
Page 1 of 69

Improving TOMCAT/GLOMAP Mode MPI for Use
on HECToR, a Cray XT4h system

A DCSE Project

Mark Richardson

Numerical Algorithms Group Ltd,

Wilkinson House, Jordan Hill Road, Oxford, OX2 8DR, UK,

September 2009

Abstract
The GLOMAP Mode MPI software and its host chemical transport model, TOMCAT, have been examined by

DCSE support and changes have been implemented that improve their performance on HECToR, the UK

National Supercomputing Resource, a Cray XT4h
1
 system. Typically this code is used with a small number of

cores (32) on the XT4 and for that configuration a small improvement of the order of (3.3%) is gained by

changing the compiler optimisation flags from -O3 to -fast. Larger gains (16.2%) have been achieved when the

code was refactored to work with planes of latitude in the chemistry section. Review of the code structure

around the communications functions has resulted in improvement (9.4%). A reduction in time per step of

12.4% is seen when comparing the prevailing production version with the enhanced version, this is the

accumulated effect of the three work packages.

The enhancements make the use of more cores more economical than can be used at present with an overall

reduction in time per step of 16.5% when the simulation is run with 64 cores.

The improvements contribute to more efficient use of the HECToR resource and make more Allocation Units

available for this research area. The analysis included in the appendices formed the basis for the improvements

in communications and it can be used for further improvement such as parallel I/O and overlapping

communication with computation.

1
 The “h” denotes hybrid as there is an attached Cray X2 system

Page 2 of 69

Contents
Abstract .. 1

Introduction .. 4

Background ... 4

Reminder of milestones .. 7

Overview of existing infrastructure .. 8

Generating code .. 8

Building executables... 8

Copying reference data files ... 8

Submitting job .. 8

End of run - job completion .. 9

Recommendations for changes to running the simulations .. 9

Implementation of changes within DCSE .. 9

Changes required for operation on Cray X2 .. 10

Brief description of Cray X2 .. 10

Infrastructure adopted for work on Cray X2 .. 10

Basic scaling data on Cray X2 .. 11

Summary of X2 work ... 12

Task 1: Examine change in performance with various compiler options 13

Role of compiler options .. 13

Investigation of compiler options ... 13

Results of varying compiler options ... 14

Conclusions from Task 1 .. 17

Task 2.1: General code optimizations .. 18

Performance analysis tools ... 18

Sampling reports ... 18

Tracing experiments ... 23

Results of changes to code structure ... 25

Conclusions from task 2.1 .. 29

Task 2.2: Optimizations for Parallel Operation ... 30

Current parallel implementation ... 30

Summary of manual review of source code ... 31

Result of the changes to communication sections .. 32

Page 3 of 69

Task 2.3: Parallel File Handling, improving reading and writing of data 39

Overview .. 39

Analysis of file accesses in case study with existing version ... 40

Recommendations to improve file access .. 41

Implementation of file data structures .. 42

Expected results of file handling modifications ... 42

Overall Summary ... 43

Overall conclusions .. 44

Future work planned... 44

Direction beyond immediate planned work ... 45

Appendices ... 46

Appendix A: Examples of scripts used during DCSE work .. 47

Example Makefile ... 47

PBS job script ... 48

List of coding errors discovered and fixed ... 49

Appendix B: Detail of Routines Requiring Communication ... 50

CALFLU ... 51

CALPHY .. 53

CALSUB .. 53

EXCHUV.. 55

GATHERROW ... 56

LISTCOMM ... 57

PHYSICS .. 58

POLCOM.. 59

PPWRIT.. 60

SCATTERROW ... 62

SETMPP ... 63

SPEGRD1 ... 64

SPETRU1 ... 64

Swap NS ... 67

APPENDIX C: Parallel File Access and Review of Memory Usage 68

Page 4 of 69

Introduction

Background

This is the end of project report from the distributed Computational Scientific and

Engineering (dCSE) Support project for the aerosol simulation code “GLOMAP” (Global

Modelling of Aerosol Processes). This report gives an overview of the application and

describes the work done to analyse its performance. It offers recommendations for changes

that will improve the performance. Some of these have been implemented and the

corresponding improvements are presented here. This document details the analysis,

recommendations, implementation and resulting performance of GLOMAP mode MPI on

HECToR XT4h.

This project was initiated by Dr. Graham Mann at the School of Earth and Environment at the

University of Leeds. He is a NCAS-funded researcher. The National Centre for Atmospheric

Science (NCAS) provides a national capability in atmospheric science research through its

research programmes and a facilities and support infrastructure distributed over UK

Universities

The distributed computational science and engineering (DCSE) support function is a resource

provided by the Research Councils UK. It can be used to enhance the performance of

computer programs and improve working practices for researchers using UK National High

Performance Computing Facilities (HECToR). It is specifically a person identified to carry

out the work in support of improving the use of national computing resources through better

software engineering and education of the users of these facilities.

Numerical Algorithms Group Ltd is a not-for-profit commercial organisation that specialises

in computation libraries for numerical methods in mathematics and they are a producer of a

FORTRAN compiler. They support the HECToR facility by assisting users when they

encounter problems running their applications. Additionally their work includes assessing the

computational aspect of proposals to Research Councils and supporting the dCSE personnel.

HECToR is the High End Computing Terascale Resource. It is a Cray XT4h system with

5664 AMD64 Opteron CPUs (dual core) and 112 Cray X2 processors (more detail can be

found at www.hector.ac.uk). Significant points to note for this project: there are 12 service

nodes; the 8 actual "login" nodes, the two shared "aprun" job-launcher nodes and the two

shared serial batch nodes. The job scheduler is PBS Pro (currently 8.1.4) with several queues

that allocate various CPU resource sizes up to a maximum of 8192 and a job maximum

duration of 12 hours. The default compiler is PGI and the default environment is focussed on

the “XT” portion (i.e. Opteron processors). A “modules” system is used to set/change the

operating environment. The system has recently changed (at the end of June) with the Dual

Core processors being replaced by AMD quad-core processors (Barcelona-64), the login

nodes and service nodes remain as Opteron dual core processors. In this report a “processor”

refers to a component that can have multiple cores. A CPU is usually a reference to a core on

a processor. PE is an abbreviation of “processing element” and is synonymous with core and

http://ncas.nerc.ac.uk/
http://ncas.nerc.ac.uk/
http://www.hector.ac.uk/

Page 5 of 69

CPU. However, the X2 architecture has a single CPU per processor so PE is the preferred

reference.

GLOMAP mode MPI is a FORTRAN computer program used to simulate global aerosol

processes. It is a combination of a chemical transport model TOMCAT which has algorithms

for integrating the gas phase chemistry/deposition and advection of the trace gas and aerosol

species around the globe and the main part of GLOMAP which is a size-resolved aerosol

microphysics module to simulate processes such as nucleation, coagulation, condensation and

cloud-processing.

The simulation is the lower to mid-atmosphere (up to 10hPa) for the earth, the data set

particular to this project has “moderate” resolution with 31 vertical levels (in hybrid -p co-

ordinates) and T42 spectral resolution in the horizontal (2.8 x 2.8
o
 latitude/longitude) . The

volume of fluid that forms the atmosphere is mapped onto a three-dimensional Cartesian

rectangular block of computational space. The numbers of cells in each direction are as

follows:

 Number of latitudes: 128 (the I loop index within the code)

 Number of longitudes: 64 (the K loop index within the code)

 Number of vertical layers: 31 (the L loop index within the code)

GLOMAP uses “offline meteorology” to drive the transport and wet removal, reading in data

produced from other numerical meteorological simulation software (6-hourly ECMWF

analyses). There are two main versions of GLOMAP – Mode and Bin, using modal and

sectional aerosol dynamics approaches respectively, with versions of each in Open MP and

the subject of this research is GLOMAP Mode MPI. The Open MP version of the software

has been used on SMP class machines (for instance the previous national HPC systems

CSAR and HPCx) and thus has a soft limit maximum of number of threads set by the

outermost loop (over latitude). At the resolution of the test case this is set to 64. The MPI

GLOMAP versions have only been developed recently (2008) and differ from the Open MP

versions mostly in the TOMCAT sections of the code, with MPI being used for

communication between parallel tasks. Communications are handled via a distinct set of

subroutines separate from the main TOMCAT code with similar naming convention. For

example, the subroutine MPI_SENDRECV is wrapped inside MPE_SENDRECV. The

interfaces are different in that fewer parameters are passed to the “MPE_” routines. Typically

it is the parameter corresponding to the communicator that is omitted and within the wrapper

as it is assumed that MPI_COMM_WORLD is the desired communicator. Also every

“MPE_” routine has to make a call to MPE_TYPE to determine the classes of data object that

is being communicated (MPI_DOUBLE, MPI_INTEGER, etc.) even though the indicator is a

supplied as a parameter (MPREAL, MPINT).

The underlying chemical transport process is supported by the TOMCAT program and the

GLOMAP features are inserted into that code at specific locations e.g. at the initialization

stage and the aerosol chemical reaction stage. All of the GLOMAP process is based on an

Page 6 of 69

individual computational cell (“grid-box”) and thus has little impact on any parallel

communications. It does have an impact on memory requirement. Currently a typical job

configuration on HECToR will use 32 MPI Tasks and require 12 hours to simulate a year of

atmospheric process. Usually simulations are broken down into jobs of one month (to enable

examination of the intra-annual aerosol lifecycle) and chained through the PBS scheduler.

Geometric decomposition is used to partition up the work onto each computational node with

MPI communication between each task. The lines of division lie along the lines of longitude

and latitude, albeit not exact degrees (in this case the interval is 2.8125°).

The choice of domain decomposition is pre-set for GLOMAP wherein the attempt is to retain

square “footprints” to reduce the ratio of surface area to volume. This is equivalent to

minimising the communication to compute ratio. However, this is not necessarily the best

option for the type of case for which this software is applied. Consideration should be given

to loop length and hardware configuration.

When operating in MPI configuration the geometry is broken down into smaller blocks

(patches) along lines of longitude and latitude. Each block retains a full column of

atmosphere from the ground to the maximum altitude, for this study that is 31 layers. The

choice of decomposition is pre-set based on the simulation.

Number of

MPI Tasks
NPROCI NLONMX NPROCK NLATMX Remarks

2 2 64 1 64 Too coarse

4 4 32 1 64 Too coarse

8 4 32 2 32

16 4 32 4 16

32 4 32 8 8

64 4 32 16 4

128 4 32 32 2 Current maximum

256 16 8 16 4

512 32 4 16 4
Minimum number of

points in (I,K)

Table 1: range of decomposition topologies for T42 as used for this study

Table 1 shows the preset domain decomposition for T42. Although it is conceivable to use

more than 128 PEs for the simulation it is not efficient as the ratio of computation to

communication is reduced. The smaller decompositions require larger arrays and encounter

memory limitations so they were not tested. This decomposition implies that the maximum

number of sub-domains is 128 as the minimum numbers of computational cells per task in the

longitudinal direction is 2 and the minimum number of cells per task in the latitudinal

direction is set by a condition satisfied at the geometric poles of the earth i.e. along the planes

of the minimum K value and the maximum K value. Further research into this may be

beneficial as making the geometric domain decomposition simlar to the FFT decompostion

would reduce the communication overheads ahead of that transformation.

Page 7 of 69

Reminder of milestones

The original proposal was for 24 months effort but has been reduced to match the 6 months

that was funded. The funded project followed the first four identified Tasks listed in the

original proposal:

“Task 1 Examine performance & scalability of MPI-GLOMAP, MPI-

TOMCAT on HECToR (month 1)

Here, performance of MPI-GLOMAP and the host MPI-TOMCAT model on

HECToR will be examined in more detail using different compiler

options on both the standard scalar MPP XT4 system and also the

new vector “Black-widow” component introduced in August 2008.

Efficient performance of the GLOMAP code on both vector and

scalar systems is particularly important since the code also

runs as part of the UKCA sub-model in the Met Office Unified

Model which runs on Met Office NEC SX-6 and SX-8 vector

supercomputers.

The most expensive GLOMAP routines will be identified as

candidates for the optimization work in Task 2. Scalability

tests over increasing CPUs will then be carried out at moderate

resolution.”

Thus, the first task is to analyse GLOMAP mode MPI, including raw wall clock timing and

parallel scaling, provide a plan for enhancing the performance.

The second task includes 3 sub-tasks as seen in this excerpt from the original proposal:

 “Task 2 Optimization & algorithmic improvements for MPI-GLOMAP

(months 2-6). The profiling results for MPI-GLOMAP (section 3.2)

suggest that the aerosol/chemistry interface “CHIMIE” and the

particle coagulation routine are the two most expensive routines

on the scalar MPP XT4 system. The “CHIMIE” routine mostly deals

with array copying (and very little computation) and the high

overheads suggest it is performing poorly on (scalar) HECToR. We

expected the coagulation routine to be expensive and anticipate

working with the CSE member to gain savings on this routine.

Several other routines also contribute significantly and we

expect to be able to achieve additional efficiency gains by

inlining functions, replacing with approximations/look-up tables

or using the latest algorithms from library calls (e.g. to carry

out FFTs). Exploring these and other general code optimizations

will form the first part of this task (M2.1). The 2nd part of

the task will be to scope out and test possibilities for

optimizations which exploit particular features of the HECToR

architecture (M2.2) on the scalar and Cray X2 vector systems.

Efficient use of cache and reduced communication overheads are

likely to be important here. Task M2.3 will work to further

enhance performance by exploring the use of parallel I/O in

TOMCAT and GLOMAP. We expect that once (M2.1) and (M2.2) have

been carried out, I/O overheads are likely to have become

dominant when using many CPUs. ”

Thus the second milestone is (M2.1) general code optimizations, the third milestone (M2.2) is

optimizations focused on the PE architectures (both Cray X2 and AMD64 Opteron), and

Page 8 of 69

although the task states “use of cache” this was not investigated. The focus of this milestone

was changed to be that of MPI communication efficiency. The fourth milestone (M2.3) is to

analyse the file handling and recommend a plan for parallel I/O to avoid the bottleneck of the

MASTER-I/O model.

Overview of existing infrastructure

A GLOMAP simulation is initiated from a pair of files: the case-specific input file and a

“sub-file” which is Linux shell script to build, compile and run (including template PBS

script commands). The sub-file can be submitted from the command line for testing purposes

with the PBS commands and parallel specific items (e.g. aprun) removed or disabled. An

additional perl script can be used to generate a sequence of PBS scripts (e.g. separate “sub-

files” for each month in an annual run) with an additional job file that can be used to submit a

sequence of chained steps for unattended submission of all the sub-files. This creates

checkpoints (actual restart files) and allows experiments which take longer than the

administration imposed queue wall time limit of 12 hours to be carried out. The first case-

specific PBS script does the preparatory work that consists of generating code, building

executables, copying files and launching the parallel run. The subsequent PBS scripts will

issue restart instructions and preserve their result with a unique identifier.

Generating code

Several “update” files (.up) are generated using “here documents” and “echo” from within the

sub-file script. The “nupdate” program is used to process the “.up” files that are a form of

edit instructions, which modify a reference version of the TOMCAT subroutines. A final

“prog.f” is generated by the nupdate system with the main GLOMAP code included via

auxiliary source code files copied from reference directories and added with concatenation.

Building executables

There are several “ftn” statements within the job script that are issued to compile the

FORTRAN source code and build the executables. The options to these are -O3, -Mextend, -

Mbyteswapio, -r8 and -i4. They are PGI specific because that is the default compiler on

HECToR. The value for optimisation level is set in the “chained.functions” script and stored

in a shell variable $COMPILER_SETTINGS. It is a cautious setting and the code may benefit

if it is changed. The results of the compilations are two executables GLOMAP.exe and

pdgc.exe.

Copying reference data files

The script checks that a GLOMAP.exe has been created and if this is successful it then

copies many reference files into the local directory (97 copy commands) as required when

using the LUSTRE file system on HECToR. Symbolic links to other reference directories (in

/work) are created that allow access to other reference data files at certain stages of the

simulation.

Submitting job

In the case of a restart i.e. after the script has copied the file “fort.30” to the local directory,

the aprun command is issued to launch the parallel run. The values for the aprun options are

Page 9 of 69

processed by the perl script based on the content of the input file. For example, a simulation

that uses 64 CPUs will have the following settings:

 aprun –n 64 –N 2 ./GLOMAP.exe

Note this is used for the dual-core system. The “-N” setting will be “-N 4” for the quad core

system. Some other files, fort.93, fort.94 and fort.95 are created from values set in the input

file. Some of the code in the “.up” files is also modified during the processing of the script

hence the need for “here” documents.

End of run - job completion

After the parallel job has finished, the standalone program “pdgc.exe” is run to convert the

results from double precision to single precision with the newly-created fort.9 re-written to a

new file "fort.25". This process reduces file size by 50% compared to the original fort.9. The

fort.25 is renamed and moved at the end of script. Leeds researchers secure-copy these output

files (known as PDG files) back to University of Leeds SEE and process/analyse them locally

using IDL. This pdgc.exe is sequential code and is running on the queue manager node while

the compute nodes are idle but still reserved. This can be detrimental for other jobs on the

system and will use some of the project AUs.

Recommendations for changes to running the simulations

Recommendations for the infrastructure include separating out the unwieldy submission file

into five logical stages: build, copy, parallel run, reduction, transfer result. The “nupdate”

facility should be done separately and users can keep a catalogue of their own „*.up‟ files or

enhanced versions of the “standard” *.up files. This is a lightweight sequential process that

should be possible to be carried out interactively on login nodes. Building the executable can

be achieved with a make file and this might also be done on the login nodes but would also

work as a serial job submission. The conversion of the result ready for transfer should be

done in a serial job but could probably form part of the job run if a parallel IO facility is used.

The latter would speed up the creation of the fort.9 file and could embody the single precision

conversion straight to a fort.25 (PDG) file.

Implementation of changes within DCSE

Some of these suggested changes have been adopted by the DCSE but have yet to get into

working practice at University of Leeds. There is some work required for universal adoption

of this philosophy and to make it straight-forward for any new researcher to take up the

software and start working quickly.

As part of the dCSE work the creation of the case directory and source code is still part of a

single submission script. However the script is exited after the restart file has been copied

into the case directory, which is done only if GLOMAP.exe has been created. Source is then

separated into a specific directory named to match the number of PEs requested and a copy of

the generic make file is added. Repeat builds are simply a matter of issuing a command

“make -f make.pgf90 xtgmm” no matter what the CPU numbers. Due to the nature of NFS and

LUSTRE, the HECToR service administration recommend that source is stored in $HOME

Page 10 of 69

and cases must be located on $WORK. The mechanism for bringing these together is the PBS

batch file script and “aprun” command.

During the progress of this work prototypes and trial edits were carried out on the “prog.f”

but then they were translated back into “nupdate” instructions in the single submission file.

Eventually work was done on the original reference library so that multiple passes could be

made for easier code generation.

Changes required for operation on Cray X2

Brief description of Cray X2

The Cray X2 is additional hardware attached to the Cray XT4, hence the designation “XT4h”

indicating a hybrid machine. However, it is not truly hybrid as the X2 must be used

independently from the XT4. It has a common operating system and a common file system

that is hosted on the login nodes. The compute nodes have a variation of Cray Node Linux.

The processor has large vector registers allowing a single instruction to be applied to many

pieces of data at the same time. For example, there are n 128 word registers. If 128 elements

of an array A are loaded into one register and 128 elements of B are loaded into a second

register, a scalar C is loaded into the scalar register, then D= AxB+C can be calculated in six

steps and not 768 steps it might take on a scalar processing system.

The compiler (CFTN 6.0.0.1) is hosted on the login node and cross compilation can occur at

the command line interactively. The user has to activate the environment with “module load

x2-env” then the “ftn” command is used for accessing the compiler. A different set of options

are required for the compiler so a separate Makefile has been created. This allows the

executable to be re-created a number of times without re-running the full job script.

Infrastructure adopted for work on Cray X2

The submission script, for an XT run, is halted before it issues the “aprun” command. At this

stage the source code has been generated and the GLOMAP executable has been built using

the PGI compiler. The source code has to be manually moved into separate directories from

the case directory so that they are preserved for repeat builds using the “X2 Makefile

(make.cftn)” and to help in using the performance analysis tools. The usual working practice

in the GLOMAP group is to run the whole script for every simulation so source code is

deleted with every run of the first PBS script. For this work a separate PBS script has been

created to launch the parallel jobs. It is initiated from the login node command line, but could

be embedded as a sub-step of an automatic job control harness. The modules for X2

environment have to be activated before the source code is compiled. The following

command is now available for users: “module load x2-env”.

A significant amount of effort was expended to get the code to work on the X2. Initially the

compiler would flag warnings and sometimes error messages. Each of these was addressed

and fixes were communicated with the code owner. During the run of the simulation the code

would fail issuing “segmentation fault” errors. Most of these were tracked down and fixed.

Page 11 of 69

Basic scaling data on Cray X2

To date, the code changes have been mainly to get the port to work. The difference between

the ports is not only the hardware but the compiler and its compliance with FORTRAN

standards. The Cray compiler (CFTN 6.0.0.1) is stricter than the PGI compiler and that

highlighted several coding problems during the build. It also has a different memory

management strategy that manifested at runtime with memory faults. The CFTN compiler is

not as verbose as other compilers so the NAG FORTRAN compiler was used for the

compilation stage to reveal areas of weakness. It is available on HECToR (F95 v5.1 for

Linux 64bit). During the building process several coding errors were found in the TOMCAT

sections and these were corrected. All changes were communicated back to the University of

Leeds collaborators. The use of Cray PAT relies on successful completion of simulations so

no significant work was done with that facility.

Table 2 shows timings of GLOMAP-MODE-MPI v1_gm2 on the X2 system. Figure 1

compares these with the equivalent for XT4. Note that the XT4 timings were generated on the

upgraded quad-core XT4 system using the same source GM2 version of the code as for the

X2 timings. They were compiled with the -fast flag and run with two only two cores per

node.

GLOMAP Mode v2 on Cray X2 (base code) time in seconds

Number of MPI tasks 8 16 32

Initialisation time 95 92 93

End step 143 1074 477 260

End step 144 1099 500 283

End of simulation 1131 534 321

Average time per step 6.89 2.71 1.17

Equivalent XT4 timing on two cores per QC node 12.57 5.25 2.61

Table 2: runtimes for GM2 on both X2 and XT4 for various domain decompositions

This shows a “super-scalar” behaviour compared to the expected non-ideal behaviour usually

demonstrated by this category of application i.e. the “time per step” improves by a factor

greater than 2. The runs that use higher number of PEs will have smaller domains that lead to

better memory and cache usage. For the X2 there is 8GB per core, on the XT4 there is 2GB

per core but in this case there is 4GB per MPI task, as the simulation is run with only two

MPI tasks per node. The innermost loop length remains as 32 (1 to NLONMX) whereas the

loop over latitudes is reducing by a factor of 2 (as seen in table 1; NLATMX is 32, 16, 8,

respectivley for 8, 16 and 32 PEs).

The work using the X2 has been halted in favour of the XT4 system. Some of the reasons

include: the effort to port the code, potential delays in tracking down each problem, the

limited access to the X2 resource, the limited number of nodes on the system, competition in

the queues. Also the fact that “mixed-mode” operation is not available on this X2 system has

reduced the emphasis of research on the system even though the performance of GM2 on X2

showed it to be significantly quicker than the XT nodes. One bug remains within GM2 that

manifested as a runtime failure when run on 64 PEs. Recent tests show that GM3 and GM4

Page 12 of 69

also have the problem on 64 PEs on X2 and will require significant work to get either of them

to run on this system.

Figure 1: bar chart shows the performance of GM2 on both X2 and XT4

Summary of X2 work

Generally the performance of the Cray X2 hardware is expected to be much better than a

node of the Cray XT4. It is rated at 25.6 Gflop/s where an XT4 core (in Dual Core form) is

only 5.5 Gflop/s with the recent upgrade this has changed to 9.2 Gflop/s. However, those

figures are arrived at from idealised LINPACK measurements. This investigation was limited

by time as unforeseen problems arose. When the code has been completely reviewed for the

XT4 system, then further investigation should be directed at the inlining and cache blocking

options. These should provide further gains as will using the informational flags to identify

sections of code where the compiler was unable to complete any automatic optimisations.

Page 13 of 69

Task 1: Examine change in performance with various compiler options

Role of compiler options

Compilers can do a lot of work towards improving the performance of a specific piece of

code. In this computer program the method for simulating the atmospheric processes is

written in a high level language and is likely a good representation of the mathematical

method. However, that does not always suit the platform on which the calculation takes

place. Reviewing the code structure is one way to improve performance and that is discussed

in task 2.1. Another method is to use the features of the compiler that analyse the high level

language and translate it into efficient machine code tuned specifically to the target hardware.

The GLOMAP code is compiled with “-O3” because earlier work by the team showed a

reasonable performance compared to using the default options (-O2). Two useful options are

“-Mneginfo” and “-Minfo” that make the compilations more informative. As shown in this

excerpt from the build:

For GLOMAP, the log file of a build shows many places where the compiler reports that

some optimization could not be done. Not all of those have been investigated so there are

opportunities to make changes and allow the optimization to proceed.

Investigation of compiler options

Compiler options are affected by code structure. For example, if a print statement or

conditional is placed within a do loop then the vectorisation will fail. The current production

version of the code is built using the PGI compiler using optimization level -O3. Adding “-

fast” ahead of this option will activate several features of PGI compiler that target the

AMD64 chip and expect to provide performance improvements. The features include

vectorisation, inlining and loop unrolling.

Unfortunately the combination of -fast with -O3 gave erroneous results dicussed later.

The option “-Minline” directs the compiler to analyse the supplied file for sub-programs that

are called often and to make the assembler code for them inserted at the point of calling. This

leads to larger sized executables but they are more efficient at runtime.

-fast : Common optimizations; includes -O2 -Munroll=c:1 -Mnoframe -Mlre -

Mautoinline -Mvect=sse -Mscalarsse -Mcache_align -Mflushz

pgf95 -Mneginfo -Minfo -fast -o xtgmm.exe prog.f produces this:

102046, Memory copy idiom, loop replaced by call to __c_mcopy8

102054, Loop not vectorized/parallelized: contains call

102058, Generated an alternate loop for the inner loop

 Generated vector sse code for inner loop

 Generated 1 prefetch instructions for this loop

 Generated vector sse code for inner loop

 Generated 1 prefetch instructions for this loop

Page 14 of 69

The following options are desirable in addition to those stated above:

-Mipa=inline -Mipa=reshape

Many codes benefit from a feature known as “inter-procedural performance analysis” that is

available with the PGI compiler using the “-Mipa=” option. During the compilations of the

sub-programs the compiler identifies sections where in-lining can be used. There are many

places where simple wrapper functions are used and these can be removed by the compiler.

At the link stage the object files are re-visited and compiled with the new information. This

gives a more efficient executable. In many places the shape of the array is changed when

entering the sub-routine, converting two-dimensional arrays into one-dimensional arrays so

the option “reshape” is also supplied.

However, attempting to apply inlining to GLOMAP had two effects: first, the advanced IPA

inlining revealed a bug in the compiler where the compilation failed with compiler internal

error messages. Secondly, using -fast with -O3 resulted in incorrect results and so the simpler

optimization was retained (-fast) as it gives an improvement of speed due to better

vectorisation and some “safer” inlining. Time should be set aside with future projects to

review the compilation flags and compiler version when the bug-fix is available.

The source code is generated as a monolithic file (plus a couple of GLOMAP specific files)

that is useful for a multiple pass compiler as the fast flag includes a simple single level inline

facility. When all functions are in the same source file the compiler can more easily identify

candidates for inlining. It provides a better chance for the optimisations to be applied

automatically. However, it may be that some optimisations are detrimental to specific

subroutines so a method of applying compiler options to individual subroutines would help

target specific optimisations. Thus it would have been useful if the IPA function had worked

correctly. Another reason that this has not been done for GLOMAP is that it would deviate

widely from the existing working practice of keeping jobs simple for researchers.

Results of varying compiler options

The initial work was done with “GM2” but updated versions were supplied during the project

timescale. GM3 was provided in February 2009 and GM4 was provided in March 2009

Initial tests were evaluated using the dual core system. Table 3 shows the overall runtime

difference for both GM3 and GM4 for various compiler optimisation levels.

Optimisation level -O3 -fast -fast -O3
*

-Minline -fast -O3

Version GM3 (DC) 390.34 - 369.09 385.81

Version GM4 (DC) 349.64 332.91 327.93 372.55

Percentage change from “-O3 only” 0 -4.78% -6.21% +6.55%

Table 3: Performance changed by compiler flags for 64 MPI Tasks on Cray XT4 (Dual

Core). NOTE: *the combination of –O3 and –fast give incorrect results.

In these early tests the attention was mainly on the total elapsed time. But soon it was realised

that the initialisation time was inconsistent so later analyses break up the timings into initial

step, time for 143 steps, 144 steps and the end of the simulation. Thus, the measure of the

Page 15 of 69

time per step is more representative of the normal use of the program. This is how the results

are presented in tables 4 and 5.

The tests were repeated for the upgraded quad-core system for a selection of decompositions

and provides a measure of how the quad-core affects the existing working practice of using

the -O3 option for optimisation. Tables 4 and 5 show the break down of the runtime for each

optimisation over several decompositions.

NCPU 8 16 32 64

Tinit 98 51 148 168

T143 1583 834 597 502

T144 1597 845 608 538

Ttotal 1605 855 621 563

Ttot-T143 22 21 24 61

T143-Tini 1485 783 449 334

(T143-Tinit)/142 10.45 5.51 3.16 2.35

Speed-up 1.00 1.89 3.31 4.44

Table 4: Baseline GM4 using “-O3” fully populated quad-core nodes time in seconds

NCPU 8 16 32 64

Tinit 116 56 63 108

T143 1503 798 497 410

T144 1527 807 507 423

Ttotal 1534 817 519 445

Ttot-T143 31 19 22 35

T143-Tini 1387 742 434 302

(T143-Tinit)/142 9.77 5.23 3.06 2.13

speed up 1.00 1.86 3.19 4.59

Change in time per step over “-O3 only” -6.51% -5.08% -3.16% -9.36%

Table 5: Baseline GM4 using “-fast” fully populated quad-core nodes time in seconds

The additional “hidden” compiler option is “-tp=barcelona-64” that is activated using

“module load xtpe-quadcore” [now xtpe-barcelona] ahead of the build. If the build is initiated

within the job script then the modules command has to be issued within the script as well.

The same source code was compiled into an executable using the standalone Makefile

(make.pgf95 seen in Appendix A) with the optimisation level set to “-fast” and with the xtpe-

quadcore module loaded.

These values are the best achieved from several simulation runs and the time per step for each

is plotted in figure 3. The logistics of running a sequence of these tests is straightforward in

terms of setting up the PBS scripts to chain in turn. However, there is some question about

the repeatability as in a few tests the initialisation times are slower and the “-fast” simulations

were slower than the “-O3” simulations. There is a further level of investigation needed

relating to how quickly files are available to the program through the LUSTRE file system. It

may be that slow initialisation is similar to the lag that users experience when issuing file

commands (for example, “ls” can take a few seconds when issued withing the LUSTRE file

system).

Page 16 of 69

The changes were validated by comparing the fort.25 files to a reference file using IDL on

the SEE departmental server. Figure 2 shows an example of a failed comparison that is

indicated by the large variation between the “perturbed” and “control” data.

As well as the general results failing due to the combination of -fast and -O3 setting of the

compiler, there are also clear artifacts of the data decomposition in the form of vertical lines

along the domain boundaries. This “failed” comparison compares a reference 4 PE

decomposition with a 16 PE decomposition and was traced to an error in the array

dimensions in SPEGRD, SPETRU1 and GATHERROW and SCATTERROW. The fix has

been supplied to the code owner. In a successful comparison these figures would be uniform

white and show zero variation.

Figure 2: comparison of runs of GM2 on Cray X2; control is a 4PE decomposition;

perturbed is a 16PE decomposition

Page 17 of 69

Figure 3: performance of GM4 for two different optimization levels of the PGI Fortran

compiler on Cray XT4 with Quad Core nodes.

The sudden change from what can be consider good scaling at 32PEs to poor scaling for

64PEs is not easily explained. The values for NLONMX and NLATMX shown in table 1

indicate that the decomposition is such that only the loop over latitudes is changing and

actually reducing. This suggests that some work unrelated to the K loop is beginning to

dominate the simulation. The data being handled by the chemistry sub-steps are planes of

(32x31) gridboxes and there are almost 200 species being evaluated so it is a significant

amount of work. However, these planes are the same size for all decompositions in this study.

Conclusions from Task 1

The extensive range of options could not be used due to issues with the compiler. The “-fast”

option gives an improvement over the “-O3” option currently in use. Changing the

compilation flag has resulted in reduced time for simulations but has a small affect on

scalability. This is shown in figure 3 and detailed in Table 13 of the Overall Summary. The

optimisations apply to all the code but will not affect the parallel communication patterns.

The parallel communications are reviewed in a later task.

Care must be taken to inspect the result whenever a different optimisation is added to the

building of the executable. A basic reference case can be created using the –O0 (zero

optimisation) option. The simulation would take longer to perform but the results will stand

for a controlled comparison.

Page 18 of 69

Task 2.1: General code optimizations

Performance analysis tools

Cray have supplied performance analysis tools that insert system call “hooks” into the object

code and later instrument the executable depending on the type of experiment to be

performed. The separation of the GLOMAP simulation process into five parts facilitates the

requirement for repeat building of the executable with the Cray PAT tools. The code is built

once normally and tested. The environment is changed to activate the Cray PAT applications

and then executable must be re-built within this new environment. Different types of

experiments can be carried out depending on the method of re-building the executable. There

are two main ways of analyzing the performance of the code -- sampling experiments and

tracing experiments. A sampling experiment is where the execution of the code is tested at

regular intervals (100 milliseconds) and a record is made of which routine is in progress at

that sampling point. A tracing experiment targets specific functions and records the

accumulated amount of time that the function takes to process. During the run of an

instrumented executable, extra output in the form of an experiment file (name.xf) is

generated. Subsequent processing of the experiment file provides a text report to standard

output and some additional files containing information about the performance of the

program.

Earlier sampling experiments on HECToR by the researchers at the University of Leeds (see

original proposal) had revealed certain subroutines consuming a large proportion of the

runtime of the simulation. The Cray PAT analysis was repeated and confirmed those

findings as described below.

Sampling reports

The basic sampling experiment reveals that an expected four routines use a lot of the

processing time, they are ADVY2, ADVX2, ADVZ2 and CONSOM. Previous analyses in the

long history of the TOMCAT code have also shown these characteristics. However, in this

case several routines appear with unexpected high load values, particularly for a low CPU

count i.e. CHIMIE and some of the “UKCA” subroutines. These can be seen in the “USER”

section of figure 4. Two of these routines were investigated further by replacing them with

modified versions.

The outputs from several sampling experiments were used to identify where the high

workload is in the specific subroutines. A typical sampling report has 3 sections: USER, MPI

and ETC. figure 4 shows an excerpt (the listings can be very long) with the USER section.

The 58 % shows that more than 40% is spent doing other things than the calculations specific

to GLOMAP. That information is given in the ETC and MPI sections that will be discussed

in other parts of this report. This section indicates which line numbers in the source code

consumed the most processing time.

Page 19 of 69

Figure 4: Example of part of a sampling report for GLOMAP

The investigations into CHIMIE and UKCA_COAGWITHNUCL were separated to be clear

where any gains originated. The main aim is to try and reduce the time spent in CHIME and

UKCA_COAGWITHNUCL.

Cray PAT sampling report for 32 PEs excerpts from GM3

experiments to enhance UKCA_COAGWITHNUCL().

Table 1: Profile by Function

 Samp % | Samp | Imb. | Imb. |Group

 | | Samp | Samp % | Function

 | | | | PE='HIDE'

 100.0% | 30997 | -- | -- |Total

|--

| 58.5% | 18143 | -- | -- |USER

||---

|| 8.3% | 2579 | 112.91 | 4.3% |advy2_

|| 7.5% | 2314 | 44.16 | 1.9% |chimie_

|| 5.5% | 1696 | 81.25 | 4.7% |ukca_coagwithnucl_

|| 4.1% | 1260 | 27.44 | 2.2% |advz2_

>snip<

Table 2: Profile by Group, Function, and Line

 Samp % | Samp | Imb. | Imb. |Group

 | | Samp | Samp % | Function

 | | | | Source

 | | | | Line

 | | | | PE='HIDE'

 100.0% | 30923 | -- | -- |Total

|--

| 58.5% | 18090 | -- | -- |USER

||---

|| 8.3% | 2577 | -- | -- |advy2_

3| | | | |

gm3_spunup/CoagWithNucl/src_32e/prog.f

||||---

4||| 1.2% | 385 | 47.56 | 11.3% |line.13203

4||| 3.4% | 1047 | 78.59 | 7.2% |line.13370

4||| 3.6% | 1110 | 74.16 | 6.5% |line.13459

||||===

|| 7.5% | 2310 | -- | -- |chimie_

3| | | | |

gm3_spunup/CoagWithNucl/src_32e/prog.f

||||---

4||| 1.3% | 408 | 26.62 | 6.3% |line.32966

4||| 3.6% | 1101 | 11.38 | 1.1% |line.33056

4||| 1.4% | 419 | 50.06 | 11.0% |line.33300

||||===

|| 5.5% | 1694 | -- | -- |ukca_coagwithnucl_

3| | | | |

gm3_spunup/CoagWithNucl/src_32e/GLOMAP.f90

||||---

4||| 1.5% | 466 | 30.66 | 6.4% |line.3422

||||===

Page 20 of 69

A subsequent code review (through inspecting the source files) revealed that, in some cases,

there was unusual organisation of loop order. For example, the TOMCAT part of this

simulation code deals with rectangular Cartesian coordinates and thus has a pattern of loops

in many places that follow a cycle as follows:

This is the best method of accessing the Fortran arrays as it matches the manner of storage in

memory. The TOMCAT parts of the code have been long established and optimsed for vector

processors. However, in this more recent version of the code some of the high workload lines

of source indicated by the sampling experiment were in places where this “natural” loop

ordering was not being followed. In some places this was clearly an oversight of

programming and was rectified. In other places there is a high workload due to the

conversion from data structures organised for use with the advection methodology into data

structures that conform to those needed for the FFT solution. There is some analysis of this in

Appendix B for SPETRU1, GATHERROW and SCATTERROW.

The samples in figure 5a and 5b show the three groups of information: USER, MPI, ETC.

they show the change in workload for the test simulation when run at different

decompositons; one for eight cores and one for 64 cores. They also indicate the increase in

importance of MPI for a higher PE count.

The function CHIMIE shows as a high workload for low processor counts. It converts the

three dimensional data structures into one-dimensional arrays of equivalent size. That

information is used in the UKCA_AEROSTEP sub-system. It works on the three dimensional

volumes that form the proportion of atmosphere being simulated by a particular MPI task.

The whole three-dimensional domain is mapped to a one-dimensional array.

DO L = 1, NIV

 DO K= 1, NLATMX

 DO I = 1, NLONMX

 WORK ON ARRAYS WITH INDICES (I,K,L)

 ENDDO

 END DO

END DO

Page 21 of 69

Figure 5a: Comparing sample experiments for 8 and 64 domain decompositions. NOTE the

domination of CHIMIE on 8PEs compared with figure 5b that follows.

GM3 (Cray XT4 Dual Core) PAT sample experiment 8PEs

 Samp % | Samp | Imb. | Imb. |Group

 | | Samp | Samp % | Function

 | | | | PE='HIDE'

 100.0% | 123650 | -- | -- |Total

|--

| 79.8% | 98686 | -- | -- |USER

||---

|| 27.3% | 33702 | 109.25 | 0.4% |chimie_

|| 8.8% | 10857 | 174.38 | 1.8% |ukca_coagwithnucl_

|| 6.0% | 7360 | 60.25 | 0.9% |advy2_

|| 3.9% | 4795 | 238.50 | 5.4% |consom_

|| 3.5% | 4364 | 29.88 | 0.8% |advz2_

|| 3.2% | 3956 | 59.12 | 1.7% |advx2_

|| 2.4% | 2945 | 90.12 | 3.4% |ukca_water_content_v_

|| 2.1% | 2586 | 169.75 | 7.0% |ukca_conden_

|| 2.0% | 2448 | 13.50 | 0.6% |ukca_coag_coff_v_

|| 1.8% | 2256 | 73.88 | 3.6% |ukca_solvecoagnucl_v_

|| 1.8% | 2171 | 79.12 | 4.0% |ukca_cond_coff_v_

|| 1.6% | 2016 | 103.00 | 5.6% |ukca_volume_mode_

|| 1.6% | 2003 | 50.38 | 2.8% |prls_

|| 1.3% | 1583 | 110.62 | 7.5% |jac_

|| 1.0% | 1274 | 63.75 | 5.4% |emptin2_

|| 1.0% | 1188 | 34.00 | 3.2% |initer_

||===

| 17.4% | 21498 | -- | -- |ETC

||---

|| 7.9% | 9808 | 309.00 | 3.5% |__c_mzero8

|| 2.6% | 3212 | 83.75 | 2.9% |__c_mcopy8

|| 1.1% | 1369 | 61.62 | 4.9% |__fmth_i_dexp

||===

| 2.8% | 3466 | -- | -- |MPI

||---

|| 1.3% | 1587 | 584.38 | 30.8% |mpi_sendrecv_

|| 1.0% | 1264 | 532.00 | 33.9% |mpi_recv_

|==

Page 22 of 69

Figure 5b: Comparing sample experiments for 8 and 64 domain decompositions. NOTE the

flatter profile for 64PEs.

The differences between figures 5a and 5b show that the performance of simulation is

sensitive to the number of MPI tasks available for calculation. It is highlighted that CHIMIE

occurs lower in the sampling table for a higher number of MPI tasks implies that the size of

the problem has a direct influence on the workload. The more cores (or MPI tasks) applied to

the problem reduce the size of the domain being simulated. The CHIMIE method in use with

the GM3 version of GLOMAP mode processed the whole volume of atmosphere in pass.

This was modified so that the UKCA_AEROSTEP sub-system works on a single plane of

GM3 (Cray XT4 Dual Core) PAT sample experiment 64PEs

 Samp % | Samp | Imb. | Imb. |Group

 | | Samp | Samp % | Function

 | | | | PE='HIDE'

 100.0% | 22117 | -- | -- |Total

|--

| 39.1% | 8647 | -- | -- |USER

||---

|| 5.3% | 1179 | 107.09 | 8.5% |advy2_

|| 3.9% | 871 | 38.41 | 4.3% |chimie_

|| 3.5% | 781 | 40.91 | 5.1% |ukca_coagwithnucl_

|| 2.7% | 601 | 15.22 | 2.5% |advz2_

|| 2.7% | 589 | 10.84 | 1.8% |consom_

|| 2.3% | 512 | 270.48 | 35.1% |advx2_

|| 1.6% | 348 | 112.12 | 24.8% |emptin2_

|| 1.4% | 312 | 50.08 | 14.1% |ukca_water_content_v_

|| 1.3% | 297 | 160.19 | 35.6% |fillin2_

|| 1.3% | 279 | 66.77 | 19.6% |prls_

|| 1.1% | 241 | 18.44 | 7.2% |ukca_coag_coff_v_

|| 1.0% | 218 | 283.30 | 57.4% |spetru1_

||===

| 32.2% | 7118 | -- | -- |MPI

||---

|| 15.8% | 3486 | 2032.61 | 37.4% |mpi_recv_

|| 11.9% | 2638 | 2207.33 | 46.3% |mpi_sendrecv_

|| 3.8% | 834 | 668.56 | 45.2% |mpi_ssend_

||===

| 28.7% | 6352 | -- | -- |ETC

||---

|| 7.2% | 1595 | 90.95 | 5.5% |__c_mzero8

|| 7.0% | 1548 | 421.45 | 21.7% |PtlEQPeek

|| 1.9% | 429 | 54.33 | 11.4% |__c_mcopy8

|| 1.8% | 395 | 139.33 | 26.5% |PtlEQGet

|| 1.7% | 372 | 158.47 | 30.4% |PtlEQGet_internal

|| 1.0% | 215 | 79.30 | 27.4% |ptl_hndl2nal

|===

Page 23 of 69

latitude at a time, this isrefered to as “GM4” in this report. The planes are organised by

latitude so the dimensions are the number of longitude points by the number of vertical

layers. In the test case used that is 1/4 the quantity of data that was being processed per

domain in GM3 for the 64 PE decomposition and 1/32 of the data being processed for an 8

PE domain. This is the method used by the chemistry section of TOMCAT and how earlier

versions of GLOMAP processed the data.

Tracing experiments

A baseline source was compiled for PAT sampling using the APA guided option. This

generated an “apa” file. The “apa” file contains all the guiding information for instrumenting

the executable for the tracing experiment. Repeated builds of the executable for tracing

experiments are possible without repeating the sampling experiment. The tracing experiment

provides a new experiment file that is processed by the pat_report tool. The report includes

names of traced functions and the time spent in the process of executing them.

Cray PAT provides an interface (API) that allows the investigator to insert specific timing

points to break up a subroutine tracing information. The timing points are given name-tags

and these are used to identify the sections in the post-processed experiment files. This method

was used extensively to investigate the UKCA_COAGWITHNUCL function that appears

high in the league table for the sample and trace reports. In the figure 6 the case was run with

8 MPI tasks. It is the GM3 code and so CHIMIE continues to show high in the work load.

The five labels in bold on the end column are user defined through the API calls to

“pat_region_begin”.

Figure 6: problematic do loops in UKCA_COAGWITHNUCL with alternatives

In figure 6 the alternative coding for the original nested do loop structure is shown. For

example, the “11 loop init mtran” is a block of code that initialises three arrays to zero.

Cray PAT API “11 loop init mtran” in UKCA_COAGWITHNUCL

 call pat_region_begin(11,'11 loop init mtran',pat_stat)

!

!!! DO IMODE=1,NMODES

!!! NDOLD(:,IMODE)=ND(:,IMODE)

!!! DO ICP=1,NCP

!!! MDOLD(:,IMODE,ICP)=MD(:,IMODE,ICP)

!!! DO JMODE=1,NMODES

!!! MTRAN(:,IMODE,JMODE,ICP)=0.0

!!! ENDDO

!!! ENDDO

!!! ENDDO

!

! replace triple loops above with F90 array syntax (let

compiler decide)

 NDOLD=ND

 MDOLD=MD

 MTRAN=0.0

 call pat_region_end(11,pat_stat)

Page 24 of 69

Several different methods were investigated. These included: using F90 syntax and separating

out the individual variables from the triple loop nest. It appears that the compiler was doing a

good job and replacing them with the “idiom: __c_mzero8” reported when option “-Minfo”

is activated.

In the tracing report shown in figure 7, the numbered hash labels (#11, #5, #2, #10, and #7)

were inserted by the investigator using the PAT API. Actually regions numbered 1 to 11 were

inserted but the other sections do not feature high in the workload. This is why the

UKCA_COAGWITHNUCL reference is no longer visible.

Unfortunately no clear coding alternatives could be found for all the identified work as the

compiler is doing its best with those sections of code.

Figure 7: tracing report example for investigation of “UKCA_COAGWITHNUCL”.

The investigation of CHIMIE has resulted in several changes. The outer loop is over latitudes

so what were originally transformations three-dimensional to one-dimensional for the whole

GM3 Cray PAT tracing report with API information from 8 PE run when investigating

enhancement of UKCA_COAGWITHNUCL

Time % | Time | Imb. Time | Imb. | Calls |Group

 | | | Time % | | Function

 | | | | | PE='HIDE'

 100.0% | 2058.854843 | -- | -- | 6731515 |Total

|--

| 94.5% | 1945.732550 | -- | -- | 6557264 |USER

||---

|| 36.9% | 759.508205 | 6.805455 | 1.0% | 144 |chimie_

|| 6.9% | 142.135909 | 8.451937 | 6.4% | 1440 |#11.11 loop init mtran

|| 6.8% | 140.708321 | 41.589230 | 26.1% | 1 |main

|| 6.6% | 136.060100 | 2.901422 | 2.4% | 288 |advy2_

|| 4.0% | 82.400176 | 1.758459 | 2.4% | 144 |consom_

|| 3.9% | 79.572205 | 0.500504 | 0.7% | 144 |advz2_

|| 3.1% | 64.781270 | 2.547494 | 4.3% | 288 |advx2_

|| 2.4% | 50.124924 | 1.249039 | 2.8% | 3456 |ukca_water_content_v_

|| 2.4% | 48.938390 | 2.616689 | 5.8% | 1440 |ukca_conden_

|| 2.3% | 47.166706 | 1.214859 | 2.9% | 4032 |ukca_coag_coff_v_

|| 2.1% | 43.071936 | 3.410142 | 8.4% | 1440 |#5.5 imode loop

|| 2.0% | 41.345881 | 0.211065 | 0.6% | 864 |ukca_volume_mode_

|| 1.9% | 39.174169 | 2.602136 | 7.1% | 7200 |ukca_solvecoagnucl_v_

|| 1.8% | 38.046784 | 1.764512 | 5.1% | 14400 |ukca_cond_coff_v_

|| 1.8% | 37.836103 | 2.580603 | 7.3% | 1440 |#2.imode loop

|| 1.8% | 37.507454 | 1.191105 | 3.5% | 25920 |#10.10 ncp loop

|| 1.8% | 36.644806 | 1.473848 | 4.4% | 1440 |#7.7 imode loop

|| 1.7% | 34.149579 | 1.831906 | 5.8% | 2617 |prls_

|| 1.4% | 28.488018 | 1.145093 | 4.4% | 2617 |jac_

||===

| 3.6% | 73.941021 | -- | -- | 155216 |MPI

||---

|| 2.1% | 42.940114 | 10.573601 | 22.6% | 29385 |mpi_sendrecv_

|| 1.0% | 20.905757 | 8.770574 | 33.8% | 35596 |mpi_recv_

||===

| 1.9% | 39.181272 | -- | -- | 19035 |MPI_SYNC

||---

|| 1.4% | 28.908872 | 4.654048 | 15.8% | 1123 |mpi_bcast_(sync)

|==

Page 25 of 69

domain have now become mapping from three-dimensional to one-dimensional in planes of

latitude. The following additional modifications are present in GM4:

Calculate JLABOVE at same time as JL

Several “ground level” arrays are now done in a smaller separate loop to avoid a

conditional test for mapping 2d to 1d.

Similarly, mode-radius and mode-number are available only at ground level so these

are moved outside a three dimensional loop into a (now) one-dimensional loop.

Revise JL index calculation and separate S0A, S0G and STG mappings to two

dimensional arrays from 4D

Reset JLABOVE at edge of atmosphere

And for the reverse mappings:

for SOA, S0G,STG make index counter JL a simpler calculation when mapping from

2D back to 4D

Some other changes were identified although the limitation of time did not allow further

investigation. Those sections include: an interpolation method for the “6-hourly”

concentrations, further restructuring of conditional statements and some other loops where JL

is explicitly calculated rather than being an incremental counter.

Results of changes to code structure

A replacement version of GM3 has been produced (GM4). The main difference is in CHIMIE

which processes the data for the UKCA_AEROSTEP in planes of latitude. The data are

mapped from multi-dimensional arrays (selected as latitude planes of longitude by altitude)

into the one-dimensional arrays used for the aerosol and chemical calculations. The

difference in performance between the two versions including the change in optimisation

choice determined in Task 1 is shown in table 6 and figure 8.

Number of MPI tasks 8 16 32 64 128

GM3 seconds per step (dc with -O3) 13.75 6.15 3.18 1.95 1.64

GM4 seconds per step (dc and -fast) 7.91 4.45 2.66 1.77 1.29

Improvement (%) 42.49 27.62 16.27 9.09 21.12

Table 6: Time per step for different decompositions comparing GM3 and GM4 with

different optimisations. An indication of the full benefits of changes.

The greatest gains are where the domain sizes are larger. For example, the volume being

processed by an 8 task decomposition is 31744 boxes for GM3 method (32x32x31) but using

the GM4 method the number of boxes is 992 boxes (32x31). The 64 task decomposition is

processing 3968 boxes for the GM3 method (32x4x31) but is processing 992 boxes for the

GM4 method (32x31). The array sizes used in the chemical sub-step (UKCA_AEROSTEP)

are significantly smaller when the data is processed by latitude and is indirectly proportional

to the number of latitudes being processed on a sub-domain. For the T42 resolution there is

1/64 of the data processed although there is an extra loop for latitudes at a higher level (in the

CHIMIE subroutine).

Page 26 of 69

Figure 8: shows a comparison of the performance of GM3 to GM4

Figure 9: Expressing the time per step in relation to the time for a simulation using 4 MPI

tasks.

Page 27 of 69

The curves in figure 9 are an indicator of speed-up. The unfortunate effect of improving the

speed of the serial sections is that the speed-up appears to worsen (already the scaling was

considered poor for 64 PEs). However, if the first and final iterations are ignored (purple and

cyan lines) then the scaling of GM4 has recovered to match that of the GM3 case.

The fact that the percentage improvement reduces for a higher number of PEs is related the

earlier observation that there is fixed amount of work per latitude for each decomposition that

is also the same for all decompositions.

The code written to process the chemical sub-steps appears to have been written efficiently.

The multi-dimensional loops are unrolled into one-dimensional loops over the number of

boxes in the plane. This gives the compiler an easier job of optimising. The gains from

inlining and vectorising (changing the optimisation from -O3 to -fast) will not be so great for

those sections of code. Cache blocking may achieve improvement but that has not been

investigated yet.

Another contributing factor to poor scaling is the communications. The imbalances indicated

in a PAT sampling experiment show that there are occasions where there are some tasks idle

awaiting the other tasks to synchronize. However it is difficult to balance this version of the

code as the distributions of the species will require different calculations. Gains can be made

by overlapping communications where any work needed to prepare for a communication can

be off-loaded on to the communication sub-system (MPI layer). Examples of such instance

are places where there is a send and receive exchange. Often this is parcelled into a single

MPI_SENDRECV for simpler coding. However, the idea of non-blocking receive can be

used to prepare a buffer to receive data from a neighbouring PE before the send actually

occurs. This is another line of investigation that is yet to be analysed. Using the analysis of

Appendix B it should be possible to design replacement communication points.

Figure 10 shows the sampling experiment for GM4 (essentially modified GM3) and gives a

clear indication that the re-organisation of the CHIMIE subroutine has reduced the workload.

Page 28 of 69

Figure 10: PAT report for an 8 PE run using GM4. NOTE new lower position for CHIMIE,

i.e. 2.5% compared to 27.3% in figure 5a.

The outer loop over K that is the second index to three-dimensional arrays and there is

possible further improvement available if those data structures were organised by planes of

latitude. For example, swapping the second and third array indices would be achieved by

changing the original code shown on the left to the code shown on the right:

GM4 on 8 PEs (XT4 Dual Core) PAT sampling experiment report

 Samp % | Samp | Imb. | Imb. |Group

 | | Samp | Samp % | Function

 | | | | PE='HIDE'

 100.0% | 73918 | -- | -- |Total

|---

| 69.5% | 51363 | -- | -- |USER

||--

|| 10.9% | 8077 | 73.50 | 1.0% |advy2_

|| 10.3% | 7580 | 202.38 | 3.0% |ukca_coagwithnucl_

|| 6.6% | 4882 | 35.88 | 0.8% |consom_

|| 6.4% | 4713 | 11.88 | 0.3% |advz2_

|| 5.4% | 4012 | 66.00 | 1.8% |advx2_

|| 2.9% | 2131 | 53.50 | 2.8% |ukca_water_content_v_

|| 2.5% | 1811 | 97.25 | 5.8% |chimie_

|| 2.4% | 1779 | 56.62 | 3.5% |ukca_conden_

|| 2.2% | 1611 | 52.88 | 3.6% |ukca_calc_coag_kernel_

|| 1.9% | 1418 | 30.38 | 2.4% |ukca_aero_step_

|| 1.7% | 1273 | 21.00 | 1.9% |emptin2_

|| 1.7% | 1254 | 219.25 | 17.0% |initer_

|| 1.5% | 1143 | 17.75 | 1.7% |radabs_

|| 1.3% | 939 | 43.00 | 5.0% |ukca_ddepaer_incl_sedi_

|| 1.2% | 917 | 170.75 | 17.9% |fillin2_

|| 1.2% | 875 | 67.75 | 8.2% |update_1dvars_by_cstep_

||==

| 26.5% | 19590 | -- | -- |ETC

||--

|| 11.1% | 8236 | 166.75 | 2.3% |__c_mzero8

|| 3.6% | 2666 | 45.88 | 1.9% |__c_mcopy8

|| 1.5% | 1093 | 421.00 | 31.8% |PtlEQPeek

|| 1.3% | 937 | 44.50 | 5.2% |__fmth_i_dexp

|| 1.0% | 729 | 41.38 | 6.1% |__fvdlog_long

|| 1.0% | 715 | 61.25 | 9.0% |munmap

||==

| 4.0% | 2965 | -- | -- |MPI

||--

|| 1.7% | 1223 | 573.88 | 36.5% |mpi_recv_

|| 1.6% | 1165 | 246.50 | 20.0% |mpi_sendrecv_

|===

Page 29 of 69

However, this would be a very significant change for a large proportion of code throughout

TOMCAT and many array definitions would have to be revisited. It is unlikely that this

optimisation will be done.

Conclusions from task 2.1

Performance analysis tools have been used to identify areas of code that incur a high

workload. Several of these are in two specific subroutines (UKCA_COAGWITHNUCL and

CHIMIE) and they were investigated and alternatives were tested. A different approach for

the aerosol subsystem was adopted to improve the overall operation of the simulation. The

improvement was demonstrated with GM4 as the loop size was significantly smaller because

CHIMIE is dealing with planes of data rather than volumes of data.

Some of the identified areas could not be improved. In particular sections where the

UKCA_COAGWITHNUCL function initialises arrays at the start of every chemical time

step. This is most likely due to the shape of those arrays being 3,4 and 5 dimensional, even

though the sizes are small compared to the total number of gid-boxes. It appears that the

majority of work in this sub-progam is the initialisation process.

 DO 6 K=1,MYLAT

 DO L=1,NIV

 DO I=1,NLONMX

 JL =JL+1

 UG (JL)=U3D(I,L,K)

 VG (JL)=V3D(I,L,K)

 TG (JL)=T3D(I,L,K)

 DO 6 K=1,MYLAT

 DO L=1,NIV

 DO I=1,NLONMX

 JL =I+(L-1)*NLONMX

 UG(JL)=U3D(I,K,L)

 VG (JL)=V3D(I,K,L)

 TG (JL)=T3D(I,K,L)

Page 30 of 69

Task 2.2: Optimizations for Parallel Operation

Current parallel implementation

Parallel operation of computer programs raises several issues, one of which is efficient

communication between the parallel tasks. A general methodology is to package up local data

into local buffers and then pass it to other tasks through the communications layer. At the

same time (or nearly simultaneously) the information that is being received from other tasks

is stored in additional local buffers and it is transferred to the working arrays just before it is

needed. The incoming data is referred to as halo data and the process is commonly known as

“halo exchange”.

A common implementation seen in this code is to cycle through the entire MPI task IDs on

the same row of the topology (using a do loop) and testing if a communication is required.

For example in CALFLU:

This is usually wasteful because the data locality means that there is a specific sub-set of PEs

that will need to communicate with the task in question (its neighbours). A basic optimization

is to pre-calculate which tasks will need to communicate and create a sorted list that can then

be used to target the communications. This list can be used to bias the loading of the buffer

and speed up the unpacking of the information as it arrives. Another optimization is to initiate

the receive buffer earlier than when it is needed so that it is available to the other tasks for

receiving information.

The strongly structured and unchanging nature of the domain decomposition used by this

application assists in the pre-determination of the structures and lists. In fact, there is a

section already coded where the references to neighbours are calculated and these are used in

the main exchange communications in EXCHUV and DOCOMM2.

Other communications that are present in the GLOMAP code are the global broadcasts,

where data on one task is needed by all of the other tasks. These are typically summations, or

reduction, operations and MPI has built-in functions to support them. However, it appears

that in some parts of GLOMAP there are custom versions of these that are achieved through

combinations of send and receive of the data.

The section of the code that solves equations using an FFT method has a different domain

decomposition from the rest of the TOMCAT code. Complete lines of latitude are shared

C Loop over PEs in row

 DO 91 J=0,NPROCI-1

C

C Only calculate for PEs in this column

 IF (J.EQ.ICOL) THEN

C

C b. initialisation

C

 IF (ICOL.EQ.0) THEN

Page 31 of 69

among the PEs the subroutines called by SPEGRD1 work with data structured for the FFT

analysis. There is a time penalty for translating the data from one form to another and a

memory penalty because of the storage required for the new working arrays.

The Cray PAT analysis provides information about selectable groups of functions. One useful

group is that of “MPI” functions. The example sample reports show information about the

MPI functions. The workload performing the MPI communications increases with the

number of MPI tasks. In general this is expected and acceptable. As a problem is divided up

between MPI tasks, it will become smaller when divided between more tasks. There will

consequently be more interfaces, or boundaries, where the halo exchanges are needed, thus

increasing the ratio of communication to individual task computation.

Summary of manual review of source code

A search of the source code for all MPI communications was carried out and several

subroutines were identified as high workload using Cray PAT as well as containing MPI

calls. There were several other subroutines and these may warrant investigation at a later

stage but those listed here are the major contributors to the computational workload.

A more detailed analysis of each subroutine is presented in Appendix B. the following points

list the areas for improving parallel activity, the affected routines and explains the method

applied for improving the overall runtime.

Changes for Setting up the Run

SETMPP additional structures were introduced for grouping PEs, creating MPI

communicators for the new groups and the creation of the processor topology was moved into

this routine from the main program. This routine was moved from INIEXP into the main

program.

FFTSETUP This routine was moved from SPEGRD into the main program. It was wasteful to

repeat it as it is invariant during the run. Subsequent discussion with the authors suggests this

should be moved into CALPHY.

Changes for Communication Pattern

CALFLU, CALSUB These subroutines contain send and receive pairing method that forces a

cascade effect on the communications. It was replaced by an alternative oscillatory method

that is more efficient (requires less time with PEs waiting to receive/send).

Replace FILLIN2 and EMPTIN2 with Direction-Specific Buffer Packing and

Unpacking

DOCOMM2 controls the pattern of the main communication between the uni-directional

advection sweeps. It contains a short loop that cycles for two iterations around the following

routines:

FILLIN2 This routine is called several times for different variables and contains a conditional

statement that decided the manner for copying data from the local data arrays into the

communication buffer.

Page 32 of 69

LISTCOMM This routine decides which processor ID in the topology is going to receive the

data and initiates the exchange.

EMPTIN2 This routine is called a number of times corresponding to the calls to the FILLIN2

subroutine. It also has a conditional statement that determines how the data is copied out of

the communication buffer into local data storage.

The conditional test in EMPTIN2 is at a low level and hence is unnecessarily repeated and

introduces inefficiency. The loop was unrolled and the FILLIN2 subroutine was replaced by a

call to each of LOAD_NS and LOAD_WE which avoided the need for any test. Similarly

EMPTIN2 was replaced by a call to each of UNLOAD_NS and UNLOAD_WE.

EXCHUV routine is similar to DOCOMM2 but has more work to do with velocity

calculations. The same modifications as for DOCOMM2 were applied: unroll the loop and

replace FILLIN2 and EMPTIN2.

Enhance Buffer Loading and Unloading

GATHERROW, SCATTERROW load and unload communication buffers for the FFT domain

decomposition for the PBL scheme (different to the main domain decomposition used by the

model). The process of reviewing source code revealed an inefficient loop ordering (which

was arbitrarily implemented). The loops I and L were swapped.

Change for Group Reduction Operation

SPETRU1 and POLCOMM contain send and receive functions that emulate a global reduction

operation. These were replaced by the appropriate MPI reduction functions.

Result of the changes to communication sections

The two versions, baseline GM4 and enhanced GM4 were compared on the new quad-core

system, the results are summarised in table 12. The enhanced GM4 is faster than the standard

GM4 by 2.56 % on16 PEs, 9.44 % on 32 PEs and 7.61 % on 64 PEs.

The following data (table 7 and table 8) is the result of early experiments of modification of

the communication pattern. Table 7 gives the baseline data that is used for comparing

improvements gained from compiler options and code restructuring. The reference “corrected

GM4” is to the modified X2 library of TOMCAT that has the changes introduced for

successful X2 operation. That library is suitable for use on the XT platform also as the

changes are in fact improvements to the robustness of the code as revealed during the X2

porting exercise. There are no Cray X2 specific features in the code. The 128 PE run is

included to show that the modified software continues to scale at a better rate than is possible

with the exisitng production code.

Page 33 of 69

NCPU 8 16 32 64

Tinit 33.74 31.2 36.98 47.81

T143 1231.499 710.2 424.32 294.99

T144 1244.23 720.6 435.24 309.52

Ttotal 1251.98 730.6 449.5 332.91

Ttot-T143 20.481 20.4 25.18 37.92

T143-Tinit 1197.759 679 387.34 247.18

(T143-Tinit)/142 8.43 4.78 2.72 1.74

Table 7: Timings for GM4 using several domain decompositions standard corrected GM4,

dual-core Opteron (2.8GHz), PGI 8.0.2, MPT 3.1, fully populated (128PE run not

performed).

NCPU 8 16 32 64 128

Tinit 32.74 30.62 33 42.28 66.17

T143 1180.93 656.1 372.6 264.3 261.8

T144 1192.79 665.5 382.3 277.8 284.4

Ttotal 1199.47 674.4 395.4 299.1 321.9

T143-Tinit 1148.19 625.48 372.6 222.02 195.63

(T143-Tini)/142 8.08 4.40 2.62 1.56 1.37

Percentage change from table 7 -4.1% -7.9% -3.6% -10.3% NA

Table 8: Timings for GM4 with modified communications pattern Enhanced GM4, dual-

core, Opteron, Cray OS 2.1 defaults PGI 8.0.2, MPT 3.1, fully populated

The sampling experiments were performed for the 64 PE case for the baseline GM4 and for

modified GM4. The two routines EMPTIN2 and FILLIN2 are no longer visible as they have

been replaced by four more efficient subroutines that are not visible either. A reduction in

time spent on MPI calls is not as great as anticipated as there is a new contribution from the

“SETMPP” routine in the form of MPI_CART_CREATE. The overall profile of the USER

subroutines is not significantly changed although the imbalance for “CONSOM” is less. A

conditional statement was removed from within a do-loop of that subroutine.

Page 34 of 69

Figure 11a: PAT report for the 64 PE run using GM4, it is prior to modification to improve

communications.

The MPI section in table 11a features high up the table with more than a third of the run time

spent in communications. The ETC section is showing a large percentage as this represents

the work of the system including “portals” the underlying communication layer beneath MPI.

GM4 on 64 PEs before modifications for communication:

 Samp % | Samp | Imb. | Imb. |Group

 | | Samp | Samp % | Function

 | | | | PE='HIDE'

 100.0% | 23849 | -- | -- |Total

|--

| 36.8% | 8781 | -- | -- |MPI

||---

|| 18.2% | 4334 | 2548.84 | 37.6% |mpi_recv_

|| 14.0% | 3347 | 2818.92 | 46.4% |mpi_sendrecv_

|| 3.9% | 941 | 831.44 | 47.7% |mpi_ssend_

||===

| 33.8% | 8065 | -- | -- |USER

||---

|| 5.7% | 1365 | 142.03 | 9.6% |advy2_

|| 3.2% | 756 | 204.92 | 21.7% |consom_

|| 3.1% | 737 | 95.91 | 11.7% |ukca_coagwithnucl_

|| 2.7% | 637 | 23.19 | 3.6% |advz2_

|| 2.2% | 522 | 268.17 | 34.5% |advx2_

|| 1.7% | 416 | 288.33 | 41.6% |emptin2_

|| 1.4% | 343 | 262.20 | 44.0% |fillin2_

|| 1.2% | 283 | 69.45 | 20.0% |chimie_

|| 1.0% | 237 | 17.14 | 6.9% |calflu_

|| 1.0% | 229 | 51.72 | 18.7% |ukca_coag_coff_v_

||===

| 29.4% | 7003 | -- | -- |ETC

||---

|| 5.6% | 1347 | 235.38 | 15.1% |__c_mzero8

|| 5.5% | 1309 | 337.02 | 20.8% |PtlEQPeek

|| 2.9% | 684 | 204.52 | 23.4% |fast_nal_poll

|| 2.2% | 527 | 200.42 | 28.0% |PtlEQGet

|| 1.6% | 390 | 104.27 | 21.4% |PtlEQGet_internal

|| 1.5% | 362 | 188.81 | 34.8%

|MPIDI_CRAY_smpdev_progress

|| 1.4% | 344 | 65.81 | 16.3% |__c_mcopy8

|| 1.1% | 273 | 32.80 | 10.9% |__fmth_i_dexp_gh

|| 1.1% | 256 | 85.16 | 25.4% |ptl_hndl2nal

|==

Page 35 of 69

Figure 11b: PAT report for an 64 PE run using modified GM4. The enhanced

communications have increased the relative workload of the “ETC section”. CONSOM

appears better balanced and EMPTIN2 and FILLIN2 have been rmoved.

Even though the percentage of the run for MPI time has been reduced it appears to have

increased for ETC. this is likely due to more work being done by the system layer. The USER

section has been reduced through the steam-lining of buffer loading. The buffer sizes have

not been changed so there is the same amount of work being done by the ETC and MPI per

iteration.

The primary focus for producing figure 12 is to show the improvements achieved from

modifying the commnications it is also possible to show the effect of using only one core per

node discussed in detail later in this section. Note that the scales are spaced as per log2 of the

value to emphasise the effects of scaling the speed of the test case.

GM4 on 64 PEs after modifications for communication:

 Samp % | Samp | Imb. | Imb. |Group

 | | Samp | Samp % | Function

 | | | | PE='HIDE'

 100.0% | 26158 | -- | -- |Total

|--

| 34.3% | 8971 | -- | -- |MPI

||---

|| 15.0% | 3927 | 2316.62 | 37.7% |mpi_recv_

|| 11.7% | 3069 | 2339.02 | 43.9% |mpi_sendrecv_

|| 3.5% | 910 | 767.52 | 46.5% |mpi_ssend_

|| 3.1% | 812 | 773.25 | 49.6% |mpi_cart_create_

||===

| 33.5% | 8754 | -- | -- |ETC

||---

|| 7.1% | 1855 | 333.95 | 15.5% |PtlEQPeek

|| 5.5% | 1440 | 204.62 | 12.6% |__c_mzero8

|| 3.8% | 984 | 212.80 | 18.1% |fast_nal_poll

|| 3.0% | 772 | 181.59 | 19.3% |PtlEQGet

|| 2.2% | 571 | 149.44 | 21.1% |PtlEQGet_internal

|| 2.0% | 515 | 139.47 | 21.7%

|MPIDI_CRAY_smpdev_progress

|| 1.4% | 367 | 43.12 | 10.7% |__c_mcopy8

|| 1.4% | 365 | 106.11 | 22.9% |ptl_hndl2nal

||===

| 32.2% | 8433 | -- | -- |USER

||---

|| 5.0% | 1298 | 193.70 | 13.2% |advy2_

|| 4.9% | 1290 | 19.72 | 1.5% |consom_

|| 2.7% | 708 | 105.41 | 13.2% |ukca_coagwithnucl_

|| 2.5% | 660 | 162.69 | 20.1% |advx2_

|| 2.4% | 620 | 23.67 | 3.7% |advz2_

|| 1.2% | 314 | 36.11 | 10.5% |chimie_

|==

Page 36 of 69

Figure 12: Comparison of performance improvement of GM4 due to communication pattern

modifications. The triangle and diamond marked lines are for quad core operation (i.e. fully

populated nodes). The cross and square marked lines are for the case where only one core per

node is used.

Figure 13: Comparison of performance improvement from modifications to GM4 discussed

in the text body below.

Page 37 of 69

Several parameters that affect the performance of GM4 are compared on the single barchart

(figure 13) if considered in a chronological manner these are:

 The change from OS 2.0 to OS 2.1 using a baseline code for comparison

 The improvement between a partially modified communication pattern and the

baseline

 The difference between the dual core system and the quad core system when

all cores are working on the problem

 The difference between operating with four cores per node and one core per

node on the quad-core system

The difference between the first two bars of each group is less for a higher task count. It is the

difference between one version of the OS (2.0.56) and the newer OS (2.1) required prior to

quad-core upgrade. This “slow down” has never been explained and several research groups

in very different subject areas had observed this for different applications. It is unlikely that

an explanation is forthcoming as the system has since been upgraded to quad-core which is

the reason for the interim OS upgrade.

The difference between the second and third bars in each group is the improvement achieved

with the partial enhancement of communications prior to the upgrade of the system to quad-

core. Those results were encouragement to continue the work and extend the changes as

described the Appendix B.

The significant increase in length between the second (dark-blue) and fourth (purple) bars per

group indicates that the move to quad-cores has resulted in a large drop in model

performance. This is caused by a combination of the lower clock speed and lower memory-

per-core on the replacement quad core nodes compared to the original dual-core nodes. The

main differences between quad-core and dual-core are shown in table 9.

Platform Dual core Quad core

L2 cache 1 MB/core 512 KB/core

L3 cache None 2 MB (shared)

Main RAM 6 GB (~3GB/core) 8 GB (~2GB/core)

Clock speed 2.8 GHz 2.3 GHz

Table 9: Notable differences between dual core and quad core processors.

The memory issue is made clearer when running a single MPI task per node (the sixth and

seventh bars per group for the modified GM4). The latter situation is four times more

expensive (based on original cost model) than the operation with fully populated nodes but is

taking just over half the time per step i.e. approximately twice the cost of running fully

populated nodes.

This is an indication of the benefit of allowing more memory for the application and making

the whole of the L3 cache available. An alternative view is that there are significant gains to

be made if more effort is put into the better use of memory and tuning the code to make more

effective use of the cache when operating with an instance of the simulation on all cores of

the node.

Page 38 of 69

The changes to the communications provide further gains making the cost appear only twice

as much for using one quarter of the available resource. This result indicates that mixed mode

programming soon to be carried out as part of the follow-up GLOMAP dCSE project is likely

to give reasonable improvements. Here the planned configuration will have one MPI task per

quad-core node, each with four Open MP threads.

There is still some work to be done to improve the scaling to 64 MPI tasks. Factors than can

be addressed include overlapping communication and computation, reducing memory

requirement per MPI task and rationalising the global communications per step.

An alternative presentation for the data in figure 13 is a speed-up curve and is shown in

figure 14. The data is not continuous across PEs but this sort of data is commonly presented

as a curve. Figure 14 demonstrates the scaling compared to 8 PEs. The ideal line is for

guidance. For example, a simulation using 64 PEs might be expected to run eight times faster

than the simulation using eight PEs.

Figure 14: Performance on quad-core nodes (_qc), including under-utilisation, i.e. one core

per node (_sc). The enhanced GM4 is indicated by “nagmods”.

Page 39 of 69

Task 2.3: Parallel File Handling, improving reading and writing of data

Overview

The current challenge for software that has been adapted for use on parallel machines is

mainly the interaction with file systems. This is where and how the program stores and

retrieves data at various stages of the simulation. Generally, codes will more often be started

from data generated by a previous run (restart) or need data that controls the progress of the

simulation. During the course of the program execution it is likely that data will be written

for later analysis or to report on the status of the run. With more powerful parallel systems

becoming available scientists are increasing the complexity of their research that leads to an

increase in the quantity of data being processed.

Traditionally programmers have used one of the following models to access the files:

a) All MPI tasks read and write their own data to separate files.

This is suited to distributed parallel systems with individual disk systems per processor group

(also could be a cluster of SMP systems). The time to write each file is shorter than for the

equivalent serial run. It is generally scalable, although this depends on the underlying file

system.

The disadvantage is that there have to be ancillary helper applications that separate data files

into sizes to match the number of MPI Tasks and helper applications that combine the files

into a coherent single entity for post-processing. Coordinating the management of a large

number of files can be problematic.

b) An I/O Master is nominated (usually MPI rank 0)

All other MPI tasks transfer their data to the master and it is subsequently written to file

(conversely: the master task reads a file and distributes it among all the tasks).

This is often the easiest to manage as the data files remain as they would be arranged for an

equivalent serial run. The variation of availability of PEs will not affect the data files and

there is no need for extra processing to convert the files prior to or after the simulation. It is

portable and will work on any parallel system.

The disadvantage is that the I/O Master will have to store the global data ahead of the write or

after a read. Another (perhaps more important?) disadvantage is that the other processors will

need to wait for the master to finish reading/writing the data and communicate to them before

they can continue with their work. This will show up as detrimental to scaling if the program

requires frequent I/O.

c) The I/O Master is the method used by GLOMAP.

All tasks read and write their data to shared files but using MPI specific data structures.

This method does not need any “decomposition or combination” ancillary programs.

Potentially it is as fast as (a) but requires the underlying file system to be aware that it is in a

Page 40 of 69

parallel computing environment. There may be limits to the number of tasks allowed to

access an individual file and thus limit the scaling to worse than that which could be achieved

using (a). A lot of effort has to be expended to design and implement the new data structures

required to access the parallel file systems. Each data structure that is written to file has to

have a matching data type that describes the pattern of the data within the file.

d) Sub-group for I/O: a sub-group of tasks use the MPI-IO file manipulators with MPI

data structures.

This avoids saturating the underlying file system but could be complicated to implement. It is

a compromise of (c) and (b) as it requires the parallel data structures to be defined and extra

work of determining which tasks are recruited for file handling. While the tasks are doing

data handling they cannot contribute to the compute and it is likely that other tasks are idle

waiting for the file tasks to complete. There is a one-off set-up penalty during the definition

of the parallel topology. Choosing the size of the group may be critical to the improvement

over (c). There is a requirement for communication between the I/O group and other tasks. It

is possible to design a system that will cope with the imbalance but not within the GLOMAP

model.

Analysis of file accesses in case study with existing version

There are 86 files copied into the case directory during the job preparations. Two extra files

are generated during the run (fort.9 and fort.31). There are nine symbolic links to other

directories created at the outset, some of these are used as shorthand to copy files into the

local directory. It is not easy to determine how many files are accessed during a normal

simulation as this project uses only the first three days of a run. Some of the data is for

updating TOMCAT fields (winds, surface values etc…) other data is for the GLOMAP

function with emissions and concentration data.

There are several places where a file has to be read or written. Those occurrences are at set

intervals and they are protected by master MPI task tests. During initialisation they are only

accessed by the MASTER I/O TASK and it has to store the full extent of the data. As the

mode of operation of the whole parallel code is SPMD with static array allocation, all

TASKS have declared enough storage space for the global data. A final gather operation is

required for writing coherent files such as fort.9, fort.25 or files that are processed elsewhere

and by sequential programs.

The distributed memory model of parallel operation implemented in GLOMAP requires that

after the master processor (task id 0) has read all global data from a file it distributes the

content to each task. Some data is universal and the communication is in the form of a

broadcast of a large array, which is itself a copy of the global array that stores the information

on the master process. Each task then extracts the pieces of information that are to be used on

its own process. This is unnecessary and causes two undesirable effects: the memory

footprint per process is larger than it needs to be (even the master task memory requirement

could be reduced) and there is a high quantity of cross communications (all-to-all) saturating

the communication network. It can be replaced with either MPI-IO or alternative scatter

Page 41 of 69

operation with a ROW-MASTER I/O model. In some cases the Master I/O task will

broadcast all the data to all other tasks and these then extract their own component. This is

only efficient in the fact that the Master I/O does not have to extract each task data and send

individually. However, it will saturate the communications layer and thus provide a possible

bottle neck.

Another mode of file access is through calls to either PPWRIT or PPREAD. PPREAD reads

all the chosen data from a file. It then distributes the data to the other PEs via several calls to

MPE_SSEND. It has an extra complication in that data can be structured with halo

information (such as the Sxx moment array) and sometimes the data has no halo regions. A

conditional test is made at a low level to decide how to reference the information during the

scattering to other PEs.

Figure 15: Time for first and final steps shown as a percentage of the full (3-day) simulation.

The timing reveals that the first and final time steps have significant work that is taken up

with a Master I/O operation. Varying the number of MPI tasks shows the situation worsening

for a larger number of tasks. This is shown in figure 15 where the time for each of the three

sections has been identified as a percentage of the full run. It has been noted that the duration

of this simulation is only 3 days and this should be taken into account. The standard working

practice of simulating 30 days per job would mean a smaller percentage of the runtime will

be needed for I/O. A certain amount of the main iterations is also given up to I/O but that has

not been investigated in detail in this study. The initial observations indicate that the 6-hourly

read for concentrations doubles the time for a time step. This adds up to become 1/13
th

 of the

inner compute time.

Page 42 of 69

Recommendations to improve file access

To benefit from the capability of the LUSTRE file system on HECToR, it is better to make

the reading of data files a parallel job. The preferred route is to use MPI-IO and F90 data

structures to allow each MPI-task to read its own section of the input files as they are pre-

dominantly read-only. If MPI-IO is unworkable (i.e. if data structures become too

complicated or unmanageable) then a fallback position is to use a row-oriented method to

read the file using a subset of the MPI tasks and then scatter fragments among the other MPI-

tasks that share the same latitudes. Additions to SETMPP are required to declare additional

file handles, PE groups and communicators.

Implementation of file data structures

To support the use of MPI-IO there have to be declarations of new data structures, possibly

one for each data array written to or read from, a file. These are descriptions of the data and

the way that they are stored on hard disc. For example, additional structures for file handling

will be MPI data types:

Data that has no halo: data2d_nh_t, data3d_nh_t

Data that has halo information: data2d_wh_t, data3d_wh_t

Communicators and arrays: COMM_PIO will identify the group of processes involved in

parallel I/O (actually in first implementation this will be equal to MPI_COMM_WORLD).

The format of the files is clearly defined. Categorising the files will allow specific strategies

to be implemented for each category of file. The simplest example is for data that is volume

information organised as (longitude by latitude by altitude). Adding communication specific

information will allow the removal of some duplication of global data. The trend of the start-

up timings will reverse as there is less data per processor.

Categories of files based on their data content: high resolution data (1x1), T42 resolution data

(without halo data), T42 resolution data (with halo data), arbitrary data for FFT coefficients.

Some data is arranged as plane of longitude by latitude at specific altitudes. Some data is

arranged as planes of longitude by altitude at specific latitudes (usually North Pole to South

Pole). Each of these categories will need a defined data type to allow parallel access.

Expected results of file handling modifications

The implementation was not completed and thus cannot be tested. However, the timing of the

model runs on 32 and 64 PE numbers shows distinct spikes in time-per-time step every 12

time steps (6 hours) where the input meteorological fields are read in from file, some of this

is actually due to the processing of the “new” data. However, it is expected that the

implementation of parallel I/O will result in significant improvements in run-time on high PE

numbers, improving performance and scalability. The start-up costs associated with reading

of initialization/restart data files will also be reduced, as will the round-up at the end-of-

simulation.

Page 43 of 69

Overall Summary
The GLOMAP/TOMCAT code has been analysed for a specific case of GLOMAP mode

MPI and modifications implemented that improve the serial performance. Analysis of the

algorithms used for parallel operation has been used to improve the pattern of communication

and achieve small gains (the Cray MPI does a reasonable job with the original version).

These changes will all translate onto other platforms e.g. “Everest”. This work has allowed

the use of 64 PEs in a more efficient manner than previously was possible.

An overall summary of changes in runtimes (neglecting first and final step i.e. totals for 142

iterations) is given in tables 10, 11, 12 and 13.

Number of MPI Tasks 8 16 32 64

GM4 (QC -O3) 1485 783 449 334

GM4 (QC -fast) 1387 742 434 302

Improvement % 6.60 5.24 3.34 9.58

Table 10: Time in seconds showing improvement due to change of compilation option (the

difference between -O3 and -fast).

These timings are from tests using four cores per quad-core node and show an improvement

for all domain decompositions. The smallest change seen is for 32 PEs. This shows that the

current working practice is using an optimal setting that matches the memory usage.

Number of MPI Tasks 8 16 32 64

GM3 (DC -O3) 1952 872 451 276

GM4 (DC -O3) 1122 631 377 251

Improvement % 42.48 27.62 16.26 9.08

Time in seconds for simulation omitting first and final steps

Table 11: Improvement due to changes in the code structure.

The numbers are extracted from the work done using two cores per dual-core node. Changes

to the code structure have given the largest benefits for a lower number of MPI Tasks. This

can be attributed to how well the arrays match the local cache memory management.

Number of MPI Tasks 8 16 32 64

GM4 (QC -fast) 1387 742 434 302

GM4 (QC -fast) with MPI enhancement 1389 723 393 279

Improvement over GM4 baseline % -0.14 2.56 9.44 7.61

Time in seconds for simulation omitting first and final steps

Table 12: Improvement due to changes to the code structure around communication.

The values in table 12 are from the quad-core system with the optimisation level set to “-fast”

in all cases. The small gain in performance for a low number of MPI tasks is due to the fewer

numbers of communication connections.

Page 44 of 69

Number of MPI Tasks 8 16 32 64

GM4 (QC -O3) 1485 783 449 334

GM4 (QC -fast) MPI enhancement 1389 723 393 279

Improvement over GM4 baseline % 6.46 7.66 12.47 16.47

Time in seconds for simulation omitting first and final steps

Table 13: Shows an overall improvement comparing current production version (GM4 with -

O3) with changes for both the compiler optimisation and communications.

The overall improvement is not a simple accumulation as each of the structural changes will

be affected by optimisation.

Overall conclusions
Changing the compiler optimisation options and modifying the code structure in key areas

has improved the performance of serial parts of the code. Unfortunately, these enhancements

have made the scaling performance appear worse even though the total run time is less.

Revising the sections of the code that communicate data between PEs has resulted in shorter

runtimes for all PE numbers. Thus, the performance of the code in terms of overall speed has

been improved. The scaling to 64 MPI tasks has been improved.

The change from dual core to quad core has impacted the performance and makes further

optimisation necessary. The difference between a run using four cores per node and a run

using one core per node shows that there is still considerable work on memory use that has

not been addressed.

The use of Cray PAT has highlighted sections of the program that incur high computational

costs. A review of those sections by the code authors and developers may reveal that they can

be replaced with newer techniques that alleviate the burden.

Future work planned
The current project has highlighted benefits of revised code structure and indicated the way to

improved file handling. It has also highlighted that GLOMAP will benefit from the

availability of Multiple Core processors if it can make the use of Open MP. Since the code

was still recently used in pure Open MP and the OMP statements still exist in the MPI

version of TOMCAT, it should be straightforward to implement this for significant

performance gains on quad-core HECToR. The gains will be proportional to the amount of

code that can utilise Open MP.

For example, a single MPI task per node will improve the performance over four tasks

sharing 8GB of memory. That task can then create three extra threads for Open MP

processing. The success will be limited by the percentage of the simulation that can operate in

parallel as there are places where it is inherently serial. The improvement of running a single

task per node has shown an improvement of runtime. Combining this with an Open MP

implementation may improve the performance to better that of a solely MPI job on fully

populated cores.

Page 45 of 69

It has been shown that the communications bottle-neck begins to make itself apparent with

32PEs. Many of the changes made during this project have improved that a small amount

with the bottle-neck being shifted to 64 PEs. This was demonstrated in the experiments where

only one core per processor was used. Moving to mixed mode will relieve this pattern as

within a node there will be multiple threads thus an increase in throughput will be achievable

for 128 cores where previously none would benefit. With the improvements for 64 PEs and

single core operation then a mixed-mode enable code will potentially give good return for

256 PEs.

The implementation into TOMCAT/GLOMAP of mixed mode Open MP-MPI in this way

will be done as part of the 2
nd

 GLOMAP dCSE project which has 4 months funding and will

begin in August 2009.

Direction beyond immediate planned work
These recommendations for work beyond the planned projects are aimed at improving the

usability and scalability of the application and they include:

 Change the infrastructure to conform to the policies of administrators of HECToR

separating out the sequential processes from the parallel jobs.

 Change the method for reading reference files with MPI-IO. The initialization and

finalization of each job become more significant as the job is shortened, the current

working practice with one-hour runs means that these sections can be as much as

1/30
th

 of the simulation time (~3%).

 Reduce the number of broadcasts of global data. This needs a review of all

subroutines where MPE_BCAST is used. Although the profiling did indicate that not

a lot of time was spent in the broadcast routines there was some imbalance reported

that suggests some “wait-time”.

 Reduce the amount of memory that is primarily for the Master I/O model of file

handling. This can be achieved by implementing a sensible parallel I/O strategy.

 Make better use of the existing MPI data structures and the regular nature of the

discretisation of the computational domain. Approximately half of this project has

been analyzing MPI structures with a view to enhancing the parallel performance. Not

all sections were completely revised and there is still scope for performance gains.

 Time should be set aside with future projects to review the compilation options and

compiler version when new compilers become available. Generally being aware that a

new version of the compiler is available may offer improvements in performance.

 Allow for time required for fixing the 64 CPU run on Cray X2, find the bug as it

could be beneficial to the XT4 work. Using different compilers and architectures is a

useful method for tracking down inconsistencies in the code structures.

 There many other places where the sequential sections of code can be improved.

Particularly “in-lining” will be of benefit in several places. However, it should be

implemented in a prescribed manner through compiler directives. The work in this

area was hindered by a compiler bug.

Page 46 of 69

Appendices

Appendix A: Script examples for DCSE working practice and list of coding errors discovered

and fixed

Appendix B: Detail of MPI communications used for 12 subroutines

Appendix C: Example MPI-IO design

Page 47 of 69

Appendix A: Examples of scripts used during DCSE work
The working practice has been described in detail in the main report. It consists of five

stages: Create case directory; Create source code; Build executable; Launch simulation;

Process result of run. Repeated building of the executable is required when investigating

optimisation or using the Cray PAT facility, consequently there is a need for a Makefile and

separate submission script to launch the simulation with the new executable.

Example Makefile

XT4h Fortran compiler generic name

FC = ftn

options for pgf90

###DBGFLG= -v -V -g -O0

DBGFLG=

INFO=-Minfo -Mneginfo

###-Wl,-Map,xtgmm.map

investigate compiler options for optimisation

###OPTIM= -Mipa=reshape -Minline -fast -O3

###OPTIM= -Mipa=inline -fast -O3

###OPTIM= -Minline -fast -O3

OPTIM= -fast

###OPTIM= -O3

###FFLAGS= $(DBGFLG) $(INFO) -Mextend -byteswapio -r8 $(OPTIM)

FFLAGS= -Mextend -byteswapio -r8 $(OPTIM)

.SUFFIXES: .f90 .f .o

GLOMAP.f90: GLOMAP.f

 ln -s GLOMAP.f GLOMAP.f90

modules.f90: modules.f

 ln -s modules.f modules.f90

GLOMAP.o: GLOMAP.f90 modules.o

 $(FC) $(FFLAGS) -c $<

modules.o: modules.f90

 $(FC) $(FFLAGS) -c $<

prog.o: prog.f modules.o

 $(FC) $(FFLAGS) -c $<

GM_OBJS=modules.o GLOMAP.o rdsp.o

xtgmm: $(GM_OBJS) prog.o

 $(FC) $(FFLAGS) -o xtgmm.exe prog.o $(GM_OBJS)

standalone post processor (Sequential)

pdgc: pdgc.f

 $(FC) -mcmodel=medium -byteswapio $(OPTIM) -o pdgc.exe

pdgc.f

clean:

 rm -f prog.o $(GM_OBJS) *.mod

Page 48 of 69

A generic Makefile for the code as supplied was created. This one assumes that prog.f,

GLOMAP.f90, modules.f90 and rdsp.f are available. They are usually generated during the

job submission in current working practice. This Makefile is for PGI FORTRAN.

The hashes are comments that disable certain lines and there is a tab character on the line

following the target dependency line. On any Unix system “man make” will provide further

information about its operation.

The DCSE used this Makefile for simpler recompilation during testing of compiler options

and Cray PAT analysis. The different options required for building an executable with Cray

FORTRAN were implemented using a separate Makefile. They are both similar in layout

with the main difference in the FFLAGS value. The XT make is invoked as “make –f

make.pgf95 xtgmm” and the Cray X2 compiler is invoked using “make -f make.cftn

x2gmm”.

PBS job script

The job submission scripts are specific to the number of MPI tasks and also whether the

simulation is a standard run (for checking performance), an instrumented run (using Cray

PAT facilities) or a debugging exercise. Variation in the parallel density is allowed for in the

“-l mppnppn” option to qsub. The command to use it is: “qsub GLOMAP64c4.pbs”

Example PBS script (GLOMAP64c4.pbs)

#!/bin/ksh

#PBS -N gm4_O3_p64c4

#PBS -l mppwidth=64

#PBS -l mppnppn=4

#PBS -l walltime=0:19:00

#PBS -A n02-chem

#PBS –m e

cd $PBS_O_WORKDIR

export NTASK=`qstat -f $PBS_JOBID | awk '/mppwidth/ {print

$3}'`

export NPPN=`qstat -f $PBS_JOBID | awk '/mppnppn/ {print

$3}'`

date > StartedJob.$$

aprun -n $NTASK -N $NPPN

${GM4HOME}/SCAL_OS2.1/src_64/GLOMAP.exe

mv fort.9 gm4_O3p64.f09

qsub convert_pdg.pbs

end of script

Page 49 of 69

This script is part of a chain for evaluating the scaling of simulation and is initiated from

within the preceding PBS script after the aprun has completed. In this (the penultimate script)

there is a submission of a serial job to convert the fort.9 files from double to single precision.

List of coding errors discovered and fixed

The difference between PGF95 and Cray ftn 6.0.0.2 revealed some problems with the code.

Some of these were straightforward revealed during the compilation. Additional compilation

with the NAG FORTRAN compiler exposed some coding mistakes (i.e. other compilers did

not flag an error). Others were highlighted during runtime (with a failure of the code). The

following list was discovered during the port to the Cray X2 and subsequently fixed in the

central reference library by the code owner. The reference library for use with this project

include UNICATMPP0.91 and UNIASAD0.2a. Subsequent corrected libraries were porvided

an distinguished by the name: UNICATMPP0.91X2 and UNIASAD0.2aX2.

 Missing calculation of Cosine in southern hemisphere.

 Incorrect index for innermost dimension of multi-dimensional arrays within PBL FFT

calculations (SPEGRD1 and SPETRU1). NLON+3 was used where NLON+2 was

required.

 VDEPH is not initialised when PBLCCM was not being used (IDRY and IVDEP)

 DMSCONCGB was uninitialized or indeterminate for time steps between the reading

of the reference data from file (this is in emisions.f90 an update file for the main

code).

 Alignment of data in common blocks mixing real and integer. For this code reals are

promoted to double with a compiler option (-r8 for PGf95 ad –s real64 for cftn) thus

causing a risk of data corruption.

 AERFIELDS4I was introduced to carry MOIS_DMS separate from AERFIELDS4

 CMCCTL_R for PEPS and CTS in the ASAD subsystem

 DTM moved from COMI to COMR

 Several inconsistent parameters in subroutine calling statements were of different

type to the implementation. (Real data type instead of integer). For example:

 MPE_BCAST was used instead of MPE_BCASTR in many places

 MPE_SSEND, MPE_RECV, MPE_SENDRECV have inconsistent data types in some

places

 Number of arguments to the PPWRITE routine was in error.

 Wrong size of array used in MPE_ALLREDUCE in RADIAT

 CALL MPE_ALLREDUCE(SQ1 ,SQ ,NIV,MPREAL,MPERR)

Four calls use NIV and should be NIV-1

.

Page 50 of 69

Appendix B: Detail of Routines Requiring Communication

This appendix contains descriptions of the routines that have been reviewed for their affect on

the MPI communication within the TOMCAT code. There is very little MPI work within the

GLOMAP mode specific code and that is limited to reading or writing data, which uses the

parallel Master I/O method for file access.

The routines are listed in alphabetical order with the notes made during a code examination

exercise to reveal where there could be improvements. Not every routine that has an MPI

construct has been analysed the emphasis is on the MPI_RECV and MPI_SEND that is

discussed in section 2.3 of the main report. Several places where MPE_BCAST is used have

not been analysed.

Routine Designed Changed Verified

CALFLU Yes Yes Yes

CALPHY Yes Yes Yes

CALSUB Yes Yes Yes

COLLF Not need No No

DISTF Not need No No

DOMAIN No No No

EXCHUV Yes Yes Yes

GATHERROW Yes Yes Yes

LISTCOMM* Yes No No

PHYSICS Yes No No

POLCOM Yes No No

PPREAD Yes No No

PPWRIT Yes No No

SCATTERROW Yes Yes Yes

SETMPP Yes Yes Yes

SPEGRD Yes Yes Yes

SPETRU1 Yes Yes Yes

SWAP_NS No No No

Table B1: List of routines discussed in this appendix.

For the majority of the descriptions for the routines the structure is; name, overview,

algorithm and recommendations. In some cases extra detail is given to support the

descriptions. Some of the recommendations apply to several subroutines where there is a

common optimisation identified.

The method used for verification is to compare the output “fort.25”. This is a single precision

version of “fort.9” and is the usual binary file used by GLOMAP researchers to analyse the

simulation. The fort.9 is the double precision result of the simulation and is processed by

PDG.exe to make a single precision fort.25. This is a serial job but takes less than minute to

process this resolution (T42 data). Even so, it is possible to chain a serial job from the end of

the parallel job and this approach has been used in this research.

Page 51 of 69

CALFLU

Overview

This subroutine is called from INIEXP during initialisation and then every 6 hours from

INICYCL. It is the main TOMCAT routine for processing meteorological data into tracer

mass fluxes. Fluxes are calculated at “grid-box” faces as for a “staggered-grid” method. The

domain decomposition is such that the velocities lay on the edge of the domain and so

communication is needed in only one direction.

Algorithm

The following MPE calls are used by this subroutine

 NCYCLT=12 i.e. 6 hours simulated time

MPE_RECV RBUF is VGRI + VGRIA receive from North

MPE_SSEND SBUF is copy of VGRI sent to South

MPE_BARRIER Hold extreme PEs until interior PEs complete exchange

MPE_BARRIER just before UGRIA transfer to EAST

MPE_SSEND UGRIA SEND to right SBUFA

MPE_RECV UGRIA RECV from Left RBUFA

MPE_BARRIER Hold extreme PEs until interior PEs complete exchange

MPE_SENDRECVR SBUFA, RBUFA, IP (row): SSUM along latitude rows Zonal mean

MPE_BARRIER Hold extreme PEs until interior PEs complete exchange

MPE_SENDRECVR SBUFU, RBUFU, IRGT, ILFT: UGRI east to west exchange

Table B.2: MPE calls are used by subroutine CALFLU

Significant computational work

(6 sections of code)

Loop 790 is followed by

(Communicate VGRI to south)

A pairing of MPE_RECV and MPE_SSEND

Loop 91 Calculate UGRIA

(only PEs in a column)

 Then send UGRIA to East

 Receive UGRIA from West

Sum along latitude (1...NLONMX)

Loop over PEs in my row

 Exchange SSUM with all PEs on my row

 Accumulate Zonal Mean in UZON (K, L)

All PEs have the zonal mean

Update UGRI from UGRIA

Send UGRI at MYLON to East

Receive UGRI into “0” from West

Page 52 of 69

Observations and Suggested changes

There is some inefficiency due to excessive memory usage. There are six buffers that have

been allocated locally and need to be big enough for (NLONMX by NIV) elements.

IBUF, IBUFA and IBUFU are calculated before the program is compiled; a single value

could be used to define two buffers, one for sending and one for receiving thus removing the

memory requirement for the other four buffers. It is better to re-use those than carry excess

memory. Care is needed to match the shape of other data structures. The loading of the

buffers is not in a contiguous manner. The zonal mean can be calculated with row-collective

communicators.

All the PEs that are not on the North Pole attempt to receive from the north and then the PEs

that are not on the south polar region attempt to send information to the south. However, the

only rows of PEs that are “immediately” ready are those around the North Pole. For example

with 8 rows of PEs and 64 latitudes (as for the T42 case) this gives rise to the south to north

cascade:

cascade 1 2 3 4 5 6 7

Latitude indices 1-8 S C C C C C C

9-16 N S

17-24 N S

25-32 N S

33-40 N S

41-48 N S

49-56 N S

57-64 W W W W W W N

Table B.3: Showing the cascade of communications for existing implementation. S is a

communication to the PE to south of this one. N is a communication with PE to north

of this one. W is a waiting condition. C is continue with computation.

The west to east communication of UGRI is inefficient because each PE is forced to calculate

the ID of its neighbour. This information can be determined at start-up within SETMPP as it

is invariant throughout the run.

The algorithm could be made into an odd-even oscillator where the MPI tasks that are

topologically on the zeroth row are tagged as even and those on the second row are tagged as

odd because the row counting initiates at zero.

C For sending and receiving VGRI, VGRIA, UGRI, UGRIA

values

 INTEGER IBUF, IBUFU, IBUFA, ICOUNT

 PARAMETER (IBUF =NLONMX*NIV + NLONMX*LEV)

 PARAMETER (IBUFA=NLATMX*LEV,IBUFU=NLATMX*NIV)

 REAL SBUF (IBUF), RBUF (IBUF)

 REAL SBUFA(IBUFA), RBUFA(IBUFA),SBUFU(IBUFU),

RBUFU(IBUFU)

Page 53 of 69

 oscillate 1 2

Latitude indices 1-8 Even S C

9-16 Odd N S

17-24 Even S N

25-32 Odd N S

33-40 Even S N

41-48 Odd N S

49-56 Even S N

57-64 Odd N C

Table B.4: Oscillator communications. S is a communication to the PE to south of this one.

N is a communication with PE to north of this one. C is continue with computation.

The resulting communication pattern lets the exchanges occur in less time as several of the

PEs are communicating simultaneously. There is no waiting as tasks are in the correct mode

on entry to the communications layer.

CALPHY

Overview

This sub-routine is a high level flow control for the boudary layer scheme of this model. It

has a section for initialisation of the problem and then calls to the more detailed lower level

subprograms. The benefits of changes to this routine will be seen in the reduced MPI

workload in broadcast. This will free the code of significant synchronisation overhead. The

PPREAD and PPWRITE subroutines are discussed separately.

Algorithm

Observations and Suggested changes

Generally the communication in CALPHYS is mainly through MPE_BCAST after a

MASTER I/O section. Replacing PPREADs and PPWRITs with parallel I/O functions will

remove the requirement for MPE_BCASTs. There is a final MPI_REDUCE and

MPI_BCAST pair that should be replaced by an MPI_ALLREDUCE.

CALSUB

Overview

Initialisation section

Read data files

Call spegrd1

Call advance

Parallel read of file unit 79

 Filter for MYPROC=0 to read totemi

 BCAST totemi array

 PPREAD for 7 field variables

OMP parallel do loop over latitudes

 LINEMS()

MPI reduction ztotems

MPI BCAST Total emissions array

Page 54 of 69

This sub-program is called from the main TOMCAT program once per six-hour cycle after

CALCOND, but is also dependent on IVDIF and ICONV. It is also called once during

initialisation. It calculates the convection terms. Written in the header block there is a brief

description:

“ Calculate cloud ent/detrainment fluxes and vertical diffusion

coefficients from model fields”

NOTE, the data WQ, WU, WV are stored (L, I, K) that is very different from the main

TOMCAT code or the PBL scheme from NCAR CCM2. This convection code was adapted

from an tracer transport model.

Algorithm

Communication pattern

The existing communications pattern in the north–south direction is not optimal. The PEs on

the North Pole row only send south and never send north. The PEs around the South Pole

only send north and never send south. This is used to trigger the cascade of communications

from poles towards equator. This implies that the interior rows have to wait for the pole

communications to complete before they can continue. This is another algorithm that has the

inherent cascade of communication triggered from the North Pole. There is a calculation of

QAM and QAC that could be done more efficiently.

There is some potential in reviewing the manner in which the buffers are filled and emptied

as this looks like non-optimal access of large arrays. Another issue with buffers is that the

PPREADF (IEVAP) EVAP() ! a formatted file fort.18

EVAP(NLONMX,NLATMX) plane of values

Exch WQ,WU,WV:

 Right-Left (East-West) communications:

 Fill sbuf1 with I=MYLON and sbuf2 with I=1

 Sendrecv (sbuf1, right, rbuf2, left)

 Sendrecv (sbuf2, left, rbuf1, right)

 Unpack buffers rbuf1, rbuf2

 South-North communications

 Fill sbuf2 with K=MYLAT, sbuf1 with K=1, WQ(L,I,K)

 Sendrecv (sbuf1,north, rbuf1, north)

 Sendrecv (sbuf2,south, rbuf2, south)

 Unpack buffers rbuf1, rbuf2 into WQ,WU,WV

 DO I = 1, NLONMX

 DO L = 0,NIV

 WQ(L,I,0) = RBUF1(ICOUNT)

 END DO

 END DO

More work

Read fort.59 SUGRTR (use zsugrtr for temp global storage)

It is then BCAST so each PE picks its own fragment!

RETURN

Page 55 of 69

“polar” PEs continues to unpack RBUF1 on the North Polar Region and RBUF2 on the South

Polar Region that have not been populated due to lack of communication.

EXCHUV

Overview

EXCHUV is called by INIEXP, and then from INICYCL, every 6 hours of simulation. The

velocities at faces are exchanged. The buffers are filled differently according to the direction

of communication. For WEST-EAST communication there are a varying number of

Algorithm

Suggested changes

Make KP explicit and unroll the loop. Replace buffer packing with load_ns and load_we.

Replace buffer unpacking with unload_ns and unload_we. Make the final special case more

sensible in loop limits and reposition the conditional test.

Main work

.

Loop KP =1 and 2

 Fillin2

 Listcomm (the actual MPI communication)

 Emptin2

 Barrier

.

Special loop for NLONMX=LON

 (special case for a circumferential

hoop of longs)

First send SBUF1 to right and receive RBUF2 from left, then

send SBUF2 to left and rceive RBUF1 from right.

Then send sbuf2 to left and recv rbuf1 from right

RBUF2

SBUF2

RBUF1

SBUF1

Page 56 of 69

GATHERROW

Overview

This subroutine is part of the boundary layer scheme and is typically invoked with arguments

(UUX, ZUU, and PLEV). It will send the FFT parts of the three -dimensional geometric data

PFL to other PEs. It will also collect the parts of specific FFT rows that are from other PEs. It

will collect the sections into PFG from other PEs sent to this PE. For example PE5 will

receive data from PE4, PE6 and PE7 in the 64 PE decomposition. It will also need to send

data to PE4, PE6 and PE7.

Algorithm

NOTE organisation is longitude, altitude and then latitude and is different to the main

TOMCAT CTM where the organisation is longitude, latitude and then altitude.

Suggested changes

PFG(NLON+2,NIV,NLAT) !NLAT is the FFT decomposition so

in 64PE case it is 1.

PFL(NLONMX+2,NIV,NLATMX) ! the field to be collected/sent

RESET PFG to ZERO

Make FFT row copy PFG(IG,LG, KG') = PFL(IL,LL,KL)

Pack SBUF(IPROC) on per processor basis ==PFL(section)

For all PEs {note this could be very inefficient for HIGH

NPROC)

 IF(MY_PE)

 For all PEs except me

 IF data_to_be_recvd

 RECV()

 END IF

 END DO

 ELSE

 SB1 = SBUF(IP)

 IF (data_to_send)

 SEND SBUF1 to IPROC (other PEs on my row)

 END IF

 ENDIF

END loop over PEs

Unpack RBUF(IP) (info from each PE stored separate columns

of the 2-d array)

DO K

 DO I

 DO L !!! NOTE poor loop order due to data mapping

 K' = K-MYLATREF

 PFG(I,L,K')=RBUF(IC,IP)

 END DO

 END DO

END DO

Page 57 of 69

The loop over PEs should be replaced with a loop over only PEs on my row of the topology

in a cyclic order that will improve communications. This is easily determined at the start of

the simulation when the decomposition topology is set. This assumes that the PEs on a row

will have common latitudes. Some of the loop ordering is not optimal and should be changed.

LISTCOMM

Overview

LISTCOMM(K) is called from DOCOMM(). The subroutine DOCOMM loads up the two

send buffers according to the direction K. That is done by FILLIN2(K). The SW_SNDBUF

and NE_SNDBUF have been packed ready for communication; there are corresponding

SW_RCVBUF and NE_RCVBUF ready to receive data from neighbour PEs.

Algorithm

The communication is done in two passes of LISTCOMM so the test is for the direction of

communication to establish which PEs will be exchanging data.

NOTE the order (e,f,g,h) is changed for northern hemisphere PEs.

Suggested changes

The west to east communication appears satisfactory with the neighbour being in a ready to

receive state when the PE is ready to send. The compound SENDRECV function in MPI is

used.

The north-south communication is not optimal. There is an attempt to improve it with the

switch between north and south hemispheres but that has never been activated as the test is

never true. It is likely that there can be gains in parallel performance if this code section is

activated. However, if an odd-even pattern is adopted then there should be further

improvement as, starting from the North Polar region, the alternate rows of PEs will be

classed as “even” and communicate southwards first while the other PEs will be “odd” and

IF the communication is West to East THEN

 (a)Send NE_SNDBUF to East PE

 (b)Recv SW_RCVBUF from West PE

 (c)Send SW_SNDBUF to West PE

 (d)Recv NE_RCVBUF from East PE

ELSE communication is North to South

 IF (southern hemisphere)

 (e) Send NE_SNDBUF

 (f) Recv NE_RCVBUF

 (g) send SW_SNDBUF to South

 (h) recv SW_RCVBBUF from South

 ELSE

 (g) send SW_SNDBUF to South

 (h) recv SW_RCVBBUF from South

 (e) Send NE_SNDBUF

 (f) Recv NE_RCVBUF

 END IF

END IF

Page 58 of 69

communicate northwards first. This oscillation means that each PE is sending and receiving

with the correct corresponding PE rather than having to wait for other unrelated

communications to complete. To achieve this pattern the SETMPP routine can be used to

prepare the flag that indicates that the row is “odd” or “even”.

Suggested replacement algorithm:

PHYSICS

Overview

The majority of this subroutine is involved with mapping data from the main TOMCAT

chemical transport model into a data structure consistent with the PBL scheme from NCAR

CCM. The section where communication is significant is considered in this note. It calls sub-

programs CALPHY, SWAP_NS and PPWRITE and PPREAD are sub-programs that contain

MPI work.

Algorithm

Suggested changes

Replace the PPWRIT with user defined MPI-IO wrappers: PIO_WR_2D_NH() and

PIO_WR3D_NH(). These have only been prototyped and are not fully implemented yet.

The loop order and data structure should be considered to gain better use of cache and vector

processing.

Map 8 variables from CTM to CCM 2

(i.e. so that altitude is second index not third)

For example : T3 (I,K,J) = T3D (I,J,K)

SWAP_NS for 10 fields dimensioned [(plond*plev) x plat].

Call CALPHY

Then SWAP_NS for 3 fields Q3, KVH, PBLHT

Convert these back from CCM2 to CTM

 [Q3, KVH, PBLHT become S0, DC and HTPBL]

PPWRIT every 6 hours to fort.79 using the Master I/O method

 (TOTEMI, IZM,SN,RNFP1,TS,TSSUB,CNT,CNB)

IF (odd)

 Send north (except north pole PEs)

 Recv north

 Send south

 Recv south

ELSE (even)

 Send South (except South Pole PEs)

 Recv South

 Send north

 Recv north

END IF

Page 59 of 69

POLCOM

Overview

This sub-program is called from ADVY2 for PEs that contain the Polar Regions.

Algorithm

Communications profile

Here is an example row, 15 (i.e. it is row 14 in MPI coordinates)

 PE 56 PE 57 PE 58 PE 59

1 SR57 SR56 W W

2 SR58 W SR56 W

3 SR59 SR58 SR57 SR56

4 C SR59 W SR57

5 C C SR59 SR58

Table B.5: Showing an inherent serialisation of communication and costs 2 “cycles” more

than it should. SR is a send-receive exchange pair and W is waiting for a PE, ready to

exchange data. C is where the PE has moved onto do main code computations.

Recommendation

Even numbers communicate first time to east and ascending order. Then odd communicate

first time to west and cycle in a descending order. Column IDs can be used for odd and even

indicators. PE ids are assumed to start at 0 in the first column of the topology.

 PE 56 PE 57 PE 58 PE 59

1 SR57 SR56 SR59 SR58

2 SR58 SR59 SR56 SR57

3 SR59 SR58 SR57 SR56

Table B.6: An alternative communication pattern based on the existing code structures.

However, this is better done by GSUM:

copy sm0 into sbuf(0)

copy s00 into sbuf(1..ntra)

work out who is row master (e.g. 56,57,58,59:

decide 56)

decide which PEs are on same row

for each PE in a row (nproci) do a

sendrecv with all other procs in the row

Page 60 of 69

This algorithm requires the row communicator to be pre-set. This is now in SETMPP. SBUF

and RBUF are already available. Then let the MPI implementation do the hard work.

PPWRIT

Overview

There are several fields written to disk for one of the following: restart, checkpoint or final

result recording. As the fields are spread over all the PEs then there has to be a gathering

operation. A “master-I/O” model is the model employed by TOMCAT and thus GLOMAP.

The TOMCAT routine “PPWRIT” has a call to the function “COLLF” where data is

gathered from all other PEs and then has a single unformatted write to a binary file (although

this is also indirect through a call to “MPE_WR”). There are two methods for collection; one

has dimensions set for fields that include halo data and the other has dimensions set for fields

that do not have halo data.

The variety of data have a common theme in that even though some are 4 dimensional the

first two dimensions represent a layer of atmosphere in the globe i.e. arranged as “lat x

longitude”, this is used within the collector routine to simplify data accumulation. However,

it also means that a certain amount of re-shaping has to be done at the program level and the

calls to PPWRIT are embedded in loops over the outer dimensions: i.e. from 1 to NIV and 1

to NTRA or similar. The complication arises if the data has haloes or not. Non-halo data can

be dealt with contiguously. Halo data has to be skipped as that is not written to disk. It allows

the data file to be independent of the number of PEs in use on at any time. There is a flag to

tell PPWRIT that the data category is with or without halo and there is a test for the type of

data surrounding the call to a single routine “COLLF” that does the cyclical gathering.

List of arrays grouped by category: halo or no-halo

Halo SM ---

No Halo ST T3D PV3D PLT Q3D H3D GL3D TSOL PSOL

Table B.7: List of parameters when called by FINITER, IFSO1 (fort.9)

Halo SM U3D
*
V3D

*

No Halo T3D PLT W3D PV3D H3D UGRIO
*

VGRI WGRI DGRI GL3D TSOL PSOL

Table B.8: List of parameters when called by FINITER, IFSO2 (fort.12)

NOTE (*) indicates that these fields are placed within the block of fields of different

category. Some of these are processed e.g. ugrio= ugri but shifted as it is face centred i.e. on a

staggered grid.

sbuf(0) = sm0

sbuf(1:ntra) = s00(1:ntra)

call mpi_allreduce (sbuf, rbuf, ntra+1, mpi_double,

mpi_sum, row_comm, ierr)

 sm0 = rbuf(0)

 s00 = rbuf(1:nta)

Page 61 of 69

NO HALO IZM SN RNFP1 TS TSSUB CNT CNB

Table B.9: variables supplied when PPWRIT is called by CALPHY (fort.79)

HALO SM S0 SX SY SZ SXX SXY SXZ SYY SYZ SZZ

Table B.10: variables supplied when PPWRIT is called by FINCYCL, IFRF (fort.31) and

repeated in FINEXP

Algorithm of PPWRIT

Description of COLLF

The interesting feature is that this model makes no assumption about the data size

distribution; it will allow variation between PEs. Unfortunately it adds an overhead that could

have been avoided using an MPI_ALLGATHER feature. The corresponding routine for

reading from files and distributing to the other PEs is PPREAD using DISTF and MPE_RD.

Recommendation

The first recommendation is to remove the conditional tests for whether the data has halo or

not. There should be dedicated routine to halo and non-halo data. The proposal is to replace

the planar writing with MPIO-IO data structures. The recommendation is for the routine to

be duplicated into a second routine and two new names created:

pio_data2d_wr_wh(IFRF, il,iu,kl,ku, pfl)

pio_data2d_wr_ nh(IFRF, ni,nk, pfl)

This will avoid using the flag and conditional test nested in the NIV and NTRA loops.

Replace the exisitng routine where “TRUE” appears in the original PPWRIT call: i.e.

CALL PPWRIT(IFRF,S0 (NIMN,NKMN,L,JV),.TRUE.,0)

with

CALL PIO_DATA2D_WR_WH (IFRF, NIMN,NIMX,MKMN,NKMX, S0(NIMN,NKMN,L,JV))

However, the planar write is also inefficient. A better method is to replace these completely

with three dimensional data volume writes and for 4d data volume species writes. This can be

Load a buffer with the local interior data for this plane

IF (I am iomaster) THEN

 recv data from each PE into the a single buffer(shifted

by PE id)

ELSE

 send data to iomaster

END IF

Unpack the receive buffer into a global field array

Test for data type

 Call COLLF with dimensions for halo

Else

 Call COLLF with dimension w/o halo

Call MPE_WR (write this plane as one-d array to an

unformatted binary file)

Page 62 of 69

trialled with the fort.79 and no halo data type. An IO file is connected to the program using

MPI_FILE_SET_VIEW and the data type parameter is needed to match the data structures

that will be written to the file. The type has to be created elsewhere with a call to

MPI_CREATE_TYPE and must then it should be stored in COMMON (or module) for later

use. An additional recommendation is to apply compiler directives to vectorised loops in

conjunction with inline directives where there are embedded calls. PPWRIT should be always

in-lined.

A third recommendation is related to the communication as this is also not ideal. An

MPI_ALL_GATHER can be used as the data is uniform over all PEs and the buffers are

loaded similarly. However this still assumes a master I/O model. It will be better to use MPI-

I/O structures and write data to the disk from all PEs and if this causes problems then the

“row-master I/O “model should be adopted.

SCATTERROW

Overview

This sub-program of the PBL scheme is typically invoked with (UUX,ZUU,PLEV). It will

send the off-PE sections of PFG (the FFT solution) to other PEs. It will collect the sections of

PFG from other PEs sent to this PE it places those parts into the local working array PFL. It

works with “vertical” planes of data, i.e. NLONMX by NIV dimensions.

Page 63 of 69

Algorithm

Suggested changes

Improve loop over PEs for optimal communications and avoid conditional statements. The

order of I and L loops should be inspected and corrected so that the loop over I is inside the L

loop.

SETMPP

Overview

Called by INIEXP, this sub-program determines the rank and number of tasks in the MPI job.

Algorithm

IF IMPP

 CALL MPI_COMM_SIZE

 CALL MPI_COMM_RANK

ELSE

 NPROC=1

 MYPROC = 0

END IF

PFG(NLON+2,NIV,NLAT) !NLAT is the FFT decomposition so in

64PE case it is 1.

PFL(NLONMX+2,NIV,NLATMX)

RESET PFL

Make local copy PFL(IL,LL,KL) = PFG(IG,LG, KG')

Pack SBUF(IPROC) on per processor basis ==PFG(section)

For all PEs [this is a specially arranged cycle of

communication]

 IF(MY_PE)

 For all PEs except me

 IF data_to_be_recvd

 RECV()

 END IF

 END DO

 ELSE

 SB1 = SBUF(IP)

 IF (data_to_send)

 SEND SBUF1 to IP (SSEND!!!)

 END IF

 ENDIF

END DO

UnPack RBUF(IP)

DO K = 1, NLAT (# FFT LATITUDES ON OTHER PES)

 DO L = ALTITUDES

 DO I = NLONMX (This was outside L loop in early version)

 K' = K-MYLATREF

 PFL(I,L,K')=RBUF(IC,IP)

END DOs

Page 64 of 69

This is a very brief initialisation to trigger that the program is running on an MPI capable

system. It is an appropriate location to continue all the set up of the parallel topology, groups

and communicators.

SPEGRD1

Overview

This subroutine is called from CALPHY to do FFT work for the PBL scheme. Many of the

arrays are dimensioned (longitude by altitude by latitude) and thus there has to be a mapping

from TOMCAT organisation into the PBL FFT organisation. NOTE in the FFT

decomposition NLAT is the number of whole latitudes processed by this PE (must be a

complete set of longitudes). All MPI work is done in lower sub-programs.

Algorithm

Suggested changes

Move FFTSETUP to CALPHY, the top level PBL subroutine. No other change needed.

Changes should happen within lower routines e.g. SPETRU1, SCATTERROW and

GATHERROW.

SPETRU1

Overview

This routine is working in the PBL FFT decomposition space so the task arrangement is

slightly different to the geometric decomposition. By coincidence 64 PEs and 64 latitudes is a

unique combination. Current use is more likely 32 PEs so there will be 2 latitudes per PE. It

is called twice from SPEGRD1. The fields in the argument list are prefixed with Z or ZZ so

that a local copy can be used for restricted calculations. It appears that processors in the

northern hemisphere do a lot of the work (perhaps all of it). There are three SENDRECV

pairs where a southern latitude processor packs a buffer and sends the info to the northern

hemisphere PE.

Here is the description taken from the comment block at the top of the subroutine:

“Spectrally truncate input fields which have already been

transformed into Fourier space. Some arrays are dimensioned

(2,...), where (1,...) is the real part of the complex Fourier

coefficient, and (2,...) is the imaginary. Any array

dimensioned (plond,...) *cannot* be dimensioned (2,plond/2,...)

Initialise local working arrays

FFTSETUP (recommend dong this earlier, once only)

GATHERROW is called seven times for different variables

FFT991 repeated for 7 variables

SPETRU1 (ZPP, ZPHIS, ZQU, ZQV, ZTT, ZVORT, ZDIVQ, ZPL, ZPM)

SPETRU1 (ZPP, ZPHIS, ZUU, ZVV, ZTT, ZVORT, ZDIV, ZPL, ZPM)

FFT991 repeated for 10 variables

SCATTERROW is called 12 times for different variables

Scale/convert UUX variables

Page 65 of 69

because plond *may* be (and in fact currently is) odd. In these

cases reference to real and imaginary parts is by (2*m-1,...)

and (2*m ,...) respectively.”

Map out the topology

For the T42 resolution the TOMCAT advection grid is 128x64x31 (Lon x Lat x Alt). The

table B.11 shows the topology for the geometric calculations over 64PEs. The mapping from

this to the FFT decomposition is that the northern hemisphere (grey shaded cells of the table)

relates the latitude indices (1 to 32) to a processor (0 to 31) and for this arrangement there is a

one-to-one correlation i.e. latitude 1 is processed by PE0 and latitude 32 is processed by

PE31. There is also a pairing between southern and northern hemisphere e.g. PE 61 pairs with

PE 2 because they have the matching (mirrored about the equator) latitude information for the

FFT algorithm. The GATHERROW and SCATTERROW subroutines ensure that the

information from PEs with shared latitudes is transferred to the “owner” for the FFT

algorithm e.g. PE4, PE6 and PE7 send their info for Latitude 6 to PE5.

Lat index LON=1-32 LON=33-64 LON=65-96 LON=97-128

1-4 0 1 2 3

5-8 4 5 6 7

9-12 8 9 10 11

13-16 12 13 14 15

17-20 16 17 18 19

21-24 20 21 22 23

25-28 24 25 26 27

29-32 28 29 30 31

33-36 32 33 34 35

37--40 36 37 38 39

41-44 40 41 42 43

45-48 44 45 46 47

49-52 48 49 50 51

53-56 52 53 54 55

57-60 56 57 58 59

61-64 60 61 62 63

Table B.11 : Topology for 64 PE decomposition, grey shaded cells are PEs that do the FFT

work.

Page 66 of 69

Algorithm

NOTE dealing with a plane (LON x NIV) and NLAT is number of latitudes processed by this

PE in the FFT decomposition.

Suggested changes

Three SENDRECV sections are used to create global sums which are potentially wasteful. It

has been used because there is no “northern hemisphere communicator”. One can be created

at the same time as the Cartesian geometry (or in FFT setup if it is more useful) in SETMPP.

Then these SENDRECV sets can be simplified into six global summation calls:

 CALL MPI_ALLREDUCE (SBUF,PHI1,PSP/2,MPI_SUM, COMM_NHEM,IERROR)

 CALL MPI_ALLREDUCE (SBUF,PHI2,PSP/2,MPI_SUM, COMM_NHEM,IERROR)

 CALL MPI_ALLREDUCE (SBUF,ALPS,PSP,MPI_SUM, COMM_NHEM,IERROR)

 CALL MPI_ALLREDUCE (SBUF,D,PSPL,MPI_SUM, COMM_NHEM,IERROR)

 CALL MPI_ALLREDUCE (SBUF,T,PSPL,MPI_SUM, COMM_NHEM,IERROR)

 CALL MPI_ALLREDUCE (SBUF,VZ,PSPL,MPI_SUM, COMM_NHEM,IERROR)

INITIALISE arrays ()

 determine IPROC, the partner PE

 IF (NHEMI_FFT)

 create local copy of data.

 END IF

 IF (NHEMI_FFT) THEN ! I am a PE in Northern hemisphere

 RECV(RBUF) from IPROC southern partner [e.g. PE61

sending to PE02]

 Unpack RBUF into local copies (shifted by NLAT) ! in

this case NLAT is 1

 ELSE ! I am a PE in Southern hemisphere

 Pack SBUF (5 VARS)

 SSEND SBUF to northern partner [e.g. PE61 sends toPE02]

 END IF

 IF (NHEMI_FFT)

 FFT work

 FFT work

 END IF

 IF (NHEMI_FFT)

C Need to sum phi, alps, d, t, vz over northern hemisphere

PEs

Indirect Global SUM (only on northern hemisphere)

 SENDRECV loops over PEs for 9 fields (these should be

ALLREDUCE so need a communicator for Northern Hemisphere)

 END IF

 IF (NHEMI_FFT)

 pack SBUF

 SSEND to southern partner PE (IPROC)

 ELSE (Southern FFT Hemisphere)

 RECV RBUF from Northern Partner PE (IPROC)

 Unpack RBUF

 END IF

Page 67 of 69

However, to retain consistency with the rest of the code the same can be achieved using a

wrapper subroutine, MPE_COMM_RED. As follows:

This would assume that the communicator is COMM_NHEMI and that the reduction is SUM

as shown in the six individual MPI calls detailed above.

Swap NS

Overview

This subroutine is called from PHYSICS several times before a call to CALPHY; it is called

ten times for different variables. After CALPHY it is called three times for a different set of

variables.

Algorithm

Recommendations

Move the calculation of the correspondent PE into the SETMPP or FFTSETUP sub-

programs. Make the receivers into IRECV (non-blocking) so that there is no overhead or

waiting to receive.

Some surplus re-calculation of row, column and

corresponding PE ID.

Load a buffer with local field data

IF (second half of the PEs) then

 Be ready to receive information from the first

half of PEs

 Unpack receive buffer into local field storage

in reverse order

 Send a buffer to north partner

ELSE

 PE send buffer to their southern counterparts

 Receive data from southern counterpart

 Unpack buffer into local field in reverse order

of latitude

END IF

SBUF=0.0

SBUF(1:PSPL)=T(:)

CALL MPE_COMM_RED (SBUF,RBUF,PSPL,MPREAL,MPERR)

DO K=1,PSPL

 T(K)=RBUF(K)

ENDDO

Page 68 of 69

APPENDIX C: Parallel File Access and Review of Memory Usage
In task 2.3 the MPI-IO approach has been discussed. This appendix gives an example of a

specific implementation that will benefit from a parallel I/O implementation. The example

assumes that 16 PEs are being used to execute the simulation. The MPI tasks are distributed

over the PEs in a virtual two-dimensional grid aligned with longitude and latitude.

Within the code is a section where zonal means are calculated. This involves summing all the

contributions from a specific parameter (or set of variables) around a particular latitude. The

result is the variation of the parameter along the median of the globe. The existing method

shown diagrammatically in the figure C.1.

All processors on row zero (deep orange) copy the values of the parameter into a

communication buffer (pale orange, a three dimensional storage space). This is then sent

using MPI “send and receive” to the processor ranked zero in the global communicator

topology (generally this includes the median line of longitude). The receiving processor

stores the information in “ARR3DTMP1” this is copied into a globally sized three-

dimensional array “ARR3DSP1” to free up the temporary storage receptacle. The zonal mean

is then calculated on the main processor. Other PEs on other rows also send their three-

dimensional information to PE rank 0 which again has to store and calculate zonal means for

those latitudes. The result is written to file for later analysis by the researcher. The

disadvantage of this method is the number of copies of data and the volume of data that has to

be written to file by one PE.

The proposed alternative is for each PE to accumulate the partial zonal mean locally and is

shown diagrammatically in figure C.2. The summation has reduced it to a plane of

information. The plane of information is communicated using an MPI reduction function

(another summation) to the PE in the first column of the topology. All PEs in the first column

can then write their result to the results file using parallel I/O. There are several benefits from

this; the memory requirement is reduced; the volume of data being communicated is reduced;

the number of calculations done on MPI task rank 0 is the same as for all other PEs; and it

will arrive at the data writing point at approximately the same time, which should be less than

that taken in the original implementation.

A side note on communicators: MPI uses communicators to identify a group of tasks that will

communicate. There is a virtual topology associated with the group and this facilitates

simpler approach to any communications within the group. The proposed change is to

introduce additional groups and communicators that can be determined at start-up and

thereby make later calls to the communication layer simpler to understand. This is very easy

to set up due the strongly structured nature of the geometry with no variation in the number

of longitude, latitude or altitude resolution during a simulation.

Page 69 of 69

Figure C.1: Each domain makes a copy of the data and passes it to the task 0 process. The

task zero process copies the sub-section into a large array and then processes it latitude by

latitude.

Figure C.2: Each PE will calculate the contribution to the zonal mean from its local data.

The data is passed along the row of PEs as a global summation calculation (MPI_REDUCE).

The task at the end of the row sends it group of latitudes to the task 0 or it could write to the

file using MPI-IO data structures.

