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Abstract 

Discrete element modelling (DEM) is used to simulate the response of granular materials for civil, 

process or chemical engineering applications. It is also used by physicists, geologists, geophysicists 

and mathematicians. The DEM algorithm is similar to molecular dynamics (MD) in many ways, but 

take up of high-performance computing (HPC) by the DEM user community is very low in 

comparison to the use of HPC for MD applications. Consequently the impact of current DEM 

simulations on industry and in basic science is restricted. The Large-scale Atomic/Molecular 

Massively Parallel Simulator LAMMPS is a widely used MD simulator. Due to the algorithmic 

similarities between DEM and MD, LAMMPS is a very good platform for DEM simulations. 

LAMMPS had previously included a “granular” module for DEM simulations, and while the resultant 

code is highly scalable, it lacks the necessary functionality for the majority of DEM applications.  

The main objective of this project was to add key functionality to granular LAMMPS by 

implementing new C++ code. This has increased significantly the type and number of highly-scalable 

DEM simulations that can be performed on HECToR by enabling simulation of laboratory tests 

routinely considered in geomechanics, for example. Specifically new boundary conditions were 

implemented and the interaction model for two grains was improved by, among others, implementing 

a new contact model for bonding between two grains. On completion of this project it is now possible 

for DEM HPC users to run stress-controlled simulations, or use an analogue to a membrane as part of 

simulations of laboratory tests of granular materials. It is also possible to simulate bonded granular 

materials such as porous rocks on HECToR, increasing the relevance of HPC to the DEM user 

community. This document describes in detail the new features introduced to the code and how these 

can be used to run test simulations of models much larger than previously possible. An example of 

such a large-scale simulation is included which demonstrates the potential of the use of DEM in an 

HPC environment, producing results otherwise impossible to obtain. 
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Key objectives of the work presented here 

Typically to date Discrete Element Method (DEM) simulations have been run on serial code by the 

UK-based DEM user community. A previous EPSRC-funded research project (EP/G064180/1) 

identified Granular LAMMPS as the most suitable open-source parallelised code for large-scale DEM 

simulations. However, to enable full advantage to be taken of the opportunities posed by using HPC 

facilities for DEM simulations it was imperative for the boundary conditions implemented in Granular 

LAMMPS to be developed. The first modification was to allow rigid wall movement, and so allow for 

strain controlled simulations, i.e. simulations where boundary displacement is specified. The second 

step was to implement a full stress-controlled rigid boundary. This completed the first part of Work 

Package 1. With the second part of Work Package 1 membrane boundaries were implemented. This 

allows the conduction of more realistic simulations of laboratory tests, which are routinely confined 

by latex membranes. As this feature is not currently available in any other open-source code, and 

requires a computationally expensive Voronoi diagram calculation it is thought that this inclusion will 

further increase the uptake of Granular LAMMPS and High-Performance Computing by the DEM 

user community. It should be finally noted that Dr Hanley (a co-member at the Imperial College 

http://gow.epsrc.ac.uk/NGBOViewGrant.aspx?GrantRef=EP/G064180/1
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LAMMPS developer group) has already added another boundary condition, deforming periodic 

boundaries for granular simulations to the Imperial College LAMMPS code-base (Hanley, 2013). 

Another area in which LAMMPS required development was the inter-particle interaction laws used 

for DEM simulations. A large amount of effort has gone into developing these for Molecular 

Dynamics simulations. However the Granular LAMMPS package which enables DEM simulations 

only contained a few basic models. These included a linear and a non-linear elastic contact spring, 

with each inter-particle interaction law implemented as a separate Pair class. A new non-linear 

elastic contact spring model was created which was more representative of a Hertz-Mindlin elastic 

contact most appropriate for DEM simulations of frictional grains. However the main aim of the 

second Work Package of this project was the addition of an interaction law for bonded particles. This 

was done so as to allow the modelling of bonded granular materials, such as porous rock or sandstone 

and so open up the use of HPC to DEM users in the geological sciences. It further allowed for a larger 

set of very interesting and potentially very important economically phenomena to be investigated with 

Granular LAMMPS. Examples include the deformation of sandstone after application of mechanical 

loads induced by drilling or pore-fluid extraction with applications in the hydrocarbon industry. 

Throughout this document class names, variables and LAMMPS input commands are identified by 

using a different font, e.g. compute_vector() so as to increase readability. 

 

Implementation of new boundary conditions for granular LAMMPS 

Background 

One of the drivers for the development of DEM has been geotechnical engineering (Cundall, 2001,  

Cundall and Strack, 1979). The use of DEM has expanded since the algorithm was first proposed 

(Cundall and Strack, 1979) and DEM has been adopted by a number of scientific and engineering 

disciplines. However, the simulation of geotechnical laboratory tests to develop a fundamental 

understanding of soil behaviour continues to represent a significant proportion of DEM simulations 

that are documented in scientific publications (e.g. Cui et al, 2007, Marketos and Bolton, 2010, Shen, 

2012). Such simulations can provide key guidance as to how representative material response can be 

best measured in the laboratory and have helped analyse the effect of boundaries on force 

transmission and displacement patterns inside a sample (which makes laboratory tests of granular 

materials very difficult to interpret). At the start of the current project granular LAMMPS only 

allowed the user to confine his sample with rigid walls, which could only move sinusoidally or in a 

direction coincident with the boundary plane (i.e. in shear). This functionality was overly restrictive as 

in most DEM simulations users require more complex control of the boundaries. This control is 

needed both in preparing the granular samples for testing and during the main simulation procedure. 
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Modifications to the FixWallGran class in LAMMPS 

Flat boundaries are implemented in LAMMPS in the FixWallGran class. The following additions 

were made to this class for this project: 

 The position (variables lo, hi) and velocity (velwall) of the flat boundary was included in 

the header file so that this be shared by all member functions. 

 Boundary movement was implemented through function move_wall which at the first 

instance calculates the new wall position through the formula 

tvxx walloldnew     (1) 

It should be noted that a more exact integration scheme might be implemented in the future 

should the need arise. This was thought unnecessary at this point as granular LAMMPS also 

uses this integration formula in the calculation of the shear force between two particles (e.g. 

in PairGranHookeHistory::compute()). 

 The total force applied by the walls to the particles was added as a variable in the header file 

and was calculated for all particles owned by a specific processor. An MPI_Allreduce 

command was then used to add these and obtain the total force applied by the wall to the 

particles which was stored in a 3-component array fwall_all . 

 The function compute_vector() was added so as to allow access to the wall positions 

and wall forces through the input script. 

 The function velscontrol() was added. This sets the wall velocity so that a specific wall 

force can be achieved. A proportional controller is used for this purpose and the velocity of 

the wall at the next timestep is set through the following formula 

)( actualtargetnew FFGv     (2) 

where G is a gain parameter selected by the user through the input script. Ftarget is the target 

force at the current timestep (set by the user through the input script) and Factual is the actual 

force applied by the boundary to the particles interacting with it. A more complicated 

controller could be implemented for this purpose (e.g. Proportional-Integral or Proportional-

Derivative) but this was unnecessary for routine DEM simulations where the samples are 

stable and the boundary force is relatively stable. 

 The function modify_param was added so as to allow the user to change the parameters or 

options for a flat boundary through a fix modify command. 

 

Use of moving and stress-controlled rigid boundaries at the input script 

The new flat boundary features can now be selected by the user through the fix wall/gran 

command in a LAMMPS input script. The format of the input command remains the same but 

optional arguments can be added to it to specify a moving or stress-controlled rigid boundary. For a 
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moving boundary the optional argument is translate followed by three numerical values, that set 

the velocities in the x, y, and z directions respectively. In order to stop wall movement the user can 

either set the wall velocities to zero through a fix modify command, or use a fix modify 

command with arguments translate off. 

The stress-controlled boundaries can be specified through use of the optional argument 

stresscontrol followed by either a numerical value or a character string starting with a v_ . In 

the first case the target force to be applied by the boundary to the particles in a direction normal to the 

boundary is set to a constant. Note that the sign convention used for force is the same as for the co-

ordinate system axes used, i.e. if a wall perpendicular to the x axis is used a positive value will mean 

that the target force to be applied by the wall to the particles will be in the positive x direction. Use of 

the character v_ instead of a number allows a time-varying target force to be set through use of a 

LAMMPS style variable. It is thought that in most cases a user will want to perform a simulation 

where the stress (i.e. the wall force divided by wall area) is time-varying, and so the variable to be 

used for the target force definition needs to include the positions of the points (or boundaries) defining 

the edges of a wall segment. Some examples of commands that can be used in the input script follow. 

Rigid Wall Example 1 

fix wallname all wall/gran ${kn} ${kt} ${gamman} ${gammat} ${xmu} 
${dampflag} zplane NULL 0.1 translate 0.0 0.0 -0.05 

In this example a flat boundary (fix of type wall/gran) with name wallname is created. The 

parameters enclosed in ${} are used to calculate the interaction forces between a boundary and the 

contacting particles. The argument zplane indicates that the wall is perpendicular to the z axis while 

the next two arguments specify the location of the boundary in LAMMPS fashion. Thus, this wall is 

located at a z value of 0.1 and interacts with particles with z coordinates lower than that. As discussed 

above the argument translate specifies that the wall will move by 0.05 length units / per time unit 

in the negative z direction. 

Rigid Wall Example 2 

This example considers a stress-controlled flat boundary with a time-varying target stress. This can be 

specified through the following commands: 

variable      targetstress equal 1000.0*step*dt 

variable targetFz equal -${targetstress}*(f_yright[2]-
f_yleft[1])*(f_xright[2]-f_xleft[1]) 

fix wallname all wall/gran ${kn} ${kt} ${gamman} ${gammat} ${xmu} 
${dampflag} zplane NULL 0.1 stresscontrol v_targetFz ${gain} 

Here the first two variable commands specify the variables used for the definition of the target 

force. For example if SI units are used for the simulation the target stress for wall wallname is 

increasing with a stress rate of 1000 Pascals per second. The target force for this wall is then set 

through the second variable command, where f_yright[2], f_yleft[1], f_xright[2] 

and f_xleft[1] are the coordinates of boundaries that specify a three-dimensional simulation 

box, as defined by walls with names yright, yleft, xright and xleft (see Figure 1 

below). The gain parameter for the wall is specified by the last argument after the optional 

stresscontrol argument. 
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Commands similar to the above were used to successfully stress a sample of approximately 1.45 

million grains on HECToR (see p.19 below). This represents a milestone for both the author and the 

research area as this simulation is significantly larger than ones previously attempted. 

 

Figure 1: A set of walls relevant for the example input command given above. 

 

Introduction of a membrane boundary condition in LAMMPS 

Background 

In many physical tests carried out in commercial and research soil mechanics laboratories the samples 

are confined by membranes that can flex and deform as the sample is compressed vertically. This 

extra degree-of-freedom in the out-of-plane direction is not possible with the rigid-wall boundaries 

described above, which overly constrain the displacement field inside a sample. For example a 

number of very important experimentally observed phenomena (e.g. shear banding) cannot be 

observed in simulations that use rigid boundaries, leading to inaccurate predictions for the shear 

properties of granular materials. To allow for the more accurate replication of laboratory test 

conditions, it was necessary to implement an analogue to a membrane boundary for use with Granular 

LAMMPS.  

Simulations of samples confined by membranes are not often performed as there is no open-source or 

commercial code available that contains the numerical algorithms required. Furthermore, the routines 

that implement this are computationally expensive and so in order to run a representative three-

dimensional simulation with a sufficiently high number of grains the only solution can be running in 

an HPC environment. For the above reasons the implementation of a membrane in Granular 

LAMMPS was assessed as a high priority. 

 

Description of the scheme chosen 

A number of schemes have been proposed in the literature as analogues to a membrane as summarised 

in Cheung and O’Sullivan (2008). They all rely on the calculation of an equivalent weight or area for 
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particles that are within a distance from the edge of the sample, which is then used to calculate 

external forces applied to the boundary particles - typically the force is the product of this area and a 

specified pressure. A scheme that implements a numerical membrane can therefore be separated 

conceptually in three main parts 

A. Selection of boundary particles 

B. Calculation of an equivalent area for each boundary particle 

C. Application of the membrane forces 

Initially membrane algorithms were developed for two-dimensional DEM simulations. In this case the 

solution is less complicated than in the three-dimensional case as the identification of boundary 

particles is straight-forward. Thomas and Bray (1999) and Cheung and O’Sullivan (2008) used the 

lengths of the line segments that connect the boundary particles in order to calculate membrane forces 

by multiplying these by the membrane pressure value. Kuhn (1995), O’Sullivan (2002) and Cheung 

and O’Sullivan (2008) all extended this concept to three-dimensional simulations by projecting the 

outermost particle centroids onto planar or cylindrical surfaces. The weight (or area) associated with 

each particle is then found through the calculation of a two-dimensional Voronoi graph for the points 

projected on the plane. The additional membrane force is finally set to the membrane pressure value 

times the area for each boundary particle. 

Even though the above represents some aspects of a membrane it has the disadvantage of only 

applying membrane forces that are perpendicular to the projection plane. A modified algorithm is 

proposed here so as to relax this condition. The new membrane implementation is thought to be more 

applicable to cases where the membrane flexes or bulges out of plane, and where the forces would 

deviate significantly from a direction perpendicular to the membrane projection plane. 

In the scheme chosen for this work the starting point for both parts A and B is the calculation of a 

weighted Voronoi graph (also called Laguerre or radical Voronoi graph – see Okabe et al, 2000) for 

the system of grains. The entire membrane calculation is implemented as the self-contained class 

FixMembraneGran, itself derived from the LAMMPS Fix base class. The forces on particles are 

incremented by the membrane forces through the function post_force() which is executed after 

the application of the inter-grain contact law for computation of the force on particles due to the 

contact springs (i.e. after the Pair::compute()command). A more detailed description of the 

implementation follows. 

 

Voro++, a software library for carrying out three-dimensional computations of 

Voronoi tessellations 

The implementation relies on the use of a Voronoi scheme for the calculation of membrane forces. As 

in DEM simulations particles often have different sizes (radii) the calculation of a Voronoi graph 

weighted by radius is most appropriate. Such graphs have been used for DEM before (e.g. Chareyre et 

al, 2012, Rycroft et al, 2009) but to the author’s knowledge it is the first time that these have been 

used as part of a membrane calculation. It was therefore necessary to identify a C++ library that 

included this calculation. Two possible candidates were identified (CGAL and Voro++). Voro++ 

(http://math.lbl.gov/voro++/), written and maintained by Dr Chris Rycroft of UC Berkeley was 

http://math.lbl.gov/voro++/
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chosen as it seemed easier to link into LAMMPS. Furthermore the Voro++ library carries out cell-

based calculations, computing the Voronoi cell for each particle individually and so fits in very well 

with the Granular LAMMPS parallelisation scheme which relies on spatial partitioning of the 

simulation volume. 

At the start of the project Voro++ was not linked to LAMMPS. However, a discussion in the 

LAMMPS user forum initiated by the author led to the release by the LAMMPS developers of a 

VORONOI package, which contained extra code that computes a regular Voronoi calculation for a 

group of particles (through the class ComputeVoronoiAtom). A new class 

(FixMembraneGran) was added by the author to this package to implement the membrane for 

granular samples, and a new class to compute the weighted Voronoi (or Laguerre) calculation for a 

group of grains (the new class ComputeLaguerreAtom). It should be noted that the VORONOI 

package can be optionally selected by the user to form part of his/her LAMMPS build, if any of the 

Voronoi or membrane features are required. 

 

Details of the implementation of the new FixMembraneGran class 

As a number of operations had to be performed on a weighted Voronoi graph it was not possible to do 

the graph calculation elsewhere as part of a LAMMPS compute class and then simply communicate 

the areas required to the class implementing the membrane. Instead all the calculations were included 

in a new LAMMPS class (FixMembraneGran). The new class contains a number of member 

functions for initialisation, book-keeping and integration with LAMMPS. The majority of the new 

code was added to member function post_force(), which gets called once every timestep. It 

should be noted that should future users wish to speed up their simulations this function could be split 

into two parts, one that updates the Voronoi graph used for the membrane forces calculation, and one 

which calculates and adds the extra membrane forces. The update of the membrane forces might then 

be called less frequently. The function post_force()does the following: 

 Initiates two Voro++ container_poly type classes which are used to perform the 

weighted Voronoi calculations. The coordinates and radii of grains that belong to each 

processor are then used as inputs to these container classes. The six edges for these 

containers (required by Voro++  - see the Voro++ documentation) are set by the user through 

the input script. It should be noted that the code might be made more efficient in the future 

by only adding grains within a distance from the expected sample edges to these containers. 

 Loops through the weighted Voronoi cells in the first Voronoi calculation. For each cell it 

loops through its set of neighbour cells and checks whether a neighbour with a negative id 

exists. Note that a negative neighbour id number in Voro++ identifies a cell that would 

extend to infinity. This step therefore identifies the boundary particles for the sample. 

 For each of the cells that extend to infinity it adds the coordinates of an imaginary particle to 

the container used to calculate the second weighted Voronoi graph. This imaginary particle is 

added at a distance twice the radius of the boundary particle in the direction towards which 

infinity was detected. The effect of this is to condition the new truncated boundary cell to 

pass through a point on the surface of the boundary particle and to have a face parallel to the 

membrane surface.  
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 Identifies the faces between the particles in the simulation and the imaginary particles. The 

areas (narea ) and their contact normals are used for the force calculation. 

 The force to be added to the boundary grains (Fextra) is calculated as 

membraneareaextra ApnF      (3) 

where pmembrane is the membrane pressure. It should be noted that as narea is no longer 

perpendicular to the membrane surface the extra membrane force on the particles is no longer 

constrained in any specific direction. However the per-particle membrane force is broadly 

perpendicular to the imaginary membrane surface. All boundary areas are included in the 

calculation and at the force on a grain is incremented as the calculation progresses. 

 

Testing of the membrane code 

The new membrane code was tested on the user’s local machine on a sample of 1600 grains confined 

by rigid walls on all six sides. After the sample was equilibrated the rigid walls were replaced by 

membranes on all six sides, with membrane pressures equal to the ones previously applied by the rigid 

walls. A number of LAMMPS cycles were run and the sample was seen to maintain the stress it was 

at. A plot of the Voronoi faces that make up the surface of the membrane is shown in Figure 2. Faces 

with normals parallel to the membrane surface are plotted in red. It can be observed that this new 

membrane algorithm successfully captures the detail of the sample along its edges and follows 

accurately the boundary surface of the sample. Simulations using this new membrane boundary 

condition will now be run for comparison with simulations run with rigid walls. The addition of this 

new boundary condition allows for the exciting prospect of investigating the formation of shear bands 

and the observation of the failure mechanism of a laboratory sample of sand, replicated with an 

accuracy not previously possible in DEM simulations. As a consequence the peak load a given 

granular sample can sustain will be more accurately predicted too. 

 

Figure 2: A plot of the membrane faces for a granular sample of 1600 particles. 
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Compilation of Voro++ on HECToR and inclusion of the VORONOI package 

in LAMMPS 

Both Voro++ and LAMMPS were compiled on HECToR using the GNU compiler. The following 

command needs to be executed as a first step for both compilations 

module swap PrgEnv-cray PrgEnv-gnu 

In order to compile the Voro++ libraries (from the source code obtained from 

http://math.lbl.gov/voro++/download/ ) the following steps had to be performed 

 modification of the config.mk file that comes with Voro++: CXX=CC was set (instead of 

g++) and PREFIX=/home/e***/e***/username/vorodirectory (a directory where the user has 

write access) 

 execution of the command make in the voro++ directory 

 followed by make install 

In order to compile LAMMPS with the optional VORONOI package the following had to be 

performed 

 the file Makefile.lammps in folder src/VORONOI/ had to be modified by setting 

voronoi_SYSINC and voronoi_SYSPATH as follows 

 voronoi_SYSINC = -I/home/e***/e***/username/vorodirectory/include/voro++ 

 voronoi_SYSPATH = -L/home/e***/e***/username/vorodirectory/lib 

 execution of the command make yes-voronoi in the LAMMPS src directory to include 

the VORONOI package code in the LAMMPS build. This should automatically update files 

Makefile.package.settings and Makefile.package adding voronoi_SYSINC and 

voronoi_SYSPATH. make yes-granular should also be executed for DEM 

simulations. 

 execution of the command make NAME in the LAMMPS src directory to make LAMMPS 

using the settings in Makefile.NAME in the src/MAKE directory. 

 if a compilation error occurs indicating that the Voro++ library cannot be found it is most 

likely that the automatic update of the paths above has failed. The user then needs to manually 

include the voronoi_SYSINC and voronoi_SYSPATH lines in file Makefile.NAME used 

above, plus the following command 

 voronoi_SYSLIB = -lvoro++ 
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Use of the membrane boundaries at the input script 

The new membrane boundary can be selected through a command of the following format.  

 

fix membranename all membrane/gran ${xleft} ${xright} ${yleft} 
${yright} ${zbottom} ${ztop}  ${pressurex} ${pressurey} ${pressurez}  
${distx} ${disty} ${distz} 
 

A membrane boundary (fix of type membrane/gran) with name membranename is created. 

Parameters enclosed in ${} signify LAMMPS style variables that specified through a variable 

equal command at the input script. Numerical values can also be specified for these directly. 

Values for xleft, xright, yleft, yright, zbottom and ztop are the bottom and top 

limits in the x, y and z Cartesian axes directions respectively for the container used in the calculation 

performed by the Voro++ library. These should be set to be roughly coincident to the locations of 

rigid walls that would form an imaginary container bounding the whole assembly of grains in the 

sample. 

 

Arguments pressurex, pressurey and pressurez  are the membrane pressures for the faces 

perpendicular to the x, y and z axes respectively. Here a positive value signifies an additional inward 

force for the sample (i.e. compression is positive). If any of these arguments is specified as NULL 

there are no extra membrane forces applied to the boundary particles for that particular set of faces. 

This could be the case when a rigid boundary is selected for this direction, for example. Arguments 

distx, disty and distz specify distance values necessary for correct calculation of membrane 

forces when the code is run in parallel. They should be set to values lower than the width of the 

minimum subdomain in the direction in question (x, y or z) but should be larger than the expected 

distance of the centroid of a boundary particle from the edges of the Voro++ container. When 

LAMMPS is executed in parallel a Voronoi calculation is performed at every processor and inclusion 

of these parameters ensures that membrane forces are only added for grains that are at the edges of the 

sample, and not at inter-processor boundaries. 

 

Extension of the contact models (pair styles) available in Granular LAMMPS 

Background 

In LAMMPS the inter-particle interaction is coded inside the Pair classes. A large amount of effort 

has gone into developing these for Molecular Dynamics simulations. However the Granular 

LAMMPS package which enables DEM simulations only contained a few basic models. These 

included a linear and a non-linear elastic contact spring, with each inter-particle interaction law 

implemented as a separate Pair class. A new non-linear elastic contact spring model was created 

which was more representative of a Hertz-Mindlin elastic contact most appropriate for DEM 

simulations of frictional grains. However the main aim of the second Work Package of this project 

was the addition of an interaction law for bonded particles, making possible simulations of porous 

rocks and opening up the use of HPC to DEM users in the geological sciences, among others. 
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Addition of the PairGranShmHistory class 

Dr Kevin Hanley and Mr Xin Huang, members of the Imperial College LAMMPS developer team 

identified that the non-linear elastic interaction law in class PairGranHertzHistory differed 

from the Hertz-Mindlin interaction (see Mindlin and Deresiewicz, 1953 or Itasca, 2003) commonly 

used in DEM simulations. The calculation of normal force (i.e. force in the direction of the vector 

connecting the centres of two contacting particles) was that predicted by Hertzian theory (Johnson, 

1985) but the interaction in the plane perpendicular to that (i.e. the shear or tangential interaction) 

differed. It was therefore thought appropriate to add a new pair class (PairGranShmHistory) that 

implements a Hertz-Mindlin interaction. It should be noted that addition of a new class instead of 

modification of the existing one was thought best for backwards compatibility issues. 

The new class was implemented as a child of the PairGranHookeHistory class and so shares a 

number of member functions necessary for Pair classes with it. The computation of inter-particle 

forces (as redefined in the compute() function) is very similar to the one for other granular classes, 

a key difference being that the quantity stored in the per-particle shear[] array is now the shear force 

from the previous timestep and not the extension of the shear spring as in 

PairGranHookeHistory or PairGranHertzHistory . As mentioned above the normal 

force in this new interaction model is identical to the one in 

PairGranHertzHistory::compute() for no contact damping. The shear force equation 

implemented here however is the following: 

tuRRRR
v

G
F shearBABAnshear 


 )(

2

4
   (4) 

where shearF is the increment in the shear force at the current timestep, G is the grain materials 

shear modulus, v the Poisson ratio, δn the displacement of the normal spring (i.e. the grain overlap), RA 

and RB the radii of the two contacting grains, Δt the timestep value and Δushear the rate of extension of 

the tangential spring. It should be noted that no contact dashpot was implemented in this Pair style 

as there are other LAMMPS fix classes (e.g. FixViscous) that can be used to damp out 

oscillations in DEM simulations. Also, to enable use of this new interaction law in DEM simulations 

with flat boundaries the function shm_history() was added to the class that implements the flat 

boundaries (FixWallGran). The new pair class was then used for the simulations discussed on page 

16, and an example command will be given at the end of this section. 

 

The PairGranHookeHistoryPbond class that implements the new 

bonding model  

A number of bonding models have been proposed for use with DEM simulations (Potyondy and 

Cundall, 2004, Utili and Nova, 2008, Weatherley, 2009). Of these the model proposed by Potyondy 

and Cundall is the one most often used. Members of the Imperial College LAMMPS users group have 

used this model before  in a number of simulations (Marketos and Bolton, 2009, Hanley et al, 2010, 

Cheung and O’Sullivan, 2008) when using other serial codes and so it was thought that addition of 

this model to Granular LAMMPS was most appropriate. 
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There were two options for implementing the new bonding model in Granular LAMMPS. This could 

be done through the use of either a bond style, or a pair style. The bond style offered the advantage of 

a self-contained scheme for the calculation of the interaction forces between bonded grains. However 

in LAMMPS such bond styles are only available for Molecular Dynamics simulations. The challenge 

when adopting LAMMPS bonds for Discrete Element simulations was that in DEM extra per-bond 

memory needs to be allocated for the bond state information. This memory then needs to be copied 

across processors when grains move through processor boundaries and dealt with properly when 

bonds get added or removed from a bond list. 

Instead the author chose to implement the bonded model as a Pair class in LAMMPS. This offered 

the advantage of using the contact list (called a neighbor list in LAMMPS) to store the bond 

state information. The granular neighbor list logic is well-established in LAMMPS and 

has been tested and debugged by numerous users over the past years. It therefore provided a safe way 

of proceeding with the implementation of a bonded model in the limited time available for this 

project. The following was necessary as part of the new PairGranHookeHistoryPbond class. 

 The number of per-contact quantities stored with the granular neighbor list had to 

be increased. This was done through a modification to the FixShearHistory class so that 

it takes an extra argument, the number of per-contact quantities to be allocated. The default 

number of such quantities for granular pair styles in LAMMPS was 3, but the new bonded 

model required 12 per contact quantities. Entries 0 to 2 of this per contact array were reserved 

for the three Cartesian components of the extension of the shear spring, similar to what was 

implemented in the PairGranHookeHistory class. Entry 3 was a number set to 1.0 for 

bonded contacts or -1.0 for unbonded ones and entry 4 contained the equilibrium distance for 

the bond normal springs, used to calculate the bond force in the direction of the inter-grain 

contact normal. Entries 5 to 7 were reserved for the Cartesian components of the shear bond 

force and 9 to 11 for shear bond moment, while entry 8 contains the bond moment in the 

direction of the inter-grain contact normal. Conversations with Dr Christoph Kloss (JKU 

Linz, Austria) when adding to the per-contact quantites list were very useful. 

 A compute() function was coded. This implemented the equations as described in 

Potyondy and Cundall (2004). 

 A pbondflag was introduced to indicate whether a bond exists at a specific contact. 

 Bond creation was dealt with inside the compute() function. A createflag was used to 

indicate whether parallel bonds should be installed at all eligible contacts, typically at the start 

of a simulation. The condition for bond installation was that the overlap between two spheres 

should be larger than a specific value (d_install). If no d_install value was set by the 

user the default behaviour was to install bonds at all contacts where there was overlap. A 

negative value of d_install meant that bonds would be installed to connect non-

overlapping contacts while a positive value meant that only contacts with overlaps greater 

than d_install would be bonded. Bond creation was only allowed in the beginning of a 

simulation, or after the execution of a pair_modify command. 

 Bond breakage was checked for at every timestep. This was done inside the compute() 

function. The normal and shear bond stress were calculated and if these exceeded a certain 

normal or shear stress the bond was set to break either in tension, compression, shear or 
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torsion. After bond breakage the inter-particle interaction reverted to that of a contact spring 

alone. 

 

Verification of the bonded interaction model 

Cheung (2010) detailed the results of an investigation of the behaviour of a two-grain bonded system 

in commercial code PFC3D, which implements the model of Potyondy and Cundall (2004). Two-

grain simulations identical to the ones presented in Cheung were performed here with a serial 

executable of LAMMPS in order to verify the implementation for the bonded model. In these 

simulations two grains (A and B) of a radius of 0.5m were created just touching each other. The 

velocity and angular velocity of grain A were set to zero and grain B was moved with both contact 

springs and a parallel bond installed at the contact. A sketch of the 2-grain initial positions is given in 

Figure 3. Figures 4, 5 and 6 plot the results for simulations of inter-grain movement in the normal and 

shear directions and for spin about the contact normal. The relevant figures from Cheung (2010) are 

also shown for comparison. As the results agree very well the current implementation of the inter-

particle bonded interaction is verified. 

 

Figure 3: A schematic of the 2-grain arrangement used for the bonding model verification simulations 

(after Cheung 2010) 

 

 

Figure 4: The results for inter-grain movement in the normal direction (creating tension in the bond). 

Note that after 3000 steps the bond breaks. (a) LAMMPS and (b) Cheung (2010) results using PFC
3D

. 

(a) (b) 
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Figure 5: The results for inter-grain movement in the shear direction. Note that after 10000 steps the 

bond breaks. (a) LAMMPS and (b) Cheung’s (2010) results using PFC
3D

. 

 

Figure 6: The results for the case when one grain spins relative to the other. Note that after 10000 

steps the bond breaks. (a) LAMMPS and (b) Cheung’s (2010) results using PFC
3D

. 

 

Use of the new inter-grain interaction models at the input script 

The modified Hertzian spring can be selected through the following command 

 

pair_style  gran/shm/history  ${G}  ${Poisson}  ${mu} 
 

Here the last three arguments are the shear modulus, Poisson ratio and frictional coefficient for grains 

respectively. These can be enclosed in ${} and specified as LAMMPS style variables through a 

variable equal command preceding the pair_style command, or specified with their 

numerical values directly. The above command needs to be followed by 

 

pair_coeff * * 
 

(a) (b) 

(a) (b) 
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for compatibility with other LAMMPS pair commands. In cases where a granular wall is needed with 

the new modified Hertzian model this should be specified through a command of the type: 

 

fix   wallname all wall/gran ${G} ${Poisson} 0.0 0.0 ${xmu} 0 zplane 
NULL 0.1 
 

where the format of the wall command with all its optional arguments is followed and the only wall 

parameters needed are the shear modulus, the Poisson ratio and the frictional coefficient describing 

the behaviour of the ball-wall contact. 

The new bond model can be specified through the command 

 

pair_style   gran/hooke/history/pbond  ${kn} ${kt} ${xmu} ${kbn} 
${kbt} ${nstrength} ${sstrength} ${bradmul} ${d_install} 

 

where kn and kt are the linear contact spring normal and tangential stiffnesses and xmu is the 

frictional coefficient for the contact. kbn and kbt are the spring bond stiffness densities, nstrength and 

sstrength the normal and shear strength of the bond that controls bond breakage. bradmul is the ratio 

of the minimum radius of the two grain assembly that is used as a radius for the bond disc and 

d_install is the overlap above which bonds should be installed. Note that a negative value for this 

means that bonds will be installed between non-contacting grains too. Again this pair command needs 

to be followed by pair_coeff  * *. 

 

A large-scale simulation that makes use of the new features implemented  

A large-scale simulation was performed in an HPC environment so as to illustrate the potential of the 

use of granular LAMMPS. 1.95 million grains were rained under gravity and were equilibrated inside 

a container similar to the one shown in Figure 1. The grain properties (e.g. grain size, density, 

stiffness) were representative of a sample of fine glass beads used by experimentalists in Bristol 

University in an ongoing EPSRC funded research project (EP/G064180/1), and the sample container 

had the same dimensions as the laboratory container. After raining of the particles the top was 

flattened by removing approximately 500,000 grains so that the sample used for the subsequent 

simulations contained 1,428,532 grains. The timestep chosen for this simulation was chosen according 

to published guidelines (see Itasca, 2003) and a stressing simulation was set up, with a stress rate of 

200kPa/sec for all six sides of the sample container, by using the commands described above. 

The mean stress versus time and mean stress versus volumetric strain for the simulation are given in 

Figures 7a and 7b below. In Figure 7a it is clear that the sample stress indeed followed the target 

stress for the stress-controlled moving wall. Figure 8 shows the results for a simulation where the gain 

parameter was incorrectly chosen to be too low; here a system instability can be observed as the wall 

stress oscillates above and below the target stress. An appropriate value for the gain parameter for the 

stress-controller was found by trial and error here; identification of this is the topic of further work, 

but it should be a function of the sample stiffness and stress rate. This is due to the fact that its value 

must depend on how fast the target stress changes in a given timestep, and on how much the boundary 

velocity affects the boundary force (i.e. what is the value of the tangent to force-displacement curve 

for a boundary). 

http://gow.epsrc.ac.uk/NGBOViewGrant.aspx?GrantRef=EP/G064180/1
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Figure 7: Stress-controlled compression of a sample of 1.43million grains (a) A plot of stress versus 

time (b) Mean stress versus volumetric strain. 

 

Figure 8: Stress-controlled compression of a sample of 1.43million grains: Sample instability for 

incorrect choice of the stress-controller gain parameter. 

 

The sample, which was stressed at 100kPa was then used for a simulation of wave propagation from a 

point source, analogous to a bender element laboratory test. This test is commonly used in the 

laboratory for determination of the shear stiffness of a soil sample but the signals produced are poorly 

understood. As part of the above-mentioned EPSRC-funded research project (EP/G064180/1), co-

workers at Imperial have simulated a bender element test in smaller DEM simulations (see 

O’Donovan et al, 2012). Simulations that have used HECToR have led to wave propagation virtual 

experiments in larger samples (see Fig. 9 for a received signal for one such simulation). As briefly 

discussed above the use of HPC has allowed for the direct replication of a laboratory test conducted 

by collaborators at Bristol University on a material with much smaller grains. This is very important 

as it has allowed for an increase in the number of full wavelengths that can be contained within the 

sample and an increase in the wavelength to mean grain size ratio, both of which affect profoundly the 

wave propagation patterns observed. With this larger simulation it was therefore possible to 

investigate more representative values for these parameters and identify their exact effect of the 

signals received. Wave velocities, differences in the shapes of the propagated signals and the exact 

(a) (b) 

http://gow.epsrc.ac.uk/NGBOViewGrant.aspx?GrantRef=EP/G064180/1


18 

 

wave propagation patterns within the samples will all now be analysed with the aid of the data 

collected on the larger samples. 

 

Figure 9: The input and received signals for a point-wave excitation simulation on a sample of 

1.45million grains that was stressed at 100kPa on HECToR. 

 

Outcome of the work and future prospects 

The simulation illustrated above represents a milestone for both the author and the research area. It 

contains 30 times more particles than anything attempted before by the author, while total simulation 

times, including sample preparation were not in excess of six weeks. Sample preparation was 

performed on cx1, the HPC cluster at Imperial College London, on 72 cores using an infiniband inter-

connect and took approximately a month. The subsequent stressing was performed on HECToR using 

8 fully populated nodes (256 cores) and took approximately 48 cpu hours to reach a stress of 1MPa 

representing a total simulation time of 5 seconds, i.e. a total of more than 20million timesteps. We 

have been monitoring the size of simulations used in DEM simulations for geomechancis applications 

(e.g. O’Sullivan, 2011) and we know of no other study where analysts have simulated in excess of 1 

million particles and compressed the particle assembly in a controlled manner. This is therefore a 

significant development for the research field. 

At the start of the author’s involvement granular LAMMPS we were not aware of any UK academic 

running DEM simulations in an HPC environment. At the moment the Imperial College DEM user 

group has four members, all of which are using HPC for their DEM simulations and another member 

who is investigating the use of granular LAMMPS and is considering adopting it over a commercial 

serial code he is using. Simulations are currently being run on a number of very diverse topics. These 

include simulations of wave propagation through sand, of tunnelling through soil, of internal erosion 

through dam structures, of cyclic loading of sand, and of liquefaction of sand. We are aware of the use 

of granular LAMMPS on research projects directed by Dr Xia Li of Nottingham University and Dr Jin 
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Sun of Edinburgh University, both of which will benefit from the developments resulting from the 

project described here. 

The author and co-workers are in the process of producing a publication in an international refereed 

journal which will contain a description of simulations conducted using the new features added to 

LAMMPS here. This will attract attention to the use of HPC for DEM simulations and will act as a 

tangible proof of the potential of the combined use of granular LAMMPS and HECToR for high-

impact science. It is thought that this will attract a number of new users to HECToR; the author has 

already demonstrated the use of HECToR to colleagues at Napier University for example. 

Furthermore, the developments detailed here will allow more DEM users to move away from 

commercial codes and free up EPSRC funds that were otherwise spent on software licences. It should 

be finally noted that all developments detailed here are already part of the Imperial College LAMMPS 

version that is shared between researchers locally. The author has contacted Dr Steve Plimpton (the 

main LAMMPS developer) with the intent of adding the new LAMMPS classes to the main 

distribution. Efforts are also underway to add these to the LIGGGHTS codebase (a software effort 

also based on granular LAMMPS) through discussions with Dr Christoph Kloss, one of its main 

developers. In the meantime the new features will be publicised through replies to active discussion 

topics in the online LAMMPS user forum. 
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