

Contact: g.m.s.lister@reading.ac.uk, glenn.carver@ecmwf.int

DCSE Supporting Build of OpenIFS on HECToR

Final Report

Dr. Mark Richardson, Numerical Algorithms Group, Manchester

Dr. Grenville Lister, NCAS-CMS , University of Reading

Dr. Glenn Carver, ECMWF, Reading

Abstract
The widely used Integrated Forecasting System (IFS) meteorological software is now licensed for

academic use as OpenIFS. However, to improve performance, additional libraries are required. In this

report the installation and verification of support libraries (GRIB_API and FDB) on the HECToR

Cray XE6 are described. The findings are presented for investigations into the LUSTRE file striping,

OS page sizes, the number of MPI tasks used for writing, and configuration parameters for the FDB

library.

DCSE: OpenIFS on HECToR, final report

2

1 Introduction
The Integrated Forecasting System (IFS) is a well-known highly developed software

suite owned by European Centre for Medium-Range Weather Forecasts (ECMWF -

www.ecmwf.int), and used by them and other meteorological offices for medium-range

weather forecasting. OpenIFS is a version of the software that has been recently made

available to academic researchers. It will provide new and significant scientific opportunities

for research into: weather and weather related processes, short to seasonal range forecasting,

and forecast verification The IFS model uses a parallel I/O system operationally at ECMWF.

Without this system the academic version, OpenIFS, will pass all I/O through the master task

- limiting the types of experiments that can be carried out on HECToR. HECToR is a Cray

XE6 with 90112 cores where computation is done on dedicated nodes connected by the

Gemini interconnect.

This project will address this I/O deficiency by implementing the necessary parts of

the ECMWF I/O software on HECToR to provide: (i) a parallel I/O capability for the

OpenIFS model (FDB) (ii) a user application for managing and accessing the model output

(MARS). This project prepares the way for the use of OpenIFS by installing support libraries

and recording its performance with them.

Recommendations are made for the operation of the OpenIFS software on Cray XE6.

Tuning optimizations that have been investigated include: the Lustre stripe size and count, the

hugepage setting and the FDB configuration. This report details that work and documents

four work packages making up a HECToR dCSE project. They are: the installation of the

support libraries: GRIB_API and FDB (reported in section 2); confirmation that the OpenIFS

software produces the same result with FDB as without FBD (section 3); an assessment of the

performance of simulations using the default settings (section 4); and modification of certain

parameters to see if the performance of the simulation can be improved (section 5.) Finally,

we give our recommendations and conclusions.

2 Build and install support libraries

2.1 Prerequisite software
This project uses a version of FDB that is the latest development version that will

soon be in operational use. The FDB library depends on the GRIB_API and ECKIT library.

These must be built first. The OpenIFS software also links against the GRIB_API as it can be

selected for use independently of FDB.

Package accounts exist on HECToR to manage the installation of any software needed

for wider use than by one person. For the OpenIFS software package, the home directory is

/home/y07/y07/oifs and the work directory is /work/y07/y07/oifs. A directory has been

created under /work/.y07/y07/oifs results of the builds are installed. Hence the “prefix” for

any configuration of a build includes the “install” directory.

Two implementations of the library have been built. These should be built and

installed separately each time there is an update or new version released. The intention is to

use the HECToR default environment to build the library, although during the project the

defaults changed and the most recent (October 2013) environment is for CCE 8.1.8.

A separate build of the software was done using the GNU compiler system to allow

GRIB_API tools to be used in the serial queues for such things as post-processing and job

preparation. Note that the target architecture for those libraries is the “Istanbul” hex-core of

the login nodes (and serial queues).

DCSE: OpenIFS on HECToR, final report

3

2.2 Build procedure
Occasionally the GRIB_API, FDB and ECKIT software will need to be updated. This

is usually at the behest of ECMWF. The process follows a typical software build. First update

the source code, then generate the makefiles. The makefiles for GRIB_API are created with

GNU Autotools, the configuration step is detailed in the appendix A. For ECKIT and FDB

the makefiles are generated with CMake. Some of the configuration steps do small

compilation tests to determine the build environment and set values for compilation flags.

This would cause the build to fail as the process is a cross compilation and some programs

will not run on the login nodes. A tool chain file has been created for FDB, which by-passes

those tests and returns a “success” result and the appropriate settings. During the

configuration the destination for the installations is nominated as a place the compute nodes

will be able to access. This is for the deferred tests that will be built on the compute nodes.

After the successful build and installation, three module files were created so that the

CCE version of the libraries can be used more easily when building OpenIFS.

The module files have been placed in the modules sub-directory of the “oifs” account.

A user will access them with “module use ~oifs/modules”. The numbering was started at

0.0.1 for the first version and subsequent developments are indicated by incrementing the

third “revision” digit. The working version was established with 0.0.2, which associates the

correct version of grib_api_cce and fdb_cce with openifs_cce. More recent developments

have been encapsulated in version 0.0.3. It is good practice to interrogate the modules to

determine the prevailing default (“module avail openifs_cce”).

Testing the libraries built for the “front-end” (login nodes) is straightforward apart

from the change of compiler to GCC. The compute nodes are different to the login nodes so

tests have to be launched with the job scheduler. To use the libraries on the compute nodes

the modules have to be loaded within the job script as well.

2.3 MetView visualisation software
It became clear that a method for quickly looking at the results would be required by

users. This is usually done using MetView [ref 1]. The software was downloaded and a build

was attempted. This has proved difficult due to many dependencies not being available on the

target system. The work is extra to the DCSE so a separate query has been set up with the

HECToR help desk. Meanwhile a batch version (no GUI) was successfully built for the serial

queue and is available in the ~oifs directory:

/usr/local/packages/oifs/metview/4.3.9/gcc_4.7.2-mc6/bin

There was very good support from the developers at ECMWF to get to this stage.

3 Confirm that OpenIFS works with FDB
To confirm that the installations have been successful and that OpenIFS works with

FDB, three test cases (T159, T511, and T1279) have been provided. It is possible to run each

case either without FDB activated (LFDBOP=F[alse], the default) or with FDB activated

(LFDBOP=T[rue]). The mode is changed through an entry in a namelist file.

module load grib_api_cce to specifically set the GRIB_API environment

module load fdb_cce to specify the FDB environment

module load openifs_cce to setup the OpenIFS, invoking grib_api and fdb

DCSE: OpenIFS on HECToR, final report

4

The default mode of operation is for OpenIFS to write GRIB files each output time

step. There are two GRIB files produced on each specified time step; one contains grid point

data and the other contains spectral data, the files are named accordingly. For example:

ICMGGfwj8+000024 for grid point data

ICMSHfwj8+000036 for spectral data

A disadvantages of this output convention is the fact that many files are created for

any one simulation. Also the files are written using a master writer which requires a

collection step for data from the other MPI tasks. The advantage is that the files are portable

and conform to a widely used standard. More detail is given in Appendix B.

When the FDB option is activated while still in the GRIB format, the detailed

structure of the files is different and thus the directory structure is changed also. Instead of

generating “per time step” GRIB files in the case directory, a subdirectory is named

“fdb<RUNID>” and the FDB system creates a further sub-directory (for example “

rd:oper:fwj8:20121027”) with a name related to the simulation start date and experiment

type as seen in table 1.

Table 1: typical files created by the FDB process for case T511 in the fdb sub-sub-directory

Size in bytes File name

165953536 0000:fc:sfc.0.20131016.084031.7773890805760.dat

65536 0000:fc:sfc.0.20131016.084031.7773890805761.idx

267 0000:fc:sfc.0.20131016.084031.7773890805761.idx.files

165953536 0000:fc:sfc.0.20131019.164347.88669599825920.dat

Thus the comparison between non-FDB and FDB output is not straight forward.

However, in this section the baseline cases are presented and a method for comparing was

carried out and gave identical information. This is expected as the content of the FDB files is

GRIB encoded data simply in a different structure to the “standard” OpenIFS output.

3.1 Baseline of test cases
The source code for OpenIFS was extracted from the University of Reading

repository (PUMA), built using the new modules and support libraries, and basic testing was

done. Details of building IFS are given in appendix B. Later investigations into tuning the

performance were done with a revised T1279 referred to as T1279_op. The result of the build

is a binary (master.exe) that can be launched from within a “standardized” script named

ifs_run.sh.

The early version of OpenIFS can only generate files in GRIB format in the form of a

spectral file and a grid-point file. These are written separately for each output time step as

specified by a user. The development version used for this project includes the ability to write

FDB files.

For example, the T159 case, as it was supplied, generated 15 files, 2 each for 7

writing steps and a log file. The simulation wrote results data every 72 model time steps. A

coarse level comparison is obtained by summing up the sizes of files in the results directory

and comparing to the data volume of the FDB archive. In each case the total number of bytes

matched. We ensured the results were identical at the bit level by concatenating the FDB

GRIB files using the GRIB_API tools to extract individual fields and again using GRIB

utilities to compare these fields with those extracted from the non-FDB GRIB output from the

otherwise identical run. [CAUTION: use the GRIB tools built for login nodes to inspect the

results files]. In all cases considered we obtained exact matches.

DCSE: OpenIFS on HECToR, final report

5

Table 2 shows the baseline values for a non-FDB run of the three test cases

(T1279_op was not run without FDB) taken from the standard log file of the run. It is an

average of the days completed over the wall time.

Table 2: comparing sizes of results files between non-FDB and with-FDB for each test case.

Case T159 T511 T1279 T1279_op

MPIxOMP 16x8 128x8 512x8 512x8

Total cores 128 1024 4096 4096

Non-FDB

Non-FDB file size

per time step

14MB+31MB

(45MB)

133MB+248MB

(481MB)

800MB+1.6GB

(2.4GB)
-

Directory size at

end of run
315MB 2.6GB 16GB -

Forecast days per

day non-FDB
3372 679 284 -

With-FDB

Directory size at

end of run
315MB 2.6GB 16GB 324GB

Baseline wall time

Minutes
5 9 17 26

Forecast days per

day with-FDB
3347 691 292 193

The fourth case, T1279_op, was provided later in the project and as such required a

change to the OpenIFS software. This meant that the name-list had to be changed for the

earlier cases to make them compatible with the new version of OpenIFS. The test cases had

to be modified in the following way: the name-list variable NFPPHY was reduced from 88 to

86 because the final two entries for the variable MFPPHY were unknown to the updated

software.

3.2 Scaling exercise
The early test case T1279 was used for a scaling investigation.

1

2

3

4

5

1 2 3 4 5

speed up

processor increase factor (relative to 1024)

OIFS t1279 scaling (no output)

1 OMP thread

perfect scaling

8 OMP threads

DCSE: OpenIFS on HECToR, final report

6

Figure 1 shows that the pure MPI scaling is moderate up to 4096 MPI tasks.

Accelerating this with OpenMP threads approaches the idealized “perfect scaling” line. Some

of this effect is due to fewer MPI tasks being used and thus less communication traffic

between nodes.

4 Establish IO metrics
Three of the supplied cases were purposely simple to help on the occasion where a

quick turnaround was significant. Generally it was possible to run within the 20 minute queue

and thus the wait time was not too challenging (the worst seen was 12 hours due to the

busyness of the machine). Cray performance analysis tools were used to inspect the write

rates for the files in both cases; without FDB and with FDB. The without FDB generates two

files per writing step (not all steps write data). As described in section 3, the with-FDB mode

generates 3 files per writer. Only the “dat” files are added to at each write point. The number

of writers can be varied as discussed in section 5.3 of this report.

4.1 Built-in instrumentation
The metric that has most significant indication of performance is the “forecast days

per wall clock day”. That value is influenced by several factors: the size of the case, the

complexity of the case and the number of cores working on the problem. The number of

cores is determined by the settings NPROC (set in the namelist file) and NTHREAD is set as

a job entry which is assigned to the OMP_NUM_THREADS environment variable just

before the run starts.

Figure 2: plot of the per step metric forecast days per day for T1279_op simulation of

3 days using 4096 cores (512MPI tasks x 8 OMP threads).

Late in the project developers at ECMWF inserted extra instrumentation in the form

of writing a mean, peak and instantaneous forecast days per day on each model time step.

200

205

210

215

220

225

230

235

240

245

250

1
2

3
6

6
0

8
4

1
0

8

1
3

2

1
5

6

1
8

0

2
0

4

2
2

8

2
5

2

2
7

6

3
0

0

3
2

4

3
4

8

3
7

2

3
9

6

4
2

0

F
o

re
ca

st
 d

a
y

s/
d

a
y

Model timestep

T1279_op, revised metric report

Instant Mean

Note Axes

DCSE: OpenIFS on HECToR, final report

7

Figure 2 the regular dip in instantaneous forecast days per day due to a regular additional

calculation during that model time step (every 24 hours).

4.2 Cray performance analysis tools
Several experiments were done using the Cray PAT toolkit. Initial sampling and

tracing provides some insight into the scaling of the code. Figure 3 and figure 4 show the

profile for the user section of code for the two smaller cases. They are noticeably similar and

imply that the scaling is quite good. It was noted by the ECMWF developers that the master

loop 17 should not really feature so high as it is trivial. However, it is indicative of the short

nature of the runtime of these cases and that initialization will dominate.

Figure 3: T159 tracing report (partial) from Cray PAT

Figure 4: T511 tracing report (partial) from Cray PAT

The file access pattern can also be monitored with Cray PAT. The sequence in figure

5 is a recommended process for extracting this information; in particular step 4 is where the

choice of experiment is influenced.

4.2.1 PAT report for OpenIFS without FDB

After a successful run of the test case for the tracing experiment, pat_report is used to

generate a text file. The text file is quite detailed and incorporates several sections for

Figure 5: The perftools module MUST be loaded before the build of OpenIFS commences.

 module load perftools

(1) Instrument the executable

pat_build –O apa master.exe (ISSUE)

Normal sample - for where time is spent in this short run

Apa file ascii editable human readable – options for pat_build

(2) APA guides a subsequent trace experiment

pat_build –O (apa file)

(3) Followed by IO expt using master.exe+apa

(4) Edit the apa file to add io groups

 -g sysio,stdio,ffio,aio,

-g mpi

-g omp

DCSE: OpenIFS on HECToR, final report

8

different performance measurements. An example of the section on files, writing information

to disk, is shown in the following excerpt.

In table 3 the example shows the two different file categories “GG” and “SH” for

T159. The write rates vary greatly from a few MB/s to 100s of MB/s with no clear trend for if

the file was written early of late in the simulation. The write rates are different even for files

with the same number of bytes.

Table 3: File Output Statistics by Filename T159 non-FDB

Write time

seconds

Write

MBytes

 Write Rate

MBytes/sec
Writes

Write Bytes

per call
File Name

 27.281 30.28 1.110 77.0 412462.55 ./ICMSHfwj8+000048

 5.452 30.28 5.555 77.0 412462.55 ./ICMSHfwj8+000000

 3.790 13.82 3.647 41.0 353638.93 ICMGGfwj8+000024

 2.904 30.28 10.427 77.0 412462.55 ./ICMSHfwj8+000036

 2.753 30.28 10.998 77.0 412462.55 ./ICMSHfwj8+000024

 2.071 30.28 14.620 77.0 412462.55 ./ICMSHfwj8+000060

 0.110 13.82 124.739 41.0 353638.93 ICMGGfwj8+000036

 0.100 13.82 137.674 41.0 353638.93 ICMGGfwj8+000072

 0.091 30.28 330.962 77.0 412462.55 ./ICMSHfwj8+000012

 0.068 11.17 162.368 41.0 285687.51 ICMGGfwj8+000000

 0.062 30.28 484.929 77.0 412462.55 ./ICMSHfwj8+000072

 0.048 13.82 286.339 41.0 353638.93 ICMGGfwj8+000060

 0.047 13.82 289.694 41.0 353638.93 ICMGGfwj8+000048

 0.041 13.82 336.466 41.0 353638.93 ICMGGfwj8+000012

4.2.2 Cray PAT statistics for case T159 FDB output

A similar tracing experiment was performed where FDB output was enabled. This

also showed large variation between the write rates for the files as shown in table 4. The main

difference between the non-FDB and with-FDB run is that with-FDB enabled only one file

per writer task is written but it is incremented on the subsequent writes. The run was

performed with the default Lustre stripe count=1 and stripe size =4.

Table 4 : file access (writes) statistics for T159 with FDB activated, reported by CrayPAT

Write

time

seconds

Write

MBytes

 Write

Rate

MBytes/

sec

Writes Write

B/Call

File Name

 0.103 19.89 191.99 812.0 25695.84 /:fc:sfc.8.20131018.112231.125937031053312.dat

0.099 18.06 181.97 756.0 25058.20 /:fc:sfc.14.20131018.112231.123394410414080.dat

 0.091 20.76 220.45 826.0 26366.14 /:fc:sfc.4.20131018.112231.125464584650752.dat

 0.070 20.87 295.07 840.0 26063.24 /:fc:sfc.3.20131018.112231.127242701111296.dat

 0.067 19.89 296.78 812.0 25695.84 /:fc:sfc.7.20131018.112231.125477469552640.dat

 0.060 20.99 347.69 840.0 26204.65 /:fc:sfc.1.20131018.112231.127234111176704.dat

 0.054 19.26 353.77 784.0 25761.96 /:fc:sfc.10.20131018.112231.125945620987904.dat

 0.053 19.07 357.10 798.0 25068.72 /:fc:sfc.9.20131018.112231.125941326020608.dat

 0.052 18.13 347.52 756.0 25150.31 /:fc:sfc.13.20131018.112231.123390115446784.dat

Files in the FDB directory infrastructure include the metadata in the filename which

makes it difficult to visually scan a directory quickly, also repeat runs generate a fresh set of

DCSE: OpenIFS on HECToR, final report

9

“dat” files. Using a large number of MPI tasks will default to writing a large number of dat

files.

5 Investigation of variation from the default values
Several parameters can be changed to investigate the performance of OpenIFS. These

include the LUSTRE tuning parameters; the size of virtual memory pages and the FDB

writing mode. This section describes the effect of changing these parameters. In the

description of building the OpenIFS (Appendix B) there is a reference to page size; this

section includes a description of how page size can be changed and what effect it has on the

simulation. The baseline for the work is established with the three test cases using a default

value of page size of 4096 bytes and the default LUSTRE stripe count of 4 and stripe size of

1MB.

5.1 LUSTRE
 Lustre® is a high-performance, massively-scalable, POSIX-compliant network file

system designed for high-performance compute clusters (see http://www.Lustre.org).

Lustre file systems are made up of multiple services typically distributed across

multiple nodes. A file system is comprised of; a Meta-Data Target (MDT), which stores

directory and file meta-information such as file ownership, timestamps, access permissions,

etc. and a series of Object Storage Targets (OST), which hold the file data in one or more

objects.

On the HECToR system there are two LUSTRE file system partitions; a general user

partition where the default stripe count is 1 and a stripe size of 1MB. The second partition is

for NERC researchers where the default is a stripe count of 4 and stripe size of 1MB. This

project work was served by the NERC partition due to the funding nature of the research.

There are 84 OSTs.

There are several ways to configure LUSTRE including (i) as an administrator setting

an optimum for the installed hardware (ii) as a user choosing the striping pattern (iii) as a user

adding code to set striping patterns from within a simulation. The majority of this work was

done with (ii) as the system hardware has been set up during installation, the API work was

deferred until it was clear if any gains can be achieved with (ii).

 There are several administration commands not for general use (mkfs.lustre,

tunefs.lustre, mount.lustre, lctl). However, the user-level interface to control Lustre-

specific information for individual files is lfs. This command is used with several options

(sub-commands) to control the stripe count and stripe size for directories. It can be used to

create an empty file with a preset lustre configuration but it cannot be used to modify existing

file striping. When a directory has been configured the content inherits the same striping, so

new file creation from within the program will acquire the same stripe attributes.

 lfs setstripe –c 8 –s 16M <directory name>

will set the stripe count to 8 and the stripe size to 16M on a directory.

The work for this section was done using the T1279_op and along with the testing of

varying hugepage size (next section). Figure 6 and figure 7 are representative graphs of how

the run times were affected by changing the Lustre parameters for a specific huge page value

of (2MB).

5.1.1 Changing the number of stripes

The default setting is a stripe count of 4. The setstripe command is applied to the case

directory just before the run so that any freshly created files will adopt the revised attribute.

DCSE: OpenIFS on HECToR, final report

10

Figure 6 A series of experiments investigating lustre stripe count for fixed huge page of 2M and stripe

size of 4MB.

The default setting is not ideal for this application. The performance improves when

the setting is for more stripes and when reverting to a single stripe. Also this chart shows the

variable nature as the repeat runs show a consistent slower performance.

5.1.2 Changing the size of the stripe

The default setting is a stripe size of 1MB. The setstripe sub-command is used to

change the attribute on the case directory before the run. There is some variation between the

runs that is inconsistent, with second run occasionally being faster than the first. For one set

of runs the 8MB stripe is the minimum performance whereas for the second runs the 8MB is

the peak of performance.

This has shown that a small change in performance can be achieved when following

the general advice for the case where each MPI task has a dedicated file i.e. set the stripe

count to unity. The stripe size should not make any difference when operating such a

configuration. One difficulty of doing this is down to the fact that the default stripe count for

(“n02”) projects is 4; users should be advised to set the stripe size on the case directory to

unity.

0

50

100

150

200

250

300

350

1 4 8 16 32 64

fc
a

st
 d

a
y

s
/

d
a

y

lfs --count

T1279_op Effect of varying LFS count

run1 run2

DCSE: OpenIFS on HECToR, final report

11

Figure 7: example of performance with varying stripe size

5.2 Hugepages
Huge pages are virtual memory pages which are larger than the default base page size

of 4Kbytes. Huge pages can improve memory performance for common access patterns on

large data sets. They can also increase the maximum size of data and text in a program

accessible by the high speed network. Access to huge pages is provided through a virtual file

system called hugetlbfs. The executable has to be linked to the library to use huge pages.

There are six additional page sizes that are classed as “huge pages” that can be

accessed through module files. The module file sets the necessary link options and run time

environment variables for the specific huge pagesize choice. The six modules are craype-

hugepages128K, craype-hugepages512K, craype-hugepages2M, craype-hugepages8M,

craype-hugepages16M, craype-hugepages64M.

When an executable has been built with an activated huge page module then it is

possible to vary the pagesize at runtime. The recommendation is to compile OpenIFS with

the 2M huge page active and thus be able to vary the page size. i.e.

 module swap PrgEnv-pgi PrgEnv-cray

 module load craype-hugepages2M

Then build as usual.

Of the environment variables that are set by the module, two are slightly different

depending on the chosen page size. These are shown in table 5.

0

50

100

150

200

250

300

4 8 16 64

F
o

re
ca

st
 d

a
y

s
/

d
a

y

LUSTRE stripe size (MB)

T1279_op, 512 Tasks 8 Threads, Effect of

LUSTRE Stripe Size

run1-stripe4 run2-stripe4

DCSE: OpenIFS on HECToR, final report

12

Table 5: environment variables for huge page compilation and running

Value for

HUGETLB_DEFAULT_PAGE_SIZE

Variable name

e.g. HUGETLB16M_POST_LINK_OPTS

(i.e. -Wl,--whole-archive,-lhugetlbfs,--no-whole-archive

-Wl,-Ttext-segment=0x20000000,-zmax-page-

size=0x20000000)

128K HUGETLB128K_POST_LINK_OPTS

512K HUGETLB512K_POST_LINK_OPTS

2M HUGETLB2M_POST_LINK_OPTS

8M HUGETLB8M_POST_LINK_OPTS

16M HUGETLB16M_POST_LINK_OPTS

32M HUGETLB32M_POST_LINK_OPTS

64M HUGETLBM_POST_LINK_OPTS

The various page sizes were tested with two lustre striping strategies; the default

stripe count of 4 and a stripe count of 8. The stripe size was left at the default of 4MB. Figure

8 illustrates the difficulty in repeatability as only “run1-8” shows a distinct (monotonic)

increase in forecast days per day with increasing page size.

Figure 8: performance for two stripe counts; 4 and 8

As a consequence it is recommended that the “huge page size” should be set to 2MB

as no more significant gain is indicated for larger page sizes. Other combinations were

investigated (shown in table 6) and the chart in figure 8 is representative of the other results.

0

50

100

150

200

250

300

0.5 2 8 16 64

F
o

re
ca

st
 d

a
y

s
/

d
a

y

Huge pagesize (MB)

T1279_op, 128 nodes (512 MPI tasks, 8 threads)

Effect of Huge Pagesize

run1-4 run2-4 run1-8 run2-8

DCSE: OpenIFS on HECToR, final report

13

Table 6: all stripe count =4 and the number is recommended sequence for investigation

Lustre stripe

size

craype-

hugepages512K

craype-

hugepages2M

craype-

hugepages8M

craype-

hugepages16M

craype-

hugepages64M

1MB

2MB 6

4MB 2 1 3 4 5

8MB 7

16MB 8

64MB 9

5.3 Varying the Number of Writers
The number of MPI tasks that write FDB data can be changed to be a sub-set of the

enrolled tasks. The tasks are selected by striding through the task IDs at an interval set in the

name list file (fort.4). The variable NWRTOUT is the interval of MPI tasks between writers.

This is by default unity where all MPI tasks are involved in writing FDB data files. If the

value is changed then some of the MPI tasks that are on the same node can be used to help

encode data into the GRIB format.

The encoding can be shared by the MPI tasks on a common node that are not being

used to write data. For example, one might set the writer stride to match the number of MPI

tasks per node so that only one writer sits on a node. This limits the number of streams of

data being written to disk from the node. The remaining MPI tasks can be used to “help” the

writer encode the data for GRIB format. However, data has to be communicated in several

ways; one for the encoding and another for accumulating the subset of data onto the writer

MPI task.

Table 7: Case T1279_op repeated runs with FDB, decreasing number of writers

Writer

stride

Number

of

data

files

Typical

Size per

File

(GB)

Total size

files in

directory

(GB)

Case results written to

directory A

Case results written to

directory B

Wall

time

minutes

F/D

peak

F/D

(average)

Wall

time

minutes

F/D

peak

F/D

(average)

1 512
1.9

+0.5
218 16.0 216 198 14.3 233 221

2 256
2.2

+1.1
218 15.8 216 203 14.5 238 220

4 128 2.0 218 16.5 215 192 14.5 229 219

6 86 3.8 218 17.6 203 193 14.5 238 220

8 64 4.5 218 16.5 202 191 15.8 212 202

16 32
7.5

+7.1
218 20.1 173 153 19.5 188 160

+there were some files with significant size difference

 The values from table 7 are presented in graphical form in figure 9. There is a

significant bias to directory B which is difficult to explain without much more extensive

testing.

DCSE: OpenIFS on HECToR, final report

14

Figure 9: compare forecast days per day for various NWROUT values

The general outcome is that decreasing the number of writers has little beneficial

effect on the simulation time; in fact the runtime is increased for the majority of cases. An

unexpected behaviour is that there was a distinct difference when the simulation results were

written to a different directory. This was noticed when the identical case was run

simultaneously with different strides in two separate directories. This was a consistent result

when those run configurations were switched to the alternate directory.

For a stride greater than four the writer will be on a different node as these runs have

been configured for 4 MPI tasks per node and OpenMP thread count of 8. The stride of 6 ws

tested because it results in 85.6 writers (actually 85) which is close to the number of OSTs

(84). The results for directory A show that indeed a change is noted between 4 and 6 however

this is more likely attributable to there being some nodes without writers, i.e. more data

(work) for the shared cores on one node to encode.

5.4 Tunable FDB parameters
When the FDB library is installed it is possible to set the runtime parameters in

 $FDB_HOME/etc/config/fdb/fdbRules

The file includes four settings that can affect the behaviour of FDB, shown in table 8.

The fdbAsyncWrite parameter is set to “false” during the installation by default and implies

that the testing for section 5.1 and section 5.2 were done with no asynchronous file handling.

The configuration file is in a protected location (i.e. only the installer may change it), so any

changes will affect all running simulations (i.e. other users). This work will be useful to

establish which setting is appropriate for the Cray XE6. The configuration file was changed

to set the parameter to TRUE. However, that resulted in the simulations crashing.

0 50 100 150 200 250

1

2

4

6

8

16

Forecast days per day

W
ri

te
r

st
ri

d
e
,

N
W

R
T

O
U

T

T1279_op 4096 cores comparing DirA (slower) and
DirB (greater yellow)

Cases in Directory A Cases in Directory B

DCSE: OpenIFS on HECToR, final report

15

Table 8: configuration parameters in the FDB rules file

Parameter Value on

HECToR

Options remarks

fdbAsyncWrite False Activates the async writing.

 fdbNbAsyncBuffers 4, number of buffers for async io

 fdbSizeAsyncBuffer (64*1024*1024), size in bytes of each

buffer for async io

doubleBuffer 0 Use cyclic buffers for data transfer.

 bufferSize 67108864 (64*1024*1024)

 doubleBufferSize 524288 (0.5*1024*1024)

 doubleBufferCount 20

blockSize -1 Add padding to index access to match file

system block size given

syncDirOnFileFlush True force a flush of directory on flushing files

6 Summary
The support libraries have been built and installed on the Cray XE6. They have been

built to support two compilations; one using Cray compiler environment (CCE) and the

second using GNU complier suite (GCC). The OpenIFS software has been built and coupled

to the FDB library. It has been shown to give identical results to those of the “traditional”

GRIB serial writer files. This was expected because it uses the same GRIB encoding of the

same data.

The metric for four cases has been established as the forecast days per day and this

has been used to record the performance of the FDB-enabled software. The timing and tuning

results are indicative of a busy multiuser machine.

The differences achieved by changing the LUSTRE parameters are not very

noticeable compared to the variation seen in multiple runs. The runtime appeared to be

affected also by the case directory. The lack of significant speed up from LUSTRE

parameters is attributable to the fact that although FDB is identified as a parallel IO method

the parallel nature is between the data streams rather than an equivalent MPI-IO call to

parallel file writing. If the number of IO streams is similar to the number of OSTs then it is

unlikely that there would be any performance gain. In that case the striping is more likely

increase the load on the OSTs and cause contention.

The recommendation is to use one writer per node although it is expected that there is

an increase in intra node communications for the GRIB encoding.

Hugepages were investigated and a subtle improvement discerned for the situation

using 2MB pages. The advice for configuring OpenIFS is to use the hugepages2M module

and then set a directory stripe pattern with one strip of size 4MB.

ECMWF hae found this work beneficial as it is the first port of these libraries to non-

IBM systems. It has also extended their knowledge to use heterogeneous CMake (cross-

compilation). The development machines have used GFS so the results of the behavior of

Lustre has been very helpful. The “reduced writer” section of code had been dormant but this

work has re-activated.

7 REFERENCES
[1] Metview 4 Wiki https://software.ecmwf.int/wiki/display/METV/Metview

https://software.ecmwf.int/wiki/display/METV/Metview

DCSE: OpenIFS on HECToR, final report

16

Appendices

Appendix A: Build and installation of the support libraries

Appendix B: Result of tests of installations

Appendix C: Using OpenIFS on HECToR

17

Appendix A. Build and install support libraries
OpenIFS is a weather forecasting system that has established GRIB as its file format.

The GRIB files are writing at time intervals specified by the user. Alternative results storage

is available in the form of “FDB” (Fields Data Base). For the normal operation GRIB files

are written at specified intervals and a naming convention identifies what information is in

the file (a form of metadata). The OpenIFS software has to be linked with the GRIB_API

library to write GRIB files. To use the more efficient parallel output method, FDB, the FDB

library has to be available; it also uses the GRIB format and will also need to be linked to the

GRIB_API library. Both of these support libraries have been installed and this section

describes the work done to achieve that. A more detailed description of the configuration of

the libraries is given in the appendix A.

7.1 OIFS package account for software management
An account has been set up as a package account. Package accounts exist on HECToR

to manage the installation of software for wider use than one person. For OpenIFS software

package the home directory is /home/y07/y07/oifs and the work directory is

/work/y07/y07/oifs. A directory has been created in the work directory for the results of the

builds to be installed. Hence the “prefix” for any configuration of a build includes the

“install” directory.

7.2 The build procedure
Ensure the software is up to date, set up the build environment (CCE) and then build

GRIB_API, this uses the GNU Autotools style configure script, followed by ECKIT, then

FDB, note that these use CMake. Directions for doing this are in the ~/NOTES directory of

the oifs package account. Update the notes to reflect the changes. The build time for OpenIFS

is less than 20 minutes and is done on the login node hence it is a cross-compile.

Install the three packages. NOTE a similar process has been followed for the GCC

build of these packages. Five modules have been created; one for each port of GRIB_API and

FDB and the fifth is the OpenIFS environment that invokes the CCE versions of the

GRIB_API and FDB. As newer versions or combinations of the libraries are installed the

modules have to be kept up to date.

7.2.1 Update the software

Command is “git pull origin openifs” within the source code directory.

7.2.2 Configure the make files

7.2.2.1 ECBUILD

There is no actual build required for this software. It is a collection of text files,

scripts and CMake files. It directs the configuration of the other software; ECKIT and FDB

(and if it were to be used, GRIB_API). It has been installed below the home directory of

“oifs” i.e.

/home/y07/y07/oifs/ecmwf/ecbuild.

The version of GRIB_API software is 1.9.18 supplied by ECMWF and it is built

separate to the “ECMWF” software (in which there is a version of GRIB_API that can be

configured and built with CMake). Other products use GRIB_API therefore it has to be built

for both front-end and back-end environments.

DCSE: OpenIFS on HECToR: WP1 install FDB and MARS

18

7.2.2.2 GRIB_API

The make files for GRIB_API are created with GNU Autotools and the configuration

step is:

This configuration line is similar for the GNU compilation except that the directory

representing the platform is gcc_4.7.2-mc6 to indicate the Istanbul target. The GRIB_API

includes some auxiliary data that is installed alongside in: share/grib_api

The file is an include file and one has already been prepared for HECToR that can be

copied into the source. It has to be a copy rather than clone (cp –p filename newfile) to

trigger the make rules.

The unit testing is done on the compute node and this script is used to start that.

The results are presented in Appendix C

7.2.2.3 ECKIT

The build of ECKIT depends on ECBUILD. After ECBUILD has been updated then

the ECKIT software too can update with the same command. The make files for ECKIT are

created with CMake with the following options:

Figure A2: Script for unit testing on a node using as many cores as available because each test is

serial

#!/bin/bash --login

#PBS -N GribTest_n32

#PBS -l mppwidth=32

#PBS -l mppnppn=32

#PBS -l walltime=01:00:00

#PBS -A y07

module load CMake/2.8.8

module swap cce cce/8.1.8

module li

PLATFORM=cce_8.1.8-il

grib_api paths

export GRIB_API_PATH=${HOME}/grib_api/1.9.18/${PLATFORM}

export PATH=${GRIB_API_PATH}/bin:${PATH}

export LD_LIBRARY_PATH=${GRIB_API_PATH}/lib:${LD_LIBRARY_PATH}

export GRIB_DEFINITION_PATH=${GRIB_API_PATH}/share/grib_api/definitions

cd $PBS_O_WORKDIR

echo "Grib Unit Test"

aprun -n 1 -d32 -cc 0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30 -a xt -b make -j 16 check >

${PBS_JOBID}.out

Figure A1: Generating the makefiles f or GRIB_API (CCE compiler)

./configure --disable-shared --disable-jpeg --disable-python --enable-pthread \

 --prefix=/work/y07/y07/oifs/install/grib_api/1.9.18/cce_8.1.8-il

DCSE: OpenIFS on HECToR: WP1 install FDB and MARS

19

An alternative to repeated typing of CMake options is possible with a preset text file

so that fewer mistakes are made on a command line: CmakePresetHectorEckitCce.cmake. It

should be invoked with CMake as:

cmake –C CmakePresetHectorEckitCce.cmake ../

The file content is text shown in figure A4. The form is

SET(PARAMETER value)

Note that each entry is a single line in the actual text file)

The build is a matter of issuing the make command when the cmake process

completes successfully. The subsequent testing can be considered unit testing as it happens

“in-build”. It has to be launched on the compute nodes and the following PBS script is used:

Figure A4: a file for presetting options

This file is preset for use on HECToR to build ECKIT with Cray CCE

Mark Richardson, NAG Ltd, 2013

SET(CMAKE_MODULE_PATH CACHE UNINITIALIZED

/home/y07/y07/oifs/ecmwf/ecbuild/cmake)

SET(CMAKE_C_COMPILER CACHE FILEPATH /opt/cray/xt-asyncpe/5.17/bin/cc)

SET(CMAKE_CXX_COMPILER CACHE FILE /opt/cray/xt-asyncpe/5.17/bin/CC)

SET(CMAKE_BUILD_TYPE CACHE STRING Release)

SET(ENABLE_RPATHS CACHE BOOL OFF)

SET(CMAKE_INSTALL_PREFIX CACHE PATH

/work/y07/y07/oifs/install/eckit/0.3.0/cce_8.1.8-il)

SET(BUILD_SHARED_LIBS CACHE BOOL OFF)

Figure A3: Generating the makefiles f or ECKIT

cmake .. \

-DCMAKE_MODULE_PATH=/home/y07/y07/oifs/ecmwf/ecbuild/cmake \

-DCMAKE_C_COMPILER=cc \

-DCMAKE_CXX_COMPILER=CC \

-DCMAKE_BUILD_TYPE=Release \

-DENABLE_RPATHS=OFF \

-DCMAKE_INSTALL_PREFIX=/work/y07/y07/oifs/install/eckit/0.3.0/cce_8.1.8-il \

-DBUILD_SHARED_LIBS=OFF

There is a development tool chain file

###-DCMAKE_TOOLCHAIN_FILE=/home/y07/y07/oifs/ecmwf/ToolChain-eckit.txt

DCSE: OpenIFS on HECToR: WP1 install FDB and MARS

20

See Appendix C for the tests and their results

7.2.2.4 FDB libraries

Similar to the ECKIT build, the makefiles for FDB are created with CMake with the

following options:

A toolchain file is used for the cross-compilation. This is because the compilation

occurs on the login nodes that are AMD Istanbul and do not understand some of the extra

instructions for Interlagos processors. A program compiled for the compute node will exit

with “illegal instruction” which is the same as “SIGILL” i.e. an error status of -4. The tests

are (simulated) during the build. This is risky as it gives the impression that those tests

succeeded even though they had not been exercised. They have to be processed later by a job

script on the compute nodes to confirm the results.

Figure A4: Generating the makefiles for FDB

export LD_LIBRARY_PATH=/work/y07/y07/oifs/install/grib_api/1.9.18/cce_8.1.8-

il/lib:${LD_LIBRARY_PATH}

cmake .. \

-DCMAKE_MODULE_PATH=/home/y07/y07/oifs/ecmwf/ecbuild/cmake \

-DCMAKE_C_COMPILER=cc \

-DCMAKE_CXX_COMPILER=CC \

-DFDB_FORTRAN_API=OFF \

-DCMAKE_Fortran_COMPILER=ftn \

-DCMAKE_BUILD_TYPE=Release \

-DENABLE_RPATHS=OFF \

-DCMAKE_INSTALL_PREFIX=/work/y07/y07/oifs/install/fdb/5.0.0/cce_8.1.8-il \

-DBUILD_SHARED_LIBS=OFF \

-DGRIB_API_PNG=OFF \

-DGRIB_API_JPG=OFF \

-DCMAKE_PREFIX_PATH="/work/y07/y07/oifs/install/eckit/0.3.0/cce_8.1.8-il;\

/work/y07/y07/oifs/install/grib_api/1.9.18/cce_8.1.8-il"

#!/bin/bash --login

#PBS -N ECKitTest_n32

#PBS -l mppwidth=32

#PBS -l mppnppn=32

#PBS -l walltime=00:20:00

#PBS -A y07

module load CMake/2.8.8

module list

cd $PBS_O_WORKDIR

echo "ECKIT In build Test"

aprun -n 1 -d32 -cc 0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30 -a xt -b make -j 16 test >

${PBS_JOBID}.out

DCSE: OpenIFS on HECToR: WP1 install FDB and MARS

21

7.2.3 Add a module to activate the libraries for users.

Three module files were created so that the CCE version of the libraries can be used

more easily when building OpenIFS.

Figure A5 detail of fdb_cce module 0.0.2

#%Module##

ECMWF database library FDB

proc ModulesHelp { } {

puts stderr "FDB 5.0.0 - for use with OpenIFS"

puts stderr "This module is to set up the CCE environment"

puts stderr " Requires version 8.1.8 of CCE "

puts stderr "Installer: M. Richardson, NAG"

puts stderr "Date: 12/05/13 Updated 17th July 2013"

}

conflict PrgEnv-gnu

conflict PrgEnv-pgi

conflict PrgEnv-pathscale

prereq cce/8.1.8

the following are therefore parameterised and generic

set GRIB_VERSION 1.9.18

set ECKIT_VERSION 0.3.0

set FDB_VERSION 5.0.0

set OIFS_PKGS /work/y07/y07/oifs/install

test for which compiler level

set PLATFORM cce_8.1.8-il

 puts stderr " Open IFS support libraries installed at $OIFS_PKGS"

 puts stderr " Platform is $PLATFORM"

 puts stderr " Version of library FDB is $FDB_VERSION"

 puts stderr " Version of library ECKIT is $ECKIT_VERSION"

 puts stderr " Version of library GRIB_API is $GRIB_VERSION"

set GRIB_API_ROOT $OIFS_PKGS/grib_api/$GRIB_VERSION/$PLATFORM

setenv GRIB_API_PATH $OIFS_PKGS/grib_api/$GRIB_VERSION/$PLATFORM

prepend-path PATH $GRIB_API_ROOT/bin

prepend-path LD_LIBRARY_PATH $GRIB_API_ROOT/lib

setenv GRIB_DEFINITION_PATH $GRIB_API_ROOT/share/grib_api/definitions

set ECKIT_ROOT $OIFS_PKGS/eckit/$ECKIT_VERSION/$PLATFORM

setenv ECKIT_PATH $OIFS_PKGS/eckit/$ECKIT_VERSION/$PLATFORM

prepend-path LD_LIBRARY_PATH $ECKIT_ROOT/lib

CAUTION fdb_root here is a local variable for the tcsh script

set FDB_ROOT ${OIFS_PKGS}/fdb/${FDB_VERSION}/${PLATFORM}

setenv FDB_PATH ${OIFS_PKGS}/fdb/${FDB_VERSION}/${PLATFORM}

prepend-path PATH ${FDB_ROOT}/bin

prepend-path LD_LIBRARY_PATH ${FDB_ROOT}/lib

module-whatis "ECMWF library FDB on HECToR Phase 3"

DCSE: OpenIFS on HECToR: WP1 install FDB and MARS

22

The module files have been placed in the modules sub-directory of the “oifs” account.

A user will access them with “module use ~oifs/modules”

module load grib_api_cce to specificly set the GRIB_API environment

module load fdb_cce to specify the FDB environment

The openifs module invokes the grib_api and fdb modules but those are available for other

software if needed separately.

module load openifs_cce to setup the OpenIFS environment

The numbering was started at 0.0.1 for the first and subsequent developments are

indicated by incrementing the third “revision” digit. The working version was established

with 0.0.2 that adds associates the correct version of grib_api_cce and fdb_cce to

openifs_cce. More recent developments have been encapsulated in version 0.0.3. It is good

practice to interrogate the modules to determine the prevailing default (“module avail

openifs_cce”).

7.3 Testing the installations
There is a set of tests for each package, the tests and results are detailed in appendix

C. As detailed above there is cross-compilation being processed so the actual tests were

arranged to occur on the compute node (this is part of the reason for installing the libraries in

the WORK partition as sown in table A1.

Table A1: The locations of the installed libraries

GRIB_API /work/y07/y07/oifs/install/grib_api/1.9.18/cce_8.1.8-il

ECBUILD /home/y07/y07/oifs/ecmwf/ecbuild

ECKIT /work/y07/y07/oifs/install/eckit/0.3.0/cce_8.1.8-il

FDB /work/y07/y07/oifs/install/fdb/5.0.0pre/cce_8.1.8-il

MARS /home/y07/y07/oifs/mars/0.3.0/cce_8.1.8-il

7.3.1 FDB

The “in-build” tests that have been deferred are run using a PBS script. To do this

simply, it is easier to build the software within the LUSTRE file system and then be able to

run the compute node. [Jul2013 it is now possible to access $HOME from CNL]

FIGURE A5: detail of module activation

% module use ~oifs/modules

% module show openifs_cce

/usr/local/packages/oifs/modules/openifs_cce/0.0.3:

module-whatis CCE versions of support libraries to build OpenIFS

conflict PrgEnv-gnu

conflict PrgEnv-pgi

prereq cce/8.1.8

module load grib_api_cce/0.0.3

module load fdb_cce/0.0.3

prepend-path PATH /work/n02/n02/hum/fcm/bin

setenv OIFS_IFSDATA /work/y07/y07/oifs/data/ecmwf/ifsdata

setenv OIFS_ARCH x86_64

setenv OIFS_COMP cce_fdb

setenv OIFS_BUILD opt

DCSE: OpenIFS on HECToR: WP1 install FDB and MARS

23

NOTE the FDB_HOME and FDB_ROOT must be set (to the same location) where

the data files are to be written.

Here is the PBS script:

7.3.2 Testing the software after installation.

The installation is a matter of issuing the “make install” command. Subsequent testing

can be done with provided tests. For FDB there are two post-install checks: testa01 and

testa02. See appendix C for the tests and their results.

7.4 Installation of a MARS client
MARS is a method of interacting with numerical weather forecasting data and

formatting it for use in other tools. One use is from within Metview and another is as a

standalone client to validate the builds of the support libraries. It is built for the login nodes

and thus the environment has to be switched from the default settings to a GNU compiler and

set the platform for Istanbul processors.

#!/bin/bash --login

#PBS -N FDB_BuildTest

#PBS -l mppwidth=32

#PBS -l mppnppn=32

#PBS -l walltime=00:20:00

#PBS -A y07

module swap cce cce/8.1.8

module load CMake/2.8.8

module list

cd $PBS_O_WORKDIR

export FDB_ROOT=$PBS_O_WORKDIR

export FDB_HOME=$PBS_O_WORKDIR

export TMPDIR=$PBS_O_WORKDIR/tmp

OIFS_PKGS=/work/y07/y07/oifs/install

GRIB_VERSION=1.9.18

ECKIT_VERSION=0.3.0

PLATFORM=cce_8.1.8-il

export GRIB_API_PATH=$OIFS_PKGS/grib_api/$GRIB_VERSION/${PLATFORM}

export GRIB_DEFINITION_PATH=$GRIB_API_PATH/share/grib_api/definitions

export GRIB_SAMPLES_PATH=$GRIB_API_PATH/share/grib_api/samples

export PATH=$GRIB_API_PATH/bin:${PATH}

export LD_LIBRARY_PATH=$GRIB_API_PATH/lib:${LD_LIBRARY_PATH}

export ECKIT_PATH=${OIFS_PKGS}/eckit/${ECKIT_VERSION}/${PLATFORM}

export PATH=${ECKIT_PATH}/bin:${PATH}

export LD_LIBRARY_PATH=${ECKIT_PATH}/lib:${LD_LIBRARY_PATH}

echo "FDB build and Test"

echo "LD_LIBRARY_PATH is" $LD_LIBRARY_PATH

echo "+++"

set -x

aprun -n 1 -d 32 -a xt make -j 16 test

DCSE: OpenIFS on HECToR: WP1 install FDB and MARS

24

 module swap PrgEnv-cray PrgEnv-gnu

 module swap xtpe-interlagos xtpe-istanbul

A preliminary build was achieved on 26 April 2013 under the guidance of ECMWF

staff.

The mars build script generates a site specific file (the assumption is the build is not a

cross-compilation).

-rw-r----- 1 oifs oifs 1008 2013-04-26 11:55 config.linux.2.site-noFDB

The source is supplied by ECMWF as a tar file: mars_client_grib_api.20110523.tar.gz

It is unpacked in ~oifs/MARS_client/src/mars_client_grib_api

Environment is set as:

GCC 4.7.2

ARCH=linux

It can be guessed from $platform which is built from

 uname –m ($machine) and uname –s ($os)

Platform=”$machine:$os”

Config.linux.2.cfg

There are 3 sub-directories: chk, etc, tools they were not modified.

Only the config.linux.2.site was changed to add the FDB instead of NOFDB.

 (Compared to config.linux.2)

LOCAL_CFLAGS= -DR64 -DFDB

Mars_build is an interactive script to prepare the build; it asks several questions and

then processes the code. It will create/overwrite config.platform.site. The second build

included the FDB flag and thus linked to a version of FDb built with GCC 4.7.2 and target

cpu “Istanbul”.

Files modified that are not object files:

config.linux.2.site-noFDB my saved version of the site config

mars.sh this sets several environment variables for use with MARS

make.linux.2.site the ld command to create an SO from a static archive.

make.dep empty file to force a full build (check Makefile)

config.linux.2.site the site specific configuration (generated by the mars_build script).

rpcmars.h an “rpcgen” file

marsxdr.c something for external data representation (Where/why what)

langl.c definition of system specifc parameters e.g. INT32_MIN

langy.c some sort of YACC director

libmars.a the mars static library for the client and other s/w

marsthe mars client

For HECToR and “oifs” this package was installed in:

 ~oifs/MARS_client/0.0.1/gcc_4.7.2-mc12

The MARS development team provided a basic test case in which a GRIB2 file is

processed to extract data and compared to a reference set. Currently there is no FDB-MARS

test.

DCSE: OpenIFS on HECToR: WP1 install FDB and MARS

25

8 Appendix B: Results of post-build testing

8.1 B. 1. Result of tests for the CCE build of GRIB_API

PASS: definitions.sh

PASS: ieee.sh

PASS: grib1to2.sh

PASS: grib2to1.sh

PASS: badgrib.sh

PASS: ls.sh

PASS: convert.sh

PASS: filter.sh

TEST: ./multi.sh : no data to

test

PASS: multi.sh

PASS: budg.sh

PASS: gridType.sh

PASS: concept.sh

PASS: decimalPrecision.sh

PASS: bitsPerValue.sh

PASS: get_fail.sh

PASS: missing.sh

PASS: local.sh

PASS: step.sh

PASS: set.sh

PASS: iterator.sh

PASS: compare.sh

PASS: level.sh

PASS: index.sh

PASS: bitmap.sh

PASS: list.sh

PASS: second_order.sh

TEST:./multi_from_messag

e.sh: no data to test

PASS:

multi_from_message.sh

PASS: change_scanning.sh

PASS: julian.sh

PASS: statistics.sh

PASS: tigge.sh

PASS: tigge_conversions.sh

TEST: ./read_any.sh : no

data to test

PASS: read_any.sh

PASS: padding.sh

PASS: debug.sh

===================

All 35 tests passed

===================

PASS: copy_message.sh

PASS: get.sh

PASS: get_data.sh

PASS: get_pl.sh

PASS: get_pv.sh

PASS: keys_iterator.sh

PASS: nearest.sh

PASS: precision.sh

PASS: multi_write.sh

PASS: multi.sh

PASS: print_data.sh

PASS: set.sh

PASS: set_bitmap.sh

PASS: set_missing.sh

PASS: set_pv.sh

PASS: samples.sh

PASS: count_messages.sh

PASS: read_message.sh

PASS: index.sh

===================

All 19 tests passed

===================

PASS: iterator.sh

PASS: get.sh

PASS: print_data.sh

PASS: set.sh

PASS: keys_iterator.sh

TEST: ./multi.sh

SKIP: ./multi.sh

PASS: multi.sh

PASS: multi_write.sh

PASS: precision.sh

PASS: list.sh

==================

All 9 tests passed

=====

There were no Fortran tests and no python tests attempted.

DCSE: OpenIFS on HECToR

26

8.2 B.2. Testing the CCE build of ECKIT

The three failed tests have been noted but ignored on the advice from ECMWF.

Running tests...

Test project /work/y07/y07/oifs/build/eckit_0.3.0-cce_8.1.8-il

 Start 1: test_config

 1/13 Test #1: test_config Passed 0.07 sec

 Start 2: test_resource

 2/13 Test #2: test_resource Passed 0.15 sec

 Start 3: test_log

 3/13 Test #3: test_log Passed 0.16 sec

 Start 4: test_log_channels

 4/13 Test #4: test_log_channels Passed 0.16 sec

 Start 5: test_log_callback

 5/13 Test #5: test_log_callback Passed 0.15 sec

 Start 6: test_log_threads

 6/13 Test #6: test_log_threads***Exception: Other 0.16 sec

 Start 7: test_aiohandle

 7/13 Test #7: test_aiohandle***Failed 0.18 sec

 Start 8: test_mutex

 8/13 Test #8: test_mutex Passed 0.15 sec

 Start 9: test_string_tools

 9/13 Test #9: test_string_tools Passed 0.15 sec

 Start 10: test_tokenizer

10/13 Test #10: test_tokenizer Passed 0.16 sec

 Start 11: test_cache

11/13 Test #11: test_cache Passed 0.15 sec

 Start 12: test_producer

12/13 Test #12: test_producer***Exception: Other 0.17 sec

 Start 13: test_context

13/13 Test #13: test_context Passed 0.16 sec

77% tests passed, 3 tests failed out of 13

Total Test time (real) = 2.15 sec

The following tests FAILED:

 6 - test_log_threads (OTHER_FAULT)

 7 - test_aiohandle (Failed)

 12 - test_producer (OTHER_FAULT)

DCSE: OpenIFS on HECToR

27

8.3 B.3. Testing the CCE build of FDB

FDB build and Test

LD_LIBRARY_PATH is /work/y07/y07/oifs/install/eckit/0.3.0/cce_8.1.8-

il/lib:/work/y07/y07/oifs/install/grib_api/1.9.18/cce_8.1.8-il/lib:

+++

Running tests...

Test project /work/y07/y07/oifs/build/fdb_5.0.0-cce_8.1.8-il

 Start 1: test_fdb_params

1/9 Test #1: test_fdb_params Passed 0.05 sec

 Start 2: test_fdb_index

2/9 Test #2: test_fdb_index Passed 6.83 sec

 Start 3: test_fdb_toc

3/9 Test #3: test_fdb_toc Passed 6.19 sec

 Start 4: test_fdb_agentwriter

4/9 Test #4: test_fdb_agentwriter Passed 12.57 sec

 Start 5: test_fdb_agentreader

5/9 Test #5: test_fdb_agentreader Passed 40.35 sec

 Start 6: test_fdb_service_1_write

6/9 Test #6: test_fdb_service_1_write Passed 24.35 sec

 Start 7: test_fdb_c_api

7/9 Test #7: test_fdb_c_api Passed 57.00 sec

 Start 8: atest01

8/9 Test #8: atest01 Passed 11.10 sec

 Start 9: atest02

9/9 Test #9: atest02 Passed 0.74 sec

100% tests passed, 0 tests failed out of 9

Total Test time (real) = 168.95 sec

DCSE: OpenIFS on HECToR

28

9 Appendix C: Using OpenIFS on HECToR
The module openifs_cce is used to set up the environment.

9.1 Building OpenIFS
The modules system is helpful for setting the correct environment for bulding

OpenIFS. i.e. module use ~oifs/modules, module load openifs_cce .
Currently the default module is 0.0.3 but the initial work was done using version 0.0.2 of the module.

this module sets the following environment variables

OIFS_IFSDATA /work/y07/y07/oifs/data/ecmwf/ifsdata

OIFS_ARCH x86_64

OIFS_COMP cce_fdb

OIFS_BUILD opt

and the PATH so that the “fcm” tool is available for building OpenIFS with the

command:

fcm make -j 4 -vv --new -f cfg/oifs.cfg

The result is a binary (master.exe) that can be launched from within a “standardized”

script named ifs_run.sh. The configuration file “oifs.cfg” contains the compilation and

linking options for OpenIFS some additional changes were made to use Huge Page Sizes (see

section 5).

Three test cases were provided for initial baseline testing:

t159/2012102700

t511/2012102700

t1279/2012102700

Later changes to the source were needed to run a productin simulation T1279_op and

the following changes were needed as shownin Figure B1.

% module show openifs_cce

/usr/local/packages/oifs/modules/openifs_cce/0.0.3:

module-whatis CCE versions of support libraires to build OpenIFS

conflict PrgEnv-gnu

conflict PrgEnv-pgi

prereq cce/8.1.8

module load grib_api_cce/0.0.3

module load fdb_cce/0.0.3

prepend-path PATH /work/n02/n02/hum/fcm/bin

setenv OIFS_IFSDATA /work/y07/y07/oifs/data/ecmwf/ifsdata

setenv OIFS_ARCH x86_64

setenv OIFS_COMP cce_fdb

setenv OIFS_BUILD opt

DCSE: OpenIFS on HECToR

29

9.2 Operation without FDB
This is the default operation of OpenIFS. There are two GRIB files produced on each

specified time step and the files are named accordingly. One contains grid point data and the

other contains spectral data.

For example with the T159 case the following were generated.

ICMGGfwj8+000000 (14.5MB), ICMGGfwj8+000012, ICMSHfwj8+000000 (

32MB), ICMSHfwj8+000012, ICMSHfwj8+000108, ICMSHfwj8+000120

9.3 Operation with FDB
Instead of generating “per time step” GRIB files in the case directory, a subdirectory

is named “fdb/<fdbxyz123>” and the FDB system creates a fresh sub-directory named after

the RUNID and experiment type.

Then a number of files are created in groups of 3. One DAT file, an IDX file and a

FILES file. The DAT file is a GRIB format concatenation of more than one GRIB

“message”. Note there are as many DAT files as there are “writer tasks” and by default this is

equal to the number of MPI tasks being used for the simulation.

Figure B2: files created by the FDB process in the fdb sub-sub-directory
Size in bytes File name

165953536 0000:fc:sfc.0.20131016.084031.7773890805760.dat

65536 0000:fc:sfc.0.20131016.084031.7773890805761.idx

267 0000:fc:sfc.0.20131016.084031.7773890805761.idx.files

165953536 0000:fc:sfc.0.20131019.164347.88669599825920.dat

(an extra time stamp layer is created between the case directory and the fdb data.The

number of files is determined by the number of fields so if many MPI tasks are available

there may be fewer files. The number of writers can be varied and this is investigated later in

the report.

The repeat of the run will generate a new set of FDB dat files witht a fresh timestap

name. in the figure B2 the later run on 19
th

 October is shown along with the earlier 16
th

October run.

Figure B1: GRIB Code changes

NFPPHY=86,

MFPPHY=31,32,33,34,35,36,37,38,39,40,41,42,44,45,49,50,57,58,59,78,79,12

9,136,137,139,141,142,143,144,145,146,147,151,159,164,165,166,167,168,169,170,17

2,175,176,177,178,179,180,181,182,183,186,187,188,189,195,196,197,198,201,202,20

5,206,208,209,210,211,235,236,238,243,244,245,229,230,231,232,213,212,8,9,228089,

228090,228001,260121,260123,

