1	
  

Ion	
  Channel	
  Scaling	
  up	
  to	
  8	
  Cores	
  

Figure 2: Scaling performance using the ion channel model with single core C as the
baseline measure.

1	
  Core	
   10	
  Cores	
   20	
  Cores	
   40	
  Cores	
   60	
  Cores	
   80	
  Cores	
   100	
  Cores	
  
Rela0ve	
  Speed	
  Increase	
   1	
   10.2	
   19.6	
   29.1	
   38.4	
   51.2	
   61.3	
  

0	
  

10	
  

20	
  

30	
  

40	
  

50	
  

60	
  

70	
  

Re
la
%v

e	
  
sp
ee
d	
  
in
cr
ea
se
	
  o
ve
r	
  

si
ng
le
	
  c
or
e	
  
C	
  
ba

se
lin

e	
  

Ion	
  Channel	
  C	
  Code	
  Scaling	
  with	
  Single	
  Core	
  Baseline	
  

9



Figure 3: Comparative results using the Fitzhugh Nagumo model with single core Matlab
as the baseline performance measure.

0.0	
  
10.0	
  

20.0	
  

30.0	
  

40.0	
  

50.0	
  

60.0	
  

1	
  Core	
  
4	
  Cores	
  

8	
  Cores	
  Re
la
%v

e	
  
sp
ee
d	
  
in
cr
ea
se
	
  o
ve
r	
  

si
ng
le
	
  c
or
e	
  
M
at
la
b	
  
ba

se
lin

e	
  

1	
  Core	
   4	
  Cores	
   8	
  Cores	
  
C	
  Code	
   11.7	
   28.6	
   57.4	
  

Matlab	
  Code	
   1.0	
   2.3	
   4.3	
  

Fitzhugh	
  Nagumo	
  Scaling	
  up	
  to	
  8	
  Cores	
  

Figure 4: Scaling performance using the Fitzhugh Nagumo model with single core C as
the baseline measure.

1	
  Core	
   10	
  Cores	
   20	
  Cores	
   40	
  Cores	
   60	
  Cores	
   80	
  Cores	
   100	
  Cores	
  
Rela0ve	
  Speed	
  Increase	
   1.0	
   9.7	
   15.4	
   23.3	
   39.5	
   50.5	
   61.9	
  

0.0	
  

10.0	
  

20.0	
  

30.0	
  

40.0	
  

50.0	
  

60.0	
  

70.0	
  

Re
la
%v

e	
  
sp
ee
d	
  
in
cr
ea
se
	
  o
ve
r	
  

si
ng
le
	
  c
or
e	
  
C	
  
ba

se
lin

e	
  

Fitzhugh	
  Nagumo	
  C	
  Code	
  Scaling	
  with	
  Single	
  Core	
  Baseline	
  

10



Figure 5: Scaling performance using the Circadian model with single core C as the
baseline measure.

1	
  Core	
   10	
  Cores	
   20	
  Cores	
   40	
  Cores	
   60	
  Cores	
   80	
  Cores	
   100	
  Cores	
  
Rela0ve	
  Speed	
  Increase	
   1	
   9.4	
   17.6	
   25.4	
   39.2	
   51.4	
   62.9	
  

0	
  

10	
  

20	
  

30	
  

40	
  

50	
  

60	
  

70	
  

Re
la
%v

e	
  
sp
ee
d	
  
in
cr
ea
se
	
  o
ve
r	
  

si
ng
le
	
  c
or
e	
  
C	
  
ba

se
lin

e	
  

Circadian	
  Model	
  C	
  Code	
  Scaling	
  with	
  Single	
  Core	
  Baseline	
  

11



4 Uptake and Dissemination of Software

The C implementation we have developed is already being used in a number of projects
and collaborations involving Prof. Girolami and Dr. Calderhead. It is currently being
used in a number of work packages within ASSET (Analysing and Striking the Sensi-
tivities of Embryonal Tumours), a 14 partner collaborative European project “tackling
human diseases through systems biology approaches”, see http://www.ucd.ie/sbi/asset/
for more details. The researchers involved in this work include Prof. Mark Girolami
(Statistical Science, UCL), Prof. Heinrich Kovar (Children’s Cancer Research Institute,
Vienna), and Prof. Walter Kolch (Systems Biology Ireland).

This software is also currently being used in a collaboration between Prof. Giro-
lami, Dr. Ben Calderhead (CoMPLEX and Statistical Science, UCL), Dr. Lisa Hopcroft
(Paul O’Gorman Leukaemia Research Centre, Glasgow), and Prof. Tessa Holyoake (Paul
O’Gorman Leukaemia Research Centre, Glasgow) to perform model comparisons of hy-
pothesised biochemical systems implicated in chronic myeloid leukaemia.

We will also be presenting our software to a number of academic groups at univer-
sities in UCL, Warwick, MIT and Heriot-Watt over the coming months, from whom we
obtained letters of support for our original application.

Further, we have plans in place to bring this software and methodology to a wider au-
dience through publications in internationally leading journals. We are currently writing
a paper for submission to the Journal of Statistical Software, as well as an application
paper regarding differential equations to be submitted to the biological journal Bioin-
formatics and another application paper regarding ion channel models for submission
to Nature Protocols. This will ensure the widest range of exposure to both statisticians
and biologists who may be interested in using this software.

12



5 Conclusions and Future Work

We have successfully developed a differential geometric population MCMC framework
in C and demonstrated the scalability and improvements in speed it offers compared
to the original Matlab code. In particular, the software has enabled up to 2 orders
of magnitude increase in speed compared to the maximum 8 core implementation that
was previously possible in our original Matlab code. This software is already having a
significant impact in Europe-wide projects and is expected to greatly increase the pace
of scientific research in the motivating scientific areas.

Future work will involve developing interfaces to allow use of the C code from Matlab
and R, thus widening the audience.

This project was funded under the HECToR Distributed Computational Science and
Engineering (CSE) Service operated by NAG Ltd. HECToR A Research Councils UK
High End Computing Service - is the UK’s national supercomputing service, managed
by EPSRC on behalf of the participating Research Councils. Its mission is to support
capability science and engineering in UK academia. The HECToR supercomputers are
managed by UoE HPCx Ltd and the CSE Support Service is provided by NAG Ltd.
http://www.hector.ac.uk

13



References

1. Riemann Manifold Langevin and Hamiltonian Monte Carlo Methods, M. Girolami
and B. Calderhead, Journal of the Royal Statistical Society: Series B (with dis-
cussion) (2011), 73(2):123-214

2. Statistical analysis of nonlinear dynamical systems using differential geometric
sampling methods, B. Calderhead and M. Girolami, Journal of the Royal Soci-
ety Interface Focus (2011), 1(6):821-835

3. Bayesian Approaches for Mechanistic Ion Channel Modeling, B. Calderhead, M.
Epstein, L. Sivilotti and M. Girolami, in “In Silico Systems Biology”, Methods in
Molecular Biology: Methods and Protocols, Springer

14


