
 

Adapting QSGW to large multi-core systems  

Abstract 
 
The quasi-particle self-consistent GW approxation, recently developed and 
coded by Prof. Mark v. Schilfgaarde (King’s College London) is an extremely 
powerful method for the calculation of the electronic structure, and in 
particular excitations, which addresses many of the problems which 
plagued the standard density functional approach. However, the 
calculations are extremely costly and this project aimed at harnessing the 
power of massively parallel machines to speed up these calculations. In the 
most expensive part of the code, an absolute speedup of more than 2000 
has been achieved by using about 4500 cores on HECToR. 
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Introduction 
 
The Quasi-particle self-consistent GW (QSGW) approximation has emerged as a 
kind of gold standard among ab initio approaches to electronic structure.   It 
addresses the electronic structure simultaneously at an optimized single-particle 
level, and at a many-body level.  It thus serves as a high-end replacement for the 
usual Kohn-Sham density-functional theory (KS-DFT), surmounting most of that 
theory’s well known drawbacks, and as a way to bridge the gap between single-
particle and many-body theories in a clean, parameter-free way free of 
ambiguities inherent in the currently popular methods such as LDA+DMFT. The 
price to be paid is computational cost.  QSGW is roughly 100-1000 times more 
expensive than LDA. 
 
In it's development stage at the beginning of this project, the code was 
essentially a sequential code, and the execution time for physically interesting 
systems was in the order of month. In order to make QSGW calculations feasible 
for routine calculations, it was crucial to parallelize the code.  
 
In the next section, we will outline the parallelization opportunities of the QSGW 
method. 
 

Loop structure of the codes and parallelization strategy 
 
One of the central quantities to be calculated in the QSGW method is the 
polarizability : 

 
 
 
 

 
 
The main loops are the ones over q and , i.e. the wave vectors and frequencies 
for which the function has to be calculated, and the internal summation over the 
wave vectors k and band indices n and n'. These nested loops were treated by 
nested levels of MPI parallelization, utilizing different processor groups.  
The calculation of the self-energy has a very similar structure of loops. 
 
The outermost q loop was rather straight forward, as the calculations involved 
are independent of each other, and required hardly any communication, apart 
from broadcasting global data to all nodes. When possible, output files were 
written locally on the head node of the processor group for a given q vector. 
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The inner k-summations required an additional reduction. In addition, expensive 
calculations of matrix elements were parallelized (mostly over the basis set) 
using OpenMP. Results for the scaling with respect to these three levels of 
parallelization will be given and discussed below. 
 
 

Implementation details 
 

MPI parallelization: 
 
The nature of the nested loops (k and q) called for independent parallelization at 
these two levels. To this end, the pool of N MPI processes (described by 
MPI_COMM_WORLD) was split into Nq groups of N/Nq processes. The loop over q 
vectors was then parallelized over the Nq groups: 
 
      q_start = q_comm%group_ID 

      q_step =  num_q_groups 

 

      do 1001 iq = iqxini + q_start, iqxend, q_step 

 

  ! [code for each q vector ...] 

 

 enddo ! 1001 

 

Inside each q group, the parallelization over the k-points followed the same 
principle. The processes of the q-group were further divided into groups, over 
which the k-loop is parallelized.  
 
 k_start = k_comm%group_ID 

k_end   = nqbz 

k_step  = num_k_groups 

 

do 1000 k = 1 + k_start, k_end, k_step 

 

  ! [code for each k-vector…] 

 

 enddo ! 1000 

 
Each processor group is summing the accumulating variable (rcxq) over it’s set 

of k-vectors, which leaves a final reduction(MPI_SUM) over the different k-
groups: 
 
#ifdef  USE_MPI 

 

      CALL MPI_ALLREDUCE(MPI_IN_PLACE, rcxq, rcxq_size, 

     &     MPI_DOUBLE_COMPLEX, MPI_SUM, 

     &     k_inter%communicator, ierror) 

       

#endif 

 



k_inter are MPI process groups, which contain processes of equal rank from 
the different k-groups (see details in the next section). 
 
The incentive for implementing the k-groups was to keep the flexibility of 
introducing a further level of MPI-parallelization (e.g. over bases functions) for 
each given k-point. In practice, however, at the current stage of the project, the 
k-groups are of size 1, i.e. the number of k-groups Nk equals the number of 
processes in each q-group. 
 
 Nk = N / Nq. 
 
Optimal performance is to be expected when the number of groups equals the 
number of q/k points, or is a divisor of this number. Currently, these group sizes 
are not determined automatically, but have to be specified in MPI_name.init 
files, which are read by the codes. 

 

MPI module 
 
In order to handle the different levels of parallelization, an MPI module has been 
written, which provides a data structure for MPI processor groups, and routines 
to split a given processor group into subgroups. The data structure 
comm_struct has been introduced to hold all relevant information about a given 
processor group: 
 
type comm_struct      

 integer :: size     

 integer :: ID     

 integer :: communicator     

 integer :: group_ID     

 integer :: num_of_siblings     

 integer :: ID_of_head    

end type comm_struct 

 
where size is the number of processors in the group, ID labels each group (at a 
given level), communicator is the handle of the MPI communicator. 
num_siblings stores the information on how many groups exist at this given 
level, and ID_of_head is the rank (with respect to MPI_COMM_WORLD) of the 
head of the group. 
 
The routine mpi_make_groups() is provided to split an existing processor 
group base_comm into a set of subgroups new_comm and the corresponding 
groups inter_comm, which communicate between equal ranks of different 
subgroups. 
 
subroutine mpi_make_groups (base_comm, loop_count, num_groups, new_comm, 

inter_comm)   

 

type(comm_struct), intent(IN)    :: base_comm  

integer,           intent(IN)    :: loop_count  

integer,           intent(INOUT) :: num_groups  

type(comm_struct), intent(OUT)   :: new_comm, inter_comm   



 
 
The following table illustrates the scheme of groups: 
 
 
!---------------------------------------------------------------------------  

! level 0:  (COMM_WORLD)  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | ...  

!---------------------------------------------------------------------------  

! level 1:  comm_1        |    group 0    |    group 1    |    group 2    | 

..  

!  ID                     | 0 | 1 | 2 | 3 | 0 | 1 | 2 | 3 | 0 | 1 | ...  

!---------------------------------------------------------------------------  

!           inter_1       | 0 |           | 1 |           | 2 |     

!                             | 0 |           | 1 |           | 2 |  

!                                 | 0 |           | 1 |           | 2 |   

!                                     | 0 |           | 1 |           | 2 |  

!---------------------------------------------------------------------------  

! level 2:  comm_2 (1)    | gr 0  |  gr 1 |  

!  ID                     | 0 | 1 | 0 | 1 |  

!---------------------------------------------------------------------------  

!           inter_2(1)    | 0 |   | 1 |    

!                             | 0 |   | 1 |  

!---------------------------------------------------------------------------  

! level 2:  comm_2 (2)                    | gr 0  |  gr 1 |  

!  ID                                     | 0 | 1 | 0 | 1 |  

!---------------------------------------------------------------------------  

!           inter_2(2)                    | 0 |   | 1 |    

!                                             | 0 |   | 1 |  

!---------------------------------------------------------------------------  

! level 2:  comm_2 (2)                                    | gr 0  |  gr 1 |  

!  ID                                                     | 0 | 1 | 0 | 1 |  

!---------------------------------------------------------------------------  

!           inter_2(3)                                    | 0 |   | 1 |  

!                                                             | 0 |   | 1 |  

!---------------------------------------------------------------------------   

 
The module was written quite generally, supporting many nested levels of loop 
parallelization. In the current project, two levels were used.  
 
 

I/O parallelization 
 
Many input/output files of the code were already written as separate files for 
each q-point in the original sequential version of the code. In these cases, quite 
naturally the reading and writing is now done by the head node of each q-group. 
 
Global input files are read only on rank=0 and the data is then broadcast to all 
other processors. 
In the program hx0fp0, which generates the susceptibility (see equation above), 
a major bottleneck was writing the output files. Originally, the files containing 
the screened Coulomb interaction for each q-vector, contained all 
Frequencies w as records in a direct access file. Depending on the system size, 
each file could reach a size of about 1 GByte. In order to accelerate the output of 
the files, each record, i.e. each frequency, is now written by a different processor, 
and the files are subsequently concatenated into the original format. 
 



OpenMP parallelization 
 
While the MPI parallelization went in a top-down philosophy, OpenMP was 
implemented in a bottom-up way, parallelizing simple loops at a lower level of 
the code, such as matrix multiplications used in the calculation of matrix 
elements between basis functions and Bloch wave functions 

lmgwsc script 
 
The lmgwsc code, which is to be called by the user, is actually a shell script, 
which calls separate binaries for different steps of the calculation. These steps 
include: 
 

 Solution of the band-structure for a given effective potential 
 Calculation of the bare Coulomb interaction v(r,r’) 
 Calculation of the Exchange (Fock) part of the self energy  
 Calculation of the susceptibility  and the screened Coulomb interaction 
 Calculation of the Correlation part of the self energy 
 Calculation of the new effective potential for the next iteration 

 
The script also checks the convergence of the procedure and stops the procedure 
when a given accuracy is reached. 
 
This script, however, cannot be called in parallel on parallel computers, but the 
individual binaries for the respective steps of the calculation have to be called in 
parallel. Therefore, the script had to be modified and the command to start a 
parallel execution, e.g. aprun on Hector, has been inserted via environment 
variables $MPIRUN_code, into the script. Code specific scripts allow for 
different number of processors for different steps of the calculation. 
 
Also, the use of these variables makes it easy to adopt the codes to a different 
machine, which uses different MPI commands, such as mpirun. 
 
 

 
 

Comparison against the milestones of the proposal 
 

WP1. Parallelization of the self-energy Σ and the polarizablity Π calculation 
over k, q and ω. (1 April 2013 - 31 May 2013) 
 
Parallelization of the loops over q, k ω, and ω': This work package requires modification of 
the programs generating the polarization function and the self-energy. 



 
Polarization function:(trivial: q,ω; with global reduction: k) two routines will have to be 
modified: 
hx0fp0.sc.m.F for q loop and x0fk_v3.F for ω and k loops If each loop is distributed over 
around 16 MPI tasks, this will give rise to a parallelism up to around 4096 MPI tasks. 
 
Self-energy (incl. screened Clb. Interaction): (trivial q; with global reduction: k, ω') two 
routines will have to be modified: hsfp0.sc.m.F for q loop and sxcf_fal2.sc.F for the k and ω' 
loops. If each loop is distributed over around 16 MPI tasks, this will give rise to a parallelism 
up to around 4096 MPI tasks. 

 
Deliverable 1: New code will give the same results as original code and scale up 
to 2000 cores on HECToR. (Due 31 May 2013) 
 
The deliverable has been met, as demonstrated in the in the results section 
below 
 

WP2. Memory use on parallel machines. (1 June 2013 -  30 September 2013) 
 
Parallelization over basis functions, distributed storage of matrices: In this second, and major 
work package, the distributed memory model will be implemented to handle Π IJ sub-

­­matrices for large models. Loop structures will be re-ordered and distributed memory, mixed 
mode routines for matrix multiplications and inversion will be deployed. Furthermore, 
OpenMP will be used to parallelize other inner loops, which do not contain calls to 
mathematical libraries. This level of parallelism will not affect the scaling of the first level. 
The parts of the package which will be affected from this change are: 
 
Polarization function:(hx0fp0.sc.m.F and x0fk_v3.F): loops over the (I,J)-­­blocks have to be 
moved from x0fk_v3.F to hx0fp0.sc.m.F. Allocation of the large arrays will be moved inside 
the loops over the blocks. There are about 15 large arrays, which will be distributed over MPI 
tasks.  
 

Bare and Screened Coulomb interaction: (hvccfp0,hx0fp0.sc.m.F, wcf.F): Both the 
bare (v, in hvccfp0) and the screened (W, in wcf.F) Coulomb interactions will be 
generated and stored in partitioned form so that it can be used directly for the 
generation of the self-­­energy. Restructuring of the loops is similar to the 
polarization function. For the matrix inversion in (wcf.F) different parallel 
algorithms (ScaLapack, PLASMA, iterative solution via Dyson equation) will be 
used depending on the system size.  

 

Self-­­energy:  hsfp0_sc, sxcf_fal2.sc.F: same as above for loop structures. 
Deployment of parallel libraries for the matrix multiplication in the required 
matrix elements of the self-energy: 



 

 

Deliverable 2: Distributed memory code gives same results as original code, 

and calculations for up to 100 atoms will be possible. For such systems, the code 
should scale well up to several 10000 cores, using OpenMP within the NUMA 
regions and MPI at several layers between them. A final project report will be 
produced in both pdf and html format ready for publishing on the HECToR 
website. (Due 30 September 2013) 

 

This deliverable has not been fully met, due to problems, encountered at 
the start of the project (see below). So far, only the OpenMP parallelization 
has been implemented. It also addresses the memory issues, through 
shared memory use. 

 

The work of WP2 has started, though. The arrays which should be 
distributed have been identified, and a small test code, demonstrating the 
use of BLACS and ScaLapack has been written.  
 

Problems encountered 
 
One difficulty in this project was, that the code contains a substantial amount of 
legacy code, written in a mixture of Fortran77 and Fortran95. Although the 
sequential code was well tested and working without errors, some constructs of 
the code made it difficult to debug new developments, or even broke with the 
introduction of parallelism. It took a considerate amount of time at the beginning 
of the project to find and correct these problems. 
 
 
 

Scaling results 
 
The two most costly steps in a self-consistent QSGW calculation are the 
calculation of the susceptibility and screened interaction, and the calculation of 
the self-energy contributions. In the following, we present timings for these two 
programs (hx0fp0 and hsfp0). 
 
All calculations have been performed for a supercell of 16 Fe atoms. Similar 
calculations have been performed previously without the MPI parallelization and 



a complete run took several months on 12 cores. These calculations employed a 
q-mesh of 10x10x10 q-points, which correspond to 125 irreducible points. 
 
In our test calculations, we reduced the number of q-points to 5x5x5, resulting in 
10 irreducible points. 
 

Self energy calculation: hsfp0 (exchange mode) 
 
Figure 1 displays the total speedup, relative to a sequential run of the code. 
 

 
Figure 1: total speedup as function of processor count. The speedup values are with respect 
to a calculation using 1 MPI process and 4 OpenMP threads.  The different series of 
calculations are shown in Table 1.  
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Figure 2 shows the relative speedup for the q-loop, k-loop and OMP 
parallelization. The speedup with respect to the outer q-loop is nearly linear, and 
is limited eventually by the number of q-vectors (here 10). It is to be expected 
that the nearly linear behavior extends further for calculations with more q-
points. The parallelization over k-vectors breaks in earlier, most likely due to the 
communication, which is not present in the q-loop. The absent gain of 
performance for 20 processors for the k-loop is evident, as there are only 10 k-
points in this sum. The slight reduction in performance is highlighting the cost of 
communicating. The data for OpenMP parallelization shows that 8 OMP threads 
seem to be the best setup.   
 

 
Figure 2: Speedup of the independent parallelization strategies.  
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The table shows the runtimes (wall clock) for the generation of the exchange 
part of the self energy. All runs were started from the same initial conditions, 
except for different processor counts for the various loops. 
 
 
Table 1: 

q-loop k-loop OMP #Cores Runtime 
(minutes) 

Series 1 

1 1 1 1 412.5 

1 1 4 4 229.4 

1 1 8 8 149.9 

     

Series 2 

10 10 1 100 28.6 

10 10 2 200 17.5 

10 10 4 400 14.7 

10 10 6 600 12.1 

10 10 8 800 6.3 

10 10 16 1600 5.6 

     

Series 3 

1 2 8 16 78.1 

1 4 8 32 54.4 

     

Series 4 

10 1 8 80 25.9 

10 2 8 160 13.4 

10 4 8 320 10.7 

10 5 8 400 7.7 

10 10 8 800 6.3 

10 20 8 1600 6.8 

     

Series 5 

1 1 8 8 149.9 

2 1 8 16 77.9 

4 1 8 32 54 

5 1 8 40 41 

6 1 8 48 36.5 

8 1 8 64 29.8 

10 1 8 80 25.9 

 
 
  



Screened Coulomb interaction: hx0fp0 
 
Figure 3 shows the total speedup of the hx0fp0 code, which calculates the 
susceptibility and the screened Coulomb interaction, and is the most compute 
intensive part of the QSGW cycle. It should be noted that the values are relative 
to a calculation with 80 nodes. From the nearly linear behavior of the separate 
parallelizations (see below) we can estimate the sequential performance by 
extrapolation. We expect that this 80 core reference run should perform roughly 
50 times faster than a sequential run.  The “real” speedup should therefore be 
about 50 times the values, given in Figure 3. This would result in a maximum 
speedup of about 1380 for the 2640 core run. As the graph suggests, the 
calculation has not yet reached the saturated regime, and a further increase of 
the performance with higher core counts can be expected. 
 

 
Figure 3: total speedup of the code calculating the screened Coulomb interaction. Please note 
that the baseline for this plot is a calculation, already using 80 cores. The different series of 
calculations are shown in Table 2.  
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Figure 4: Speedup of the independent parallelization strategies. 

As in the previous case, Figure 4 displays the speedup, achieved by parallelizing 
each of the loops separately. One can see a nearly perfect scaling behavior for 
both the q- and the k-loops. The scaling is better than in the self-energy 
generator, as the computational workload here is much higher.  
The steep performance increase when going from 10 to 11 processor groups for 
the q-loop is due to the fact, that the code adds an additional q-point to the 
original list, in order to avoid problems caused by the singularity of the Coulomb 
interaction at q=0. This means, that with 10 processor groups, this last q-point 
has to be calculated by one processor group after the first pass of the loop over 
10 points. Using 11 processor groups allows calculating all q vectors 
simultaneously. This, however, makes it necessary to run the different steps of 
the calculation with different number of processors, as was discussed above in 
context of the lmgwsc script. 
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The table shows the runtimes (wall clock) for the generation of the screened 
Coulomb interaction.  
 
Table 2: 
q-loop k-loop OMP #Cores Runtime 

(minutes) 

Series 1 

10 1 8 80 579.5 

10 2 8 160 297.3 

10 5 8 400 120.2 

10 10 8 800 64.5 

     

Series 2 

11 1 8 88 429.8 

11 2 8 176 215.2 

11 5 8 440 89.5 

11 10 8 880 48.3 

11 20 8 1760 27.9 

11 30 8 2640 21 

11 40 8 3520 17.2 

11 50 8 4400 14.2 

     

Series 3 

11 10 1 110 351 

11 10 2 220 224.4 

11 10 4 440 75.4 

11 10 8 880 48.3 

11 10 16 1760 45.9 

     

Series 4 

1 10 8 80 502.2 

2 10 8 160 250.8 

6 10 8 480 94.5 

10 10 8 800 64.5 

11 10 8 880 48.3 

 
  



Self energy calculation: hsfp0 (correlation mode) 
 
The correlation part of the self-energy is computationally more demanding as 
the exchange part, as it involves the additional loop over frequencies. 
 
Figure 5 displays the total speedup.  
 

 
Figure 5: total speedup of the code calculating the correlation part of the self energy. Please 
note that the baseline for this plot is a calculation, already using 80 cores. The different 
series of calculations are shown in Table 3.  

 

The better performance of the Series 4 runs as compared to the other runs is due 
to the better scaling of the OpenMP as compared to the MPI in this particular 
code (see below). In series 4, more cores were used for the OpenMP 
parallelization. 
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As in the previous case, Figure 6 displays the speedup, achieved by parallelizing 
each of the loops separately. One can see a nearly perfect scaling behavior for 
both the q- and the k-loops.  
 

 
Figure 6: Speedup of the independent parallelization strategies. 

 

It is interesting to see that in this part of the code, the OpenMP parallelization is 
more efficient than the MPI. This might indicate that also the other codes have 
some more optimization potential with respect to the OpenMP parallelization, 
which could be exploited further. 
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The table shows the runtimes (wall clock) for the generation of the correlation 
part of the self energy.  
 
Table 3: 

q-loop k-loop OMP #Cores Runtime 
(minutes) 

Series 1 

10 10 1 100 287.7 

10 10 2 200 171.5 

10 10 4 400 90.2 

10 10 8 800 53.1 

10 10 16 1600 31 

10 10 32 3200 21.7 

     

Series 2 

10 1 8 80 226.5 

10 2 8 160 121.7 

10 5 8 400 67 

10 10 8 800 53.1 

     

Series 3 

1 10 8 80 245.8 

2 10 8 160 132.3 

5 10 8 400 70.2 

10 10 8 800 53.1 

     

Series 4 

5 5 32 800 34.1 

10 5 16 800 34.1 

5 10 16 800 35.6 

 

 

 
  



Conclusion 
 
It has been demonstrated that the costly QSGW calculations can be accelerated 
substantially by employing massively parallel machines, such as HECToR. The 
most severe bottleneck of the calculations was the assembly of the screened 
Coulomb interaction, which – for the given setup – would take the order of days 
for one cycle. With 2640 cores, this calculation was performed in 21 minutes, 
which would bring a whole self-consistent calculation from the order of weeks 
into the order of hours or in the worst case days. Even moderate parallelism of 
440 cores resulted in a runtime of only 1.5 hours, which seems to be a good 
compromise between cost and speedup. 
 
 

Impact 
 
The QSGW methodology is rather new and the code was, so far, mainly used by 
the developer and his group. Without parallelization, the method would be too 
slow as to allow routine calculations. With actual QSGW calculations in reach, it 
is planned to include the code into the code base of the high performance 
computing consortia, in particular the materials chemistry consortium. CCP9 
dedicated one of the Hands-On workshops to the LMF/QSGW code, in order to 
introduce the code to the community. 
 

Outlook 
 
This project has demonstrated the parallelization potential of the code. On the 
other hand, the benchmark results show that the scaling is not yet ideal, and 
further profiling should be performed.  The amount of data written to and read 
from disk in each step also suggests to make use of MPI-I/O. Furthermore, other 
parts of the cycle, which have not been part of this project start becoming costly 
for larger systems. Examples are the code to set up the bare Coulomb interaction 
or the code to write out the required eigenvectors of the single particle band 
structure.  These parts are still running sequentially and will benefit from similar 
parallelizations, as applied to the codes discussed here.  
 
Furthermore, the accelerated code now opens the door to further developments 
on the methodological side. It is planned to submit a proposal for the 
implementation of a different method (the so-called Sternheimer equation) to 
solve parts of the equations. This planned project will build upon the codes and 
experiences generated in this dCSE project. 
 



Acknowledgement 
 
This project was funded under the HECToR Distributed Computational Science 
and Engineering (CSE) Service operated by NAG Ltd. HECToR – A Research 
Councils UK High End Computing Service - is the UK's national supercomputing 
service, managed by EPSRC on behalf of the participating Research Councils. Its 
mission is to support capability science and engineering in UK academia. The 
HECToR supercomputers are managed by UoE HPCx Ltd and the CSE Support 
Service is provided by NAG Ltd. http://www.hector.ac.uk 
   

 
 

http://www.hector.ac.uk/

