

Adapting QSGW to large multi-core systems

Abstract

The quasi-particle self-consistent GW approxation, recently developed and
coded by Prof. Mark v. Schilfgaarde (King’s College London) is an extremely
powerful method for the calculation of the electronic structure, and in
particular excitations, which addresses many of the problems which
plagued the standard density functional approach. However, the
calculations are extremely costly and this project aimed at harnessing the
power of massively parallel machines to speed up these calculations. In the
most expensive part of the code, an absolute speedup of more than 2000
has been achieved by using about 4500 cores on HECToR.

Contents

Abstract .. 1

Introduction ... 2

Loop structure of the codes and parallelization strategy .. 2

Implementation details ... 3

MPI parallelization: .. 3

MPI module ... 4

I/O parallelization ... 5

OpenMP parallelization .. 6

lmgwsc script .. 6

Comparison against the milestones of the proposal .. 6

WP1. Parallelization of the self-energy Σ and the polarizablity Π calculation
over k, q and ω. (1 April 2013 - 31 May 2013) .. 6

WP2. Memory use on parallel machines. (1 June 2013 - 30 September 2013) 7

Problems encountered ... 8

Scaling results ... 8

Self energy calculation: hsfp0 (exchange mode) .. 9

Screened Coulomb interaction: hx0fp0 ... 12

Self energy calculation: hsfp0 (correlation mode) .. 15

Conclusion ... 18

Impact .. 18

Outlook .. 18

Acknowledgement .. 19

Introduction

The Quasi-particle self-consistent GW (QSGW) approximation has emerged as a
kind of gold standard among ab initio approaches to electronic structure. It
addresses the electronic structure simultaneously at an optimized single-particle
level, and at a many-body level. It thus serves as a high-end replacement for the
usual Kohn-Sham density-functional theory (KS-DFT), surmounting most of that
theory’s well known drawbacks, and as a way to bridge the gap between single-
particle and many-body theories in a clean, parameter-free way free of
ambiguities inherent in the currently popular methods such as LDA+DMFT. The
price to be paid is computational cost. QSGW is roughly 100-1000 times more
expensive than LDA.

In it's development stage at the beginning of this project, the code was
essentially a sequential code, and the execution time for physically interesting
systems was in the order of month. In order to make QSGW calculations feasible
for routine calculations, it was crucial to parallelize the code.

In the next section, we will outline the parallelization opportunities of the QSGW
method.

Loop structure of the codes and parallelization strategy

One of the central quantities to be calculated in the QSGW method is the
polarizability :

The main loops are the ones over q and , i.e. the wave vectors and frequencies
for which the function has to be calculated, and the internal summation over the
wave vectors k and band indices n and n'. These nested loops were treated by
nested levels of MPI parallelization, utilizing different processor groups.
The calculation of the self-energy has a very similar structure of loops.

The outermost q loop was rather straight forward, as the calculations involved
are independent of each other, and required hardly any communication, apart
from broadcasting global data to all nodes. When possible, output files were
written locally on the head node of the processor group for a given q vector.

()   r r q

The inner k-summations required an additional reduction. In addition, expensive
calculations of matrix elements were parallelized (mostly over the basis set)
using OpenMP. Results for the scaling with respect to these three levels of
parallelization will be given and discussed below.

Implementation details

MPI parallelization:

The nature of the nested loops (k and q) called for independent parallelization at
these two levels. To this end, the pool of N MPI processes (described by
MPI_COMM_WORLD) was split into Nq groups of N/Nq processes. The loop over q
vectors was then parallelized over the Nq groups:

 q_start = q_comm%group_ID

 q_step = num_q_groups

 do 1001 iq = iqxini + q_start, iqxend, q_step

 ! [code for each q vector ...]

 enddo ! 1001

Inside each q group, the parallelization over the k-points followed the same
principle. The processes of the q-group were further divided into groups, over
which the k-loop is parallelized.

 k_start = k_comm%group_ID

k_end = nqbz

k_step = num_k_groups

do 1000 k = 1 + k_start, k_end, k_step

 ! [code for each k-vector…]

 enddo ! 1000

Each processor group is summing the accumulating variable (rcxq) over it’s set

of k-vectors, which leaves a final reduction(MPI_SUM) over the different k-
groups:

#ifdef USE_MPI

 CALL MPI_ALLREDUCE(MPI_IN_PLACE, rcxq, rcxq_size,

 & MPI_DOUBLE_COMPLEX, MPI_SUM,

 & k_inter%communicator, ierror)

#endif

k_inter are MPI process groups, which contain processes of equal rank from
the different k-groups (see details in the next section).

The incentive for implementing the k-groups was to keep the flexibility of
introducing a further level of MPI-parallelization (e.g. over bases functions) for
each given k-point. In practice, however, at the current stage of the project, the
k-groups are of size 1, i.e. the number of k-groups Nk equals the number of
processes in each q-group.

 Nk = N / Nq.

Optimal performance is to be expected when the number of groups equals the
number of q/k points, or is a divisor of this number. Currently, these group sizes
are not determined automatically, but have to be specified in MPI_name.init
files, which are read by the codes.

MPI module

In order to handle the different levels of parallelization, an MPI module has been
written, which provides a data structure for MPI processor groups, and routines
to split a given processor group into subgroups. The data structure
comm_struct has been introduced to hold all relevant information about a given
processor group:

type comm_struct

 integer :: size

 integer :: ID

 integer :: communicator

 integer :: group_ID

 integer :: num_of_siblings

 integer :: ID_of_head

end type comm_struct

where size is the number of processors in the group, ID labels each group (at a
given level), communicator is the handle of the MPI communicator.
num_siblings stores the information on how many groups exist at this given
level, and ID_of_head is the rank (with respect to MPI_COMM_WORLD) of the
head of the group.

The routine mpi_make_groups() is provided to split an existing processor
group base_comm into a set of subgroups new_comm and the corresponding
groups inter_comm, which communicate between equal ranks of different
subgroups.

subroutine mpi_make_groups (base_comm, loop_count, num_groups, new_comm,

inter_comm)

type(comm_struct), intent(IN) :: base_comm

integer, intent(IN) :: loop_count

integer, intent(INOUT) :: num_groups

type(comm_struct), intent(OUT) :: new_comm, inter_comm

The following table illustrates the scheme of groups:

!---

! level 0: (COMM_WORLD) | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | ...

!---

! level 1: comm_1 | group 0 | group 1 | group 2 |

..

! ID | 0 | 1 | 2 | 3 | 0 | 1 | 2 | 3 | 0 | 1 | ...

!---

! inter_1 | 0 | | 1 | | 2 |

! | 0 | | 1 | | 2 |

! | 0 | | 1 | | 2 |

! | 0 | | 1 | | 2 |

!---

! level 2: comm_2 (1) | gr 0 | gr 1 |

! ID | 0 | 1 | 0 | 1 |

!---

! inter_2(1) | 0 | | 1 |

! | 0 | | 1 |

!---

! level 2: comm_2 (2) | gr 0 | gr 1 |

! ID | 0 | 1 | 0 | 1 |

!---

! inter_2(2) | 0 | | 1 |

! | 0 | | 1 |

!---

! level 2: comm_2 (2) | gr 0 | gr 1 |

! ID | 0 | 1 | 0 | 1 |

!---

! inter_2(3) | 0 | | 1 |

! | 0 | | 1 |

!---

The module was written quite generally, supporting many nested levels of loop
parallelization. In the current project, two levels were used.

I/O parallelization

Many input/output files of the code were already written as separate files for
each q-point in the original sequential version of the code. In these cases, quite
naturally the reading and writing is now done by the head node of each q-group.

Global input files are read only on rank=0 and the data is then broadcast to all
other processors.
In the program hx0fp0, which generates the susceptibility (see equation above),
a major bottleneck was writing the output files. Originally, the files containing
the screened Coulomb interaction for each q-vector, contained all
Frequencies w as records in a direct access file. Depending on the system size,
each file could reach a size of about 1 GByte. In order to accelerate the output of
the files, each record, i.e. each frequency, is now written by a different processor,
and the files are subsequently concatenated into the original format.

OpenMP parallelization

While the MPI parallelization went in a top-down philosophy, OpenMP was
implemented in a bottom-up way, parallelizing simple loops at a lower level of
the code, such as matrix multiplications used in the calculation of matrix
elements between basis functions and Bloch wave functions

lmgwsc script

The lmgwsc code, which is to be called by the user, is actually a shell script,
which calls separate binaries for different steps of the calculation. These steps
include:

 Solution of the band-structure for a given effective potential
 Calculation of the bare Coulomb interaction v(r,r’)
 Calculation of the Exchange (Fock) part of the self energy
 Calculation of the susceptibility and the screened Coulomb interaction
 Calculation of the Correlation part of the self energy
 Calculation of the new effective potential for the next iteration

The script also checks the convergence of the procedure and stops the procedure
when a given accuracy is reached.

This script, however, cannot be called in parallel on parallel computers, but the
individual binaries for the respective steps of the calculation have to be called in
parallel. Therefore, the script had to be modified and the command to start a
parallel execution, e.g. aprun on Hector, has been inserted via environment
variables $MPIRUN_code, into the script. Code specific scripts allow for
different number of processors for different steps of the calculation.

Also, the use of these variables makes it easy to adopt the codes to a different
machine, which uses different MPI commands, such as mpirun.

Comparison against the milestones of the proposal

WP1. Parallelization of the self-energy Σ and the polarizablity Π calculation
over k, q and ω. (1 April 2013 - 31 May 2013)

Parallelization of the loops over q, k ω, and ω': This work package requires modification of
the programs generating the polarization function and the self-energy.

Polarization function:(trivial: q,ω; with global reduction: k) two routines will have to be
modified:
hx0fp0.sc.m.F for q loop and x0fk_v3.F for ω and k loops If each loop is distributed over
around 16 MPI tasks, this will give rise to a parallelism up to around 4096 MPI tasks.

Self-energy (incl. screened Clb. Interaction): (trivial q; with global reduction: k, ω') two
routines will have to be modified: hsfp0.sc.m.F for q loop and sxcf_fal2.sc.F for the k and ω'
loops. If each loop is distributed over around 16 MPI tasks, this will give rise to a parallelism
up to around 4096 MPI tasks.

Deliverable 1: New code will give the same results as original code and scale up
to 2000 cores on HECToR. (Due 31 May 2013)

The deliverable has been met, as demonstrated in the in the results section
below

WP2. Memory use on parallel machines. (1 June 2013 - 30 September 2013)

Parallelization over basis functions, distributed storage of matrices: In this second, and major
work package, the distributed memory model will be implemented to handle Π IJ sub-

­­matrices for large models. Loop structures will be re-ordered and distributed memory, mixed
mode routines for matrix multiplications and inversion will be deployed. Furthermore,
OpenMP will be used to parallelize other inner loops, which do not contain calls to
mathematical libraries. This level of parallelism will not affect the scaling of the first level.
The parts of the package which will be affected from this change are:

Polarization function:(hx0fp0.sc.m.F and x0fk_v3.F): loops over the (I,J)-­­blocks have to be
moved from x0fk_v3.F to hx0fp0.sc.m.F. Allocation of the large arrays will be moved inside
the loops over the blocks. There are about 15 large arrays, which will be distributed over MPI
tasks.

Bare and Screened Coulomb interaction: (hvccfp0,hx0fp0.sc.m.F, wcf.F): Both the
bare (v, in hvccfp0) and the screened (W, in wcf.F) Coulomb interactions will be
generated and stored in partitioned form so that it can be used directly for the
generation of the self-­­energy. Restructuring of the loops is similar to the
polarization function. For the matrix inversion in (wcf.F) different parallel
algorithms (ScaLapack, PLASMA, iterative solution via Dyson equation) will be
used depending on the system size.

Self-­­energy: hsfp0_sc, sxcf_fal2.sc.F: same as above for loop structures.
Deployment of parallel libraries for the matrix multiplication in the required
matrix elements of the self-energy:

Deliverable 2: Distributed memory code gives same results as original code,

and calculations for up to 100 atoms will be possible. For such systems, the code
should scale well up to several 10000 cores, using OpenMP within the NUMA
regions and MPI at several layers between them. A final project report will be
produced in both pdf and html format ready for publishing on the HECToR
website. (Due 30 September 2013)

This deliverable has not been fully met, due to problems, encountered at
the start of the project (see below). So far, only the OpenMP parallelization
has been implemented. It also addresses the memory issues, through
shared memory use.

The work of WP2 has started, though. The arrays which should be
distributed have been identified, and a small test code, demonstrating the
use of BLACS and ScaLapack has been written.

Problems encountered

One difficulty in this project was, that the code contains a substantial amount of
legacy code, written in a mixture of Fortran77 and Fortran95. Although the
sequential code was well tested and working without errors, some constructs of
the code made it difficult to debug new developments, or even broke with the
introduction of parallelism. It took a considerate amount of time at the beginning
of the project to find and correct these problems.

Scaling results

The two most costly steps in a self-consistent QSGW calculation are the
calculation of the susceptibility and screened interaction, and the calculation of
the self-energy contributions. In the following, we present timings for these two
programs (hx0fp0 and hsfp0).

All calculations have been performed for a supercell of 16 Fe atoms. Similar
calculations have been performed previously without the MPI parallelization and

a complete run took several months on 12 cores. These calculations employed a
q-mesh of 10x10x10 q-points, which correspond to 125 irreducible points.

In our test calculations, we reduced the number of q-points to 5x5x5, resulting in
10 irreducible points.

Self energy calculation: hsfp0 (exchange mode)

Figure 1 displays the total speedup, relative to a sequential run of the code.

Figure 1: total speedup as function of processor count. The speedup values are with respect
to a calculation using 1 MPI process and 4 OpenMP threads. The different series of
calculations are shown in Table 1.

0

10

20

30

40

50

60

70

80

0 500 1000 1500 2000

R
e

la
ti

v
e

 S
p

e
e

d
u

p

Number of Cores

Series1

Series2

Series3

Series4

Series5

Figure 2 shows the relative speedup for the q-loop, k-loop and OMP
parallelization. The speedup with respect to the outer q-loop is nearly linear, and
is limited eventually by the number of q-vectors (here 10). It is to be expected
that the nearly linear behavior extends further for calculations with more q-
points. The parallelization over k-vectors breaks in earlier, most likely due to the
communication, which is not present in the q-loop. The absent gain of
performance for 20 processors for the k-loop is evident, as there are only 10 k-
points in this sum. The slight reduction in performance is highlighting the cost of
communicating. The data for OpenMP parallelization shows that 8 OMP threads
seem to be the best setup.

Figure 2: Speedup of the independent parallelization strategies.

0

1

2

3

4

5

6

7

0 5 10 15 20 25

A
x

is
 T

it
le

Numner of MPI processes / OMP threads for given loop

q-loop

k-loop

OpenMP

OpenMP1

The table shows the runtimes (wall clock) for the generation of the exchange
part of the self energy. All runs were started from the same initial conditions,
except for different processor counts for the various loops.

Table 1:

q-loop k-loop OMP #Cores Runtime
(minutes)

Series 1

1 1 1 1 412.5

1 1 4 4 229.4

1 1 8 8 149.9

Series 2

10 10 1 100 28.6

10 10 2 200 17.5

10 10 4 400 14.7

10 10 6 600 12.1

10 10 8 800 6.3

10 10 16 1600 5.6

Series 3

1 2 8 16 78.1

1 4 8 32 54.4

Series 4

10 1 8 80 25.9

10 2 8 160 13.4

10 4 8 320 10.7

10 5 8 400 7.7

10 10 8 800 6.3

10 20 8 1600 6.8

Series 5

1 1 8 8 149.9

2 1 8 16 77.9

4 1 8 32 54

5 1 8 40 41

6 1 8 48 36.5

8 1 8 64 29.8

10 1 8 80 25.9

Screened Coulomb interaction: hx0fp0

Figure 3 shows the total speedup of the hx0fp0 code, which calculates the
susceptibility and the screened Coulomb interaction, and is the most compute
intensive part of the QSGW cycle. It should be noted that the values are relative
to a calculation with 80 nodes. From the nearly linear behavior of the separate
parallelizations (see below) we can estimate the sequential performance by
extrapolation. We expect that this 80 core reference run should perform roughly
50 times faster than a sequential run. The “real” speedup should therefore be
about 50 times the values, given in Figure 3. This would result in a maximum
speedup of about 1380 for the 2640 core run. As the graph suggests, the
calculation has not yet reached the saturated regime, and a further increase of
the performance with higher core counts can be expected.

Figure 3: total speedup of the code calculating the screened Coulomb interaction. Please note
that the baseline for this plot is a calculation, already using 80 cores. The different series of
calculations are shown in Table 2.

0

5

10

15

20

25

30

35

40

0 1000 2000 3000 4000 5000

R
e

la
ti

v
e

 S
p

e
e

d
u

p

Number of cores

Series1

Series2

Series3

Series4

Figure 4: Speedup of the independent parallelization strategies.

As in the previous case, Figure 4 displays the speedup, achieved by parallelizing
each of the loops separately. One can see a nearly perfect scaling behavior for
both the q- and the k-loops. The scaling is better than in the self-energy
generator, as the computational workload here is much higher.
The steep performance increase when going from 10 to 11 processor groups for
the q-loop is due to the fact, that the code adds an additional q-point to the
original list, in order to avoid problems caused by the singularity of the Coulomb
interaction at q=0. This means, that with 10 processor groups, this last q-point
has to be calculated by one processor group after the first pass of the loop over
10 points. Using 11 processor groups allows calculating all q vectors
simultaneously. This, however, makes it necessary to run the different steps of
the calculation with different number of processors, as was discussed above in
context of the lmgwsc script.

0

5

10

15

20

25

30

35

0 10 20 30 40 50 60

R
e

la
ti

v
e

 S
p

e
e

d
u

p

Number of MPI/OMP processes

q-loop

k-loop (10)

k-loop (11)

OpenMP

The table shows the runtimes (wall clock) for the generation of the screened
Coulomb interaction.

Table 2:
q-loop k-loop OMP #Cores Runtime

(minutes)

Series 1

10 1 8 80 579.5

10 2 8 160 297.3

10 5 8 400 120.2

10 10 8 800 64.5

Series 2

11 1 8 88 429.8

11 2 8 176 215.2

11 5 8 440 89.5

11 10 8 880 48.3

11 20 8 1760 27.9

11 30 8 2640 21

11 40 8 3520 17.2

11 50 8 4400 14.2

Series 3

11 10 1 110 351

11 10 2 220 224.4

11 10 4 440 75.4

11 10 8 880 48.3

11 10 16 1760 45.9

Series 4

1 10 8 80 502.2

2 10 8 160 250.8

6 10 8 480 94.5

10 10 8 800 64.5

11 10 8 880 48.3

Self energy calculation: hsfp0 (correlation mode)

The correlation part of the self-energy is computationally more demanding as
the exchange part, as it involves the additional loop over frequencies.

Figure 5 displays the total speedup.

Figure 5: total speedup of the code calculating the correlation part of the self energy. Please
note that the baseline for this plot is a calculation, already using 80 cores. The different
series of calculations are shown in Table 3.

The better performance of the Series 4 runs as compared to the other runs is due
to the better scaling of the OpenMP as compared to the MPI in this particular
code (see below). In series 4, more cores were used for the OpenMP
parallelization.

0

2

4

6

8

10

12

0 1000 2000 3000 4000

R
e

la
ti

v
e

 S
p

e
e

d
u

p

Number of Cores

Series1

Series2

Series3

Series4

As in the previous case, Figure 6 displays the speedup, achieved by parallelizing
each of the loops separately. One can see a nearly perfect scaling behavior for
both the q- and the k-loops.

Figure 6: Speedup of the independent parallelization strategies.

It is interesting to see that in this part of the code, the OpenMP parallelization is
more efficient than the MPI. This might indicate that also the other codes have
some more optimization potential with respect to the OpenMP parallelization,
which could be exploited further.

0

2

4

6

8

10

12

14

0 10 20 30 40

R
e

la
ti

v
e

 S
p

e
e

d
u

p

Number of MPI/OpenMP processes

k-loop

q-loop

OMP

The table shows the runtimes (wall clock) for the generation of the correlation
part of the self energy.

Table 3:

q-loop k-loop OMP #Cores Runtime
(minutes)

Series 1

10 10 1 100 287.7

10 10 2 200 171.5

10 10 4 400 90.2

10 10 8 800 53.1

10 10 16 1600 31

10 10 32 3200 21.7

Series 2

10 1 8 80 226.5

10 2 8 160 121.7

10 5 8 400 67

10 10 8 800 53.1

Series 3

1 10 8 80 245.8

2 10 8 160 132.3

5 10 8 400 70.2

10 10 8 800 53.1

Series 4

5 5 32 800 34.1

10 5 16 800 34.1

5 10 16 800 35.6

Conclusion

It has been demonstrated that the costly QSGW calculations can be accelerated
substantially by employing massively parallel machines, such as HECToR. The
most severe bottleneck of the calculations was the assembly of the screened
Coulomb interaction, which – for the given setup – would take the order of days
for one cycle. With 2640 cores, this calculation was performed in 21 minutes,
which would bring a whole self-consistent calculation from the order of weeks
into the order of hours or in the worst case days. Even moderate parallelism of
440 cores resulted in a runtime of only 1.5 hours, which seems to be a good
compromise between cost and speedup.

Impact

The QSGW methodology is rather new and the code was, so far, mainly used by
the developer and his group. Without parallelization, the method would be too
slow as to allow routine calculations. With actual QSGW calculations in reach, it
is planned to include the code into the code base of the high performance
computing consortia, in particular the materials chemistry consortium. CCP9
dedicated one of the Hands-On workshops to the LMF/QSGW code, in order to
introduce the code to the community.

Outlook

This project has demonstrated the parallelization potential of the code. On the
other hand, the benchmark results show that the scaling is not yet ideal, and
further profiling should be performed. The amount of data written to and read
from disk in each step also suggests to make use of MPI-I/O. Furthermore, other
parts of the cycle, which have not been part of this project start becoming costly
for larger systems. Examples are the code to set up the bare Coulomb interaction
or the code to write out the required eigenvectors of the single particle band
structure. These parts are still running sequentially and will benefit from similar
parallelizations, as applied to the codes discussed here.

Furthermore, the accelerated code now opens the door to further developments
on the methodological side. It is planned to submit a proposal for the
implementation of a different method (the so-called Sternheimer equation) to
solve parts of the equations. This planned project will build upon the codes and
experiences generated in this dCSE project.

Acknowledgement

This project was funded under the HECToR Distributed Computational Science
and Engineering (CSE) Service operated by NAG Ltd. HECToR – A Research
Councils UK High End Computing Service - is the UK's national supercomputing
service, managed by EPSRC on behalf of the participating Research Councils. Its
mission is to support capability science and engineering in UK academia. The
HECToR supercomputers are managed by UoE HPCx Ltd and the CSE Support
Service is provided by NAG Ltd. http://www.hector.ac.uk

http://www.hector.ac.uk/

