
Massively Parallel Computing for Incompressible

Smoothed Particle Hydrodynamics

Xiaohu Guo a, Benedict D. Rogers b, Peter. K. Stansby b,
Mike Ashworth a

aApplication Performance Engineering Group,
Scientific Computing Department, Science and Technology Facilities Council,

Daresbury Laboratory, Warrington WA4 4AD UK
bSchool of Mechanical, Aerospace and Civil Engineering,
University of Manchester, Manchester, M13 9PL, UK

Summary of the Project Progress

The incompressible smoothed particle hydrodynamics (ISPH) method with projection based
pressure correction has been shown to be highly accurate and stable for internal flows.

We have proposed a focused effort to optimize an efficient fluid solver using the incom-
pressible smoothed particle hydrodynamics (ISPH) method for violent free-surface flows on
offshore and coastal structures. In ISPH, previous benchmarks showed that the simulation
costs are dominated by the neighbour searching algorithm and the pressure Poisson equa-
tion(PPE) solver. In parallelisation, a Hilbert space filling curve(HSFC) and the Zoltan[5]
package have been used to perform domain decomposition where preservation of the spatial
locality is critical for the performance of neighbour searching

The following list highlights the major developments:

• The map kernel which provide the functionality of sending particles and their physical
field data blocks to an appropriate partition have been rewritten and optimised with
MPI one-sided communications and Zoltan distributed directory utility. The percentage
of the map kernel is now reduced to less than 20% for those simulations with particles
distributed evenly across the domain. For non-evenly distributed particles, using only
non-empty cells will be part of future work.

• The nearest neighbour searching kernel has been rewritten with the preconditioned dy-
namic vector approach and linked list approach. Several optimisations have also been
achieved during modification of the kernels:

· A generic interface has been added so that it can be called by setting input parameters.
· The inter-particle distance is always calculated rather than being stored, which has

better cache performance and small memory footprint. The code is now 10 times faster
when using small number of particles, and up to 3 times faster when using large number
of particles.
· The optimisation of smooth kernel functions to reduce memory footprint.

Final Report for DCSE ISPH 29 March 2014

· With above two modules, the memory footprint is much smaller than before.

• The cell reordering along the Hilbert space-filling curve have been implemented, but the
performance improvements is not as large as expected, The main issue is the overhead of
reorder itself. the overall performance improvement by reorder cells is less than 5%.

• The optimisation of the pressure Poison Equation (PPE solver).

· The new Yale sparse matrix format have been replaced with PETSc CSR format, this
has greatly reduced memory footprint.
· The particles have been renumbered before assembling to the global matrix, as an result,

insertions of values to the global matrix become local operations. The performance of
the PPE solver have greatly improved. With multi-grid pre-conditioner in PETSc, the
code can now scale well up to 8 thousands cores with up to 100 million particles.

Key words: Smoothed Particle Hydrodynamics; Poisson Equation; MPI; Space-filling
curve; Sparse Linear Equation; PETSc; Neighbour List Searching

1 The ISPH dCSE project

The ISPH software[1][2] has been in development for several years for tackling grand-
challenge problems in coastal and offshore engineering, e.g. complex, generally highly
nonlinear and distorted, wave motion, which may involve breaking, bore propagation,
aeration, structure interaction and violent impact. The original version of the ISPH
code is serial. Since August 2010, the current code has been developed jointly as part
of an EPSRC-funded project between the Manchester SPH group and Daresbury
Application Performance Engineering Group(APEG). The code has been rewritten
with Fortran 90 and parallelised with MPI using Zoltan for domain decomposition
and dynamic load balancing and PETSc for the sparse linear solver.

The remaining part of this report is organised as follows: In the next section we
describe optimization of particle mapping kernel. Section 3 will address the neighbour
list searching techniques and optimizations. Section 4 discusses how we optimise
pressure Poisson solver with PETSc. Section 5 shows the final performance results,
finally Section 6 contains a conclusion and discussion about further work.

2 WP1: Optimization of the particle mapping kernel

ISPH utilizes Zoltan 1 for domain decomposition. Previously, the particles were placed
in cells which were then used to construct the neighbour list. Now, we use a Hilbert

1 http://www.cs.sandia.gov/zoltan/Zoltan.html

2

(a) Cells decomposition with 4 MPI tasks (b) Particles decomposition according to their
cells decomposition

Fig. 1. Domain decomposition using HSFC with Dam Break test case

space-filling curve to decompose the cells which implicitly defines a data-to-processor
assignment(see Fig. 1(a) and Fig. 1(b)). Mapping routines provide the functionality
of sending particles and their physical field data blocks to an appropriate partition.
Using the CrayPAT profiling on 1024 MPI tasks revealed that the main bottle neck is
the use of MPI GATHERV, consuming about 86% of the total MPI communication
time, originating from the mapping functions. One of the main reasons is that this
mapping function retains the map of the identification of an individual cell, cell id,
and partitions identification (ID) numbers globally. For highly violent flow cases,
such as a dam break, the number of cells is normally much larger than the number of
particles. For a large number of particles, storing this map as global shared property
is inefficient. We propose two ways to tackle this issue.

2.1 Optimize particle mapping kernel with MPI one-sided communication

Mapping routines provide the functionality of sending particles and their physical
field data blocks to an appropriate partition. Within each time step, we only update
mapping subroutines once. The mappings are saved in cpid (see pseudo code Listing 1)

! ! Create window f o r c e l l p a r t i t i o n id
c a l l MPI Win create (cpid , s i z e o f w i n , d i s p i n t , MPI INFO NULL

, MPI COMM WORLD, win , i e r r)
! ! Create the new datatype f o r each MPI p a r t i t i o n
c a l l MPI Type indexed (ncloca , b lock len , s o r t e d i d (1 : nc loca)
−1, MPI INTEGER, ntype , i e r r)

c a l l MPI Type commit (ntype , i e r r)

3

c a l l MPI Win fence (0 , win , i e r r)

do ip = 0 , nproc − 1
t a r g e t d i s p=0
c a l l MPI Put (c e l l p a r t s , nc loca , MPI INTEGER, ip ,

t a r g e t d i s p , 1 , ntype , win , i e r r)
enddo

c a l l MPI Win fence (0 , win , i e r r)
c a l l MPI Type free (ntype , i e r r)

c a l l MPI Win free (win , i e r r)

Listing 1: mapping kernel pseudo code

Some notes on the MPI one-sided communication: all address arguments are of MPI
defined type MPI Aint in c and integer (kind = MPI ADDRESS KIND) in Fortran.
MPI Aint is defined to be an integer of the size needed to hold any valid address on the
target architecture. Without using integer (kind=MPI ADDRESS KIND) in Fortran
will result segmentation fault.

Using MPI derived type for MPI PUT operation will help to reduce number of
MPI PUT operations per MPI Tasks.

2.2 Zoltan Distributed Directory

For those simulations where the number of cells is several times larger than number
of particles, keeping and updating such a global mapping is very expensive. A dis-
tributed approach is more appropriate for such a mapping. Here, we propose using
the distributed directory utility provided by Zoltan, which employs a rendezvous al-
gorithm[3] to manage the cells locations after data migrations or to make information
globally accessible. A distributed directory balances the load (in terms of memory
and processing time) and avoids the bottleneck of a centralized mapping design.

However, since the Zoltan library does not offer a Fortran interface for the Distributed
Directory, it has been necessary to create a Fortran interface. The following functions
in Distributed Directory have now been provided in the Fortran interface:

• Zoltan DD Create: Allocates memory and initializes the directory
• Zoltan DD Destroy: Terminate the directory and frees its memory.
• Zoltan DD Update: Adds or updates GIDs’ directory information.
• Zoltan DD Find: Returns GIDs’ information (owner, local ID, etc.)
• Zoltan DD Remove: Eliminates selected GIDs from the directory.

4

Algorithm 1. ISPH Domain Decomposition and Dynamic load Balancing Algorithm with
Zoltan Distributed Directory

Read in the particles data, calculate the domain size
call cell generation() {constructing cells}
call get cell weight() {calculate number of particles in each cells}
call Zoltan DD Create(dd, ...) {initialize the directory}
for t = 1→ total number of timesteps do

call zoltan partition(change) {Zoltan uses HSFC to decomposition cells, param-
eter change indicates whether there is partition changes}
if change then

call update local cells gid()
call Zoltan DD Update() {update the directory information after partition}

end if
call particle migration()
call Zoltan DD Find() in halo update(){Find all required cells partition infor-
mation from the directory}
performing local calculation

end for
call Zoltan DD Destroy() {Terminate the directory and frees its memory}

Algorithm 1 shows the implementation details of Zoltan Distributed Directory to-
gether with domain decomposition and dynamic load balancing algorithm. We have
to use a c pointer in order to pass around the Zoltan Distributed Directory object.

We have experimented the above approach with Dam Break test case using 55 million
particles running with 2048 MPI tasks. The CrayPAT profiling results showed that the
map kernel now uses under 10% of the memory??? (see Fig. craypat MPI Alltoall)
with 2k cores.

3 WP2:Optimising neighbour list searching module

In general, no matter how fast or how highly parallelized the computing system is,
it is evident that simulations with a large number of particles are only possible if an
efficient neighbourhood search algorithm is employed. there are two methods typically
used to construct neighbour lists: the first method is the cell-linked list (CLL) method
which creates a list linked to every cell used to calculate the possible interactions
among particles placed in the same and neighbour cells. The second method called a
Verlet List (VL) creates a list linked to every particle. The ISPH code uses the CLL
method as it requires less memory than VL method. The first step in the creation of a
list is similar in both approaches since particles should be initially organized in cells.
There are several approaches to allocate particles to cells to construct a neighbour
list such as the linked list approach, which has similar performance and memory
footprint to the preconditioned dynamic vector [4]. Therefore, we have rewritten

5

the neighbour list module with the preconditioned dynamic vector approach and
linked list approach, Using the linked list approach offers the potential to provide the
appropriate data structure for adaptive particle simulations (where particles are split
and merge similar to adaptive mesh refinement, AMR) since memory pre-allocation
for each particles neighbour list is particularly difficult when not using the linked list
approach. The neighbour searching module with a preconditioned dynamic vector can
be used for those non-adaptive SPH simulations with a moderate number of particles.

In the original code, in each time step, all particles distances are only calculated once
and saved in three arrays, say drx, dry, rr2 in 2-D. The size of each array is about
num of particles∗num of links which saves a lot of repeated floating operations, In
the current development code, those three arrays are replaced with functions which
have reduced memory footprint but have more repeated floating operations. Table 1
compared the serial performance between original code and the current code with 1
core using static water test case. The code is now 10 times faster when using small
number of particles, and up to 3 times faster when using large number of particles.

Table 1
The wall time comparison between original version and current version

Number of Particles 1257 (10 timestep) 125250(1 timestep)

The Original version (s) 0.96 191.6

The Current version (s) 0.091 63.76

3.1 Reordering Particles

The original order of particles are normally stored following the order of initially given
order, eg: wall particles, fluid particles, and mirror particles. The memory layout does
not change during the simulation. Reordering particles reorganizes the data memory
accesses so that one can load the cache with a small subset of a much larger data
set. The idea is then to work on this block of data in cache. By using/reusing this
data in cache we reduce the need to go to main memory (which is much slower than
access to cache, and this also helps to reduce demands on memory bandwidth).

Since SPH neighbour searching is operated according to cells’ neighbours, it is natural
to consider ordering particles according to cells order. In the ISPH code, the cells have
been ordered on the Space-filling curve(see Fig. 2), therefore the particles will also be
reordered according to cells Space-filling curve order. As a result, the memory access
will be changed every few timesteps due to reordering and particles moving. And
these changes will improve the cache performance since HSFC keeps data locality.

6

(a) The original order of cells (b) Cells ordered along the Space-filling curve

Fig. 2. The cells’ original order v.s. the cells’ HSFC order

4 WP3: Optimisation of pressure Poisson solver

Nearly 47% of the total computation is spent in the pressure Poisson solver in the
current ISPH serial version. To solve the pressure Poisson equation efficiently, the
PETSc software[6] has been employed within the ISPH code.

4.1 Vector Data type in PETSc

In PETSc, vectors are used to store discrete PDE solutions, right-hand sides for linear
systems, etc. In parallel, the vectors can be created with the following functions

• VecCreate(MPI Comm comm,Vec *v);
• VecSetSizes(Vec v, int m, int M);
• VecSetFromOptions(Vec v);

In order to create user specified length of vectors, we replace VecCreate with Vec-
CreateMPI for parallel or VecCreateSeq for serial. We use VecSetValues instead
of VecSetValue to set an array of values into PETSc vector, which has better per-
formance than VecSetValue.

4.2 Matrix Data type in PETSc

The serial version of ISPH used the new Yale format of sparse matrix, while the
default matrix representation within PETSc is the general sparse AIJ format (also
called the Yale sparse matrix format or compressed sparse row format, CSR). The
matrix to be solved must be assembled for entry into the PETSc matrix. By default

7

the internal data representation for the AIJ formats employs zero-based indexing.

PETSc partitions matrices by continuous rows, while in the ISPH code, each row
represents all neighbouring particles of a specific particle. The renumbering matrix
has to be employed so that each partition can assemble its own matrix.

Suppose we are solving

AX = b (1)

Let P be any permutation matrix, instead solve linear system 1, we solve the renum-
bered matrix:

PAP T (PX) = Pb (2)

With the HSFC, solving linear system (2) will have smaller bandwidth than directly
solving linear system (1), this further helps to boost the performance of the PPE
solver.

4.3 Preconditioner and solver

At the beginning of the ISPH project, the default solver option was using Jacobi as
the preconditioner (PCJACOBI) and Stabilized version of BiConjugate Gradient
Squared solver (KSPBCGS). With the improving the implementation of PETSc
library for matrix solvers, we are now able to use a multi-grid preconditioners such
as HYPRE BoomerAMG, PETSc GAMG, which has dramatically improved the con-
vergence, robustness and the execution time. BE SPECIFIC ...

5 WP3: Final Benchmarking and Performance Analysis

The wet bed dam break and the static water have been used in this work as the
benchmark test cases. The total number of particles used for benchmarking varies
from 2 million up to 100 million. We are using UK National HPC platform HECToR,
which is Cray XE6 system. It offers a total of 2816 XE6 compute nodes. Each compute
node contains two AMD 2.3 GHz 16-core processors giving a total of 90, 112 cores;
offering a theoretical peak performance of over 800 Tflops. There is presently 32 GB
of main memory available per node, which is shared between its thirty-two cores,
the total memory is 90 TB. The processors are connected with a high-bandwidth
interconnect using Cray Gemini communication chips. The Gemini chips are arranged
on a 3 dimensional torus.

8

Fig. 3. ISPH Performance Comparison

The speedup Sp and efficiency Ep are obtained with the following formula:

Sp = T1/Tp, Ep = Sp/p (3)

where T1 is the wall time with 1 node, each node comprises 32 AMD Interlagos cores,
Tp is the wall time with p nodes(p ≥ 1).

Table 2
Time Spent in Zoltan Partition

cores 32 64 128 256 512 1024

Time(s) 0.0625 0.0879 0.0715 0.0784 0.0952 0.1147

Table 2 gives the total timing of Zoltan domain decomposition with HSFC using
2 million particles with 32 cores up to 1024 cores. For 1024 cores, each time step is
around 11s while Zoltan partition time is only about 1.01% for 1024 cores. For smaller
number of cores, the percentage of Zoltan partition time is much smaller compare
with total time.

Fig. 3 shows the ISPH solver run time and parallel efficiency using GMRES with
the HYPRE BoomerAMG multi-grid preconditioner where the code has been bench-
marked from 1024 to 8192 cores. The time spent in matrix assembly is very small
compared with the time required for the solver. The average PPE solver parallel effi-
ciency for ISPH is now well above 85% scaling from 1024 to 8192 cores showing that
efficient large-scale ISPH simulations can now be run for real applications.

From Fig. 4, we can see that MPI still accounts for the 41% of the whole ISPH
performance, the major cost MPI Allreduce comes from Zoltan. As there are empty

9

Fig. 4. CrayPAT Sample Profiling Statistic of ISPH with 2048 MPI Tasks
Samp% | Samp | Imb. | Imb. |Group

| | Samp | Samp% | Function

| | | | PE=HIDE

100.0% | 28609.0 | -- | -- |Total

|--

| 40.8% | 11665.1 | -- | -- |MPI

||---

|| 22.9% | 6557.1 | 319.9 | 4.7% |MPI_Allreduce

|| 9.0% | 2576.2 | 89.8 | 3.4% |mpi_alltoall

|| 3.1% | 890.4 | 41.6 | 4.5% |mpi_scan

|| 3.0% | 861.9 | 348.1 | 28.8% |mpi_bcast

|| 1.2% | 350.6 | 1243.4 | 78.0% |mpi_waitall

||===

| 36.7% | 10493.6 | -- | -- |ETC

||---

|| 13.1% | 3757.1 | 562.9 | 13.0% |hypre_ParVectorInnerProd

|| 11.1% | 3161.4 | 3332.6 | 51.3% |hypre_ParCSRCommHandleDestroy

|| 3.8% | 1084.0 | 4242.0 | 79.7% |hypre_BoomerAMGRelax

|| 2.0% | 585.0 | 1361.0 | 70.0% |hypre_CSRMatrixMatvec

|| 1.0% | 279.7 | 967.3 | 77.6% |PETScParseFortranArgs_Private

||===

| 14.7% | 4194.0 | -- | -- |USER

||---

|| 4.0% | 1137.0 | 634.0 | 35.8% |__mirror_parts_generator_MOD_generate_mirror

|| 1.8% | 523.8 | 895.2 | 63.1% |__cell_base_MOD_construct_cell_linked_list

|| 1.5% | 439.3 | 99.7 | 18.5% |MAIN__

|| 1.1% | 303.5 | 38.5 | 11.3% |__sph_kernel_MOD_kernel_calculation

||===

| 6.7% | 1902.5 | -- | -- |PETSC

||---

|| 3.4% | 982.9 | 369.1 | 27.3% |PetscCommDuplicate

|| 3.1% | 901.0 | 321.0 | 26.3% |PetscSetDisplay

|==

cells with Dam Break test case, in future work, we think using non-empty cells as
Zoltan objects will greatly reduce number of cells for domain decomposition and
dynamic load balancing, and therefore improve the Zoltan performance. The PPE
solver is now about 43.4%, the majority costs are within HYPRE BoomerAMG.
Kernel calculation is now well under 2% as the result of the neighbour list searching
optimization.

We have experimented the particles reordering along the cells’ Space-filling curve
with particles numbers from 2K to 14K. From Fig. 5, we can see that the perfor-
mance is varying from 4.4% to 8.5% with different number of particles. We think the
performance improvement is less than we expected. The reason is that the overhead
of particles reordering. How to reduce the overhead of reordering itself is still being

10

Fig. 5. ISPH total Wall-time improvement when reordered particles according to cells
Space-filling curve order

investigated.

6 Summary and Conclusions

The map kernel which provide the functionality of sending particles and their phys-
ical field data blocks to an appropriate partition have been rewritten and optimised
with MPI one-sided communications and Zoltan distributed directory utility. The
percentage of the map kernel is now reduced to less than 20% for those simulations
with particles distributed evenly across the domain. For non-evenly distributed par-
ticles, we need find a way to just use non-empty cells for the domain decomposition
to reduce the cost of Zoltan, this will be part of future work.

The nearest neighbour searching kernel have been rewritten with the preconditioned
dynamic vector approach and linked list approach, several optimizations makes sig-
nificant improvement of the ISPH’s serial performance. We have experimented with
HSFC ordering, but the performance improvements is not very obvious, The main
issue is the overhead of reorder itself. How to reduce the overhead of the ordering
itself is ongoing work.

We have improved implementation of using PETSc solving PPE for ISPH, with
HYPRE BoomerAMG as precondioner. the code can now scale well up to 8 thousands
cores with up to 100 million particles.

We have also observed that I/O becomes the bottleneck when using more than 4k
MPI tasks.

11

Acknowledgements

This project was funded under the HECToR Distributed Computational Science and
Engineering (CSE) Service operated by NAG Ltd. HECToR A Research Councils UK
High End Computing Service - is the UK’s national supercomputing service, managed
by EPSRC on behalf of the participating Research Councils. Its mission is to support
capability science and engineering in UK academia. The HECToR supercomputers
are managed by UoE HPCx Ltd and the CSE Support Service is provided by NAG
Ltd. http://www.hector.ac.uk

Part of this work was presented at the 8th International SPHERIC SPH Workshop
in Trondheim, June 2013.

12

References

[1] Lind, S.J., Xu, R., Stansby, P.K. and Rogers, B.D. Incompressible Smoothed Particle
Hydrodynamics for free surface flows: A generalised diffusion-based algorithm for stability
and validations for impulsive flows and propagating waves, J. Comp. Phys, 231:1499-
1523, 2012.

[2] Guo X, Lind SJ, Rogers B D, Stansby P K, Ashworth M. Efficient Massive
Parallelisation for Incompressible Smoothed Particle Hydrodynamics with 108 Particles.
Proc. 8th International SPHERIC Workshop, Editor J.E. Olsen. pp 397-402. 4-6 June
2013

[3] A. Pinar and B. Hendrickson, Communication Support for Adaptive Computation, in
Proc. SIAM Parallel Processing 2001

[4] J.M. Dominguez et al. Neighbour lists in smoothed particle hydrodynamics, Int. J. Numer.
Meth. Fluids, 2010. DOI: 10.1002/fld.2481

[5] Erik Boman, Karen Devine, Lee Ann Fisk, Robert Heaphy, Bruce Hendrickson,
Courtenay Vaughan, Umit Catalyurek, Doruk Bozdag, William Mitchell, James Teresco,
Zoltan 3.0: Parallel Partitioning, Load-balancing, and Data Management Services;
Developer’s Guide, Sandia National Laboratories, 2007, Tech. Report SAND2007-4749W

[6] PETSc Manual Page, http://www.mcs.anl.gov/petsc/documentation/index.html

13

