
HPC implementation of Agent-Based
Models for Cell Cultures - The

parallelization of ABM using MPI

Hugo Pinto, Adam Spargo and Declan Bates
University of Exeter, UK

April, 2013

Abstract

Here we report the implementation of an MPI parallelization of the
model ABM. This report includes the algorithm description, validation
and parallel scaling results.

Contents

1 Introduction 2

2 Model description 2

3 MPI implementation 3

4 Validation, Scalability and Results 5

5 Conclusions 9

1



1 Introduction

Currently, even the most sophisticated numerical models of intra-cellular
phenomena consider only a single cell or population averages [1], whereas ex-
isting agent based models (ABMs) of cell populations lack sophistication in
terms of their representation of the cell [2],[3]. This is due purely to the com-
putational expense of combining the two approaches [4],[5]. We believe that
such a combination is both desirable, and achievable with todays massively
parallel computer architectures. The aim of our research is to investigate
the use of computational optimisation methods to find the most appropriate
experimental conditions for the evolution of novel multi-genetic functions in
bacteria.

Traditionally, such models have been constructed using ordinary differential
equations (ODEs), which are easy to solve and often provide a good model in
a continuum setting. However ODEs can model only the phenotype of a sin-
gle cell, or at best model the average behaviour over the cell population. For
this reason, we developed an agent-based approach where individual cells can
exhibit variation in rates of growth and protein synthesis and mutation [6],
thus allowing the representation of realistic levels of diversity. The utility
of our current serial agent-based implementation is however, limited by the
number of cells which can be modelled. Limits on the memory within a single
computer/node do not allow sufficient numbers of cells to be simulated to
capture the diversity present in a typical laboratory culture.

Here we report the development of a parallel algorithm in order to distribute
the data through the different nodes available keeping the efficiency of the
serial implementation. The report is organised as follows: Section 2 model
description, Section 3 MPI implementation and Section 4 validation, scala-
bility and results. Finally the conclusions are presented in Section 5.

2 Model description

ABM is an agent-based implementation for the simulation of cell populations
growth and is written in C. In this model, cells are allowed to grow accord-
ing to a simple metabolic model. They will initiate the replication of their
chromosome at a specific mass. Once replication has terminated the two
copies of the chromosome segregate to either pole and the cell divides. In
modern laboratory conditions cells grow with a generation time shorter than
the DNA replication time and so it is necessary to model overlapping rounds

2



of DNA replication within a single generation. The serial implementation of
ABM allows this fast growing of cells with reasonable time resolution but the
maximum number of cells is limited by the available memory.

Each cell requires 12 bytes of memory thus a simulation for 1010 cells requires
≈100 GB of memory usually not available on a single core. A parallel im-
plementation will allow us to fulfill such memory requirements and perform
simulations with a realistic number of cells.

3 MPI implementation

For the parallelisation of the ABM model we used the Master-Slave approach.
In this approach, one of the processes, the master, is dedicated to perform the
work distribution, while the other processes, the slaves, perform individual
tasks. Once the slave completes a task, it sends the a message to the master
which also controls the flow of the algorithm. This is the most appropriate
model for distributed-memory systems.

In the parallel implementation of ABM cells grow simultaneously in the dif-
ferent cores. In order to assure that cells are growing in the same condition,
i.e. nutrient concentration, the common variables are updated after each
time step.

The simplified algorithm for the parallel implementation of ABM is shown
in Figure 1. The simulation starts with the MPI initialisation. Then all
the processes read the input file where the simulation conditions are de-
fined, such as, maximum number of cells, time limit, initial number of cells
and growth conditions. The output file is then opened by the master process.

After the allocation of memory, the maximum number of cells are calculated
and the initial cells are equally distributed through all the processes. This
procedure helps the data distribution and prevents memory usage imbalance.

In each time step all the processes grow cells independently. In the end
the substrate is updated to ensure that all the processes are performing the
simulation in the same conditions. At the end of each iteration the output
is written by the master process. The simulation stops when one of the
processes reaches the maximum number of cells or the time limit allowed for
the simulation.

3



Figure 1: Simplified algorithm for the parallel implementation of the ABM
model.

4



4 Validation, Scalability and Results

Validation

In order to validate the parallel implementation a simulation with a time limit
of 1000 steps, using 1 GB of memory and 1024 initial cells was performed and
the results compared with the ones obtained with the serial implementation.
To ensure that both calculations were performed in the same conditions the
random numbers were replaced by parameters. All calculations were per-
formed on the Zen cluster at the University of Exeter, with the following
hardware specifications:

- SGI Altix ICE 8200.

- 160 dual hex-core 2.80GHz Intel Westmere nodes, 24 GB RAM each.

- 74 TB SGI InfiniteStorage Cube.

- Dual DDR 4x Infiniband.

The serial implementation was compiled using both gcc 4.6.3 and Intel icc
12.1 with -O2 level optimisation. The two compilers gave almost identical
timings. The parallel implementation was compiled with the Intel MPI Li-
brary version 4.0 and icc 12.1, again with -O2 level optimisation.

Both calculations lead to the same total number of cells and more important
the number of cells at each time step was exactly the same. The evolution
of the substrate was also monitored and minor differences were found for
calculation using a different number of cores. This can be attributed to
numerical errors introduced by the function MPI Allreduce used to sum the
nutrient concentration to be updated after each time step. However this
numerical instability can be ignored since it does not have any consequence
in the evolution of the cells growth.

Scalability

One of the most important studies for a parallel implementation is to under-
stand how the code scales with the number of cores used. If the communi-
cation time between the master and the slaves is small compared with task
execution, the model should scale well in the limit of a large number of tasks.
Otherwise there is an imbalance in the workload making the parallelisation
inefficient.

5



In order to investigate the scalability of ABM two simulations were performed
using 1 and 10 GB of memory. Since the number of cells we can simulate
with 1 GB is small we expect that the communication time will dominate
(poor scalability) while for the 10 GB calculation the execution of tasks is
expected to dominate (good scalability). Thus, for the 1 GB simulation we
used 1, 4, 8 and 12 cores while for the 10 GB we used 12, 16, 20 and 24 cores.

a)

b)

Figure 2: Execution times for a) 1 and b) 10 GB of maximum memory
simulations. For the 1 GB simulation we used 1, 4, 8 and 12 cores while for
the 10 GB we used 12, 16, 20 and 24 cores.

6



Figure 2 a) shows the execution time as a function of the number of processes
used for the 1 GB simulation. As it was expected, since the number of cells
is relatively low the signalling between the master and the slaves dominates
which makes the scalability poor. In the case of the 10 GB the number of
cells is large enough in order to make the task execution dominant over the
communication. Figure 2 b) shows that the execution time as a function of
the number of processes used is almost linear suggestion a good scalability
of the code.

a) b)

c) d)

Figure 3: Cell distribution when using a) 12, b) 16, c) 20 and d) 24 cores.
The average memory occupancy is approximately 70%. None of the cores
reached the maximum memory allowed and consequently all the simulations
stopped when the time limit was reached.

Since there is no data distribution during the simulation, i.e. there is no ex-
change of cells between the different processes, if a process is growing cells at
a faster rate than the others the simulations will stop before it is completed.
For this reason it is important to understand the cells distribution through
the different processes to ensure that the distribution of data is uniform.

7



In Figure 3 we show the cell distribution over the different cores. The average
memory usage is approximately 70% of the allocated memory. Due to the
randomness in the cells growth the total number of cells is not exactly the
same but there are not significant deviations suggesting uniform growth in
the different processes.

Results

With the parallelised version of ABM the computational resources required
for a realistic simulation can be achieved. Using as input the initial num-
ber of cells and the growth rate measured experimentally a simulation for
the growth of cells was performed. For this calculation 96 GB of memory
was required, distributed over 4 nodes and 48 processors. The results were
compared with the experiment. Figure 4 shows the comparison between the
measured (squares) and calculated (line) cells as a function of time. The
y-axes is set to log scale base 2.

Figure 4: Comparison between the measured (squares) and calculated (line)
cell number as a function of time. The y-axis is set to log scale base 2.

The calculated number of cells is in good agreement with the measured num-
bered of cells. After the lag phase (t≈ 60 min) the number of cells grows

8



exponentially until the substrate runs out of nutrients (t≈400 min). The
ABM model is now an important tool to help with the understanding of the
underlying mechanisms involved in cell growth. The fact that the code can
perform a real scale simulation in a very short time (approximately 10 min)
using only 4 nodes gives the opportunity to include further complexity to the
model.

5 Conclusions

An MPI parallel version of the ABM model was successfully implemented.
Using the same input, the calculations performed with the parallel imple-
mentation are in perfect agreement with the ones performed with the serial
implementation. The parallel version of the code allowed us to perform cal-
culations with the amount of memory required to simulate real systems. For
such calculations the run time scales linearly with respect to the number of
cores used. A simulation of 1010 cells can be performed in about 10 minutes
using 4 nodes (48 cores) which implies that further complexity can be added
to the model.

9



Acknowledgements

This project was funded under the HECToR Distributed Computational Sci-
ence and Engineering (CSE) Service operated by NAG Ltd. HECToR - A
Research Councils UK High End Computing Service - is the UK’s national
supercomputing service, managed by EPSRC on behalf of the participating
Research Councils. Its mission is to support capability science and engi-
neering in UK academia. The HECToR supercomputers are managed by
UoE HPCx Ltd and the CSE Support Service is provided by NAG Ltd.
http://www.hector.ac.uk

References

[1] Growth-Rate Dependence Reveals Design Principles of Plasmid Copy
Number Control. S. Klumpp. PLoS One 6(5), 2011.

[2] An Agent-Based Model of Signal Transduction in Bacterial Chemotaxis.
J. Miller, M. Parker, RB. Bourret, MC. Giddings. PLoS One 5(5), 2010.

[3] Individual-based modelling of adaptation in marine microbial popula-
tions using genetically defined physiological parameters. JR. Clark, SJ.
Daines, TM. Lenton, AJ. Watson, HTP. Williams. Ecological Modelling
222, 3823-3837, 2011.

[4] The Evolution of Quorum Sensing in Bacterial Biofilms. CD. Nadell, JB.
Xavier, SA. Levin, KR. Foster. PLoS Biol 6(1), 2008.

[5] Computational modelling of synthetic microbial biofilms. TJ. Rudge, PJ.
Steiner, A.Phillips, Jim P. Haseloff. Submitted to ACS Synthetic Biology.

[6] The Dynamic Super-Individual method for agent-based models with ex-
perimental calibration for well-mixed Escherichia Coli cultures. A. Spargo
and D. Bates. In preparation.

10

http://www.hector.ac.uk

	Introduction
	Model description
	MPI implementation
	Validation, Scalability and Results
	Conclusions

