
1

Improved Data Distribution

Routines for Gyrokinetic Plasma

Simulations

Document Title: Final Report

Authorship: Adrian Jackson

Date: 27th January 2012

Version: 1.0

2

Abstract
GS2 is an initial value simulation code developed to study low-frequency turbulence

in magnetized plasma. GS2 solves the gyrokinetic equations for perturbed distribution

functions together with Maxwell’s equations for the turbulent electric and magnetic

fields within a plasma. It is typically used to assess the microstability of plasmas

produced in the laboratory and to calculate key properties of the turbulence which

results from instabilities. It is also used to simulate turbulence in plasmas which occur

in nature, such as in astrophysical and magnetospheric systems.

This report describes the work of a dCSE project to optimise parts of the GS2 code.

We have worked to improve the performance of the transformation of data between

the linear and non-linear parts of GS2. This generally involves some FFT calculations

along with associated data copying and MPI communications. We have replaced the

indirect addressing used in the data copying functionality with more efficient

functionality. We have also added new decomposition functionality to GS2 to reduce

the amount of communications and data copying required when using none optimal

process counts for a given user simulation. The new decomposition functionality

enables GS2 to efficiently use a much wider range of process count, thus providing

flexibility to users to select the process count that matches the simulation, resources,

and system they are using. Furthermore, our optimisations can reduce the runtime of

GS2 by up to 20% for large scale simulation, saving significant amounts of

computational resources for GS2 users.

3

Table of Contents

Table of Contents ... 3

1 Introduction .. 4
1.1 GS2 .. 4
1.2 ingen ... 5
1.3 HECToR .. 5
1.4 Problem to be tackled... 5

2 Redistribution Functionality .. 6
3 Indirect Addressing .. 9

3.1 Original Code ... 9
3.2 Optimised Implementation... 11
3.3 Optimising c_redist_32 .. 14

4 Remote Data Copy ... 15
4.1 Non-blocking communications .. 16
4.2 Indirect addressing ... 17

5 Unbalanced Decomposition ... 19

5.1 Poor Decomposition Performance ... 21
5.2 Optimised Decomposition ... 24

6 Summary .. 26

7 Acknowledgements .. 28
Appendix A – Input datafile .. 29

Appendix B – Further optimised c_redist_32 code ... 33
Appendix C – Worked example of the unbalanced decomposition algorithm 35
Appendix D – Optimised Local Copies, Optimal Core Counts and Domain

Decompositions in Nonlinear GS2 Simulations .. 35

4

1 Introduction
This report documents the work performed during the dCSE project titled “Improved

Data Distribution Routines for Gyrokinetic Plasma Simulations”. The project,

undertaken at EPCC, The University of Edinburgh, in conjunction with CCFE at

Culham, aimed to improve the overall performance of the GS2 code, thereby reducing

the computational resources required to undertake scientific simulations, enabling

more efficient use of the resources provided by the HECToR service (and other HPC

systems).

1.1 GS2

GS2 is an initial value simulation code developed to study low-frequency turbulence

in magnetized plasma. GS2 solves the gyrokinetic equations for perturbed distribution

functions together with Maxwell’s equations for the turbulent electric and magnetic

fields within a plasma. It is typically used to assess the microstability of plasmas

produced in the laboratory and to calculate key properties of the turbulence which

results from instabilities. It is also used to simulate turbulence in plasmas which occur

in nature, such as in astrophysical and magnetospheric systems.

Gyrokinetic simulations solve the time evolution of the distribution functions of each

charged particle species in the plasma, taking into account the charged particle motion

in self-consistent magnetic and electric fields. These calculations are undertaken in a

five dimensional data space, with three dimensions for the physical location of

particles and two dimensions for the velocity of particles. More complete six

dimensional kinetic plasma calculations (with three velocity space dimensions) are

extremely time consuming (and therefore computational very costly) because of the

very rapid gyration of particles under the strong magnetic fields. Gyrokinetic

simulations simplify this six dimensional data space by averaging over the rapid

gyration of particles around magnetic field lines and therefore reducing the problem

from six to five dimensions (where velocity is represented by energy and pitch angle,

and the gyrophase angle is averaged out). While the fast gyration of particles is not

calculated in full, it is included in a gyro-averaged sense allowing lower frequency

perturbations to be simulated faithfully at lower computational cost.

GS2 can be used in a number of different ways, including linear microstability

simulations, where growth rates are calculated on a wavenumber-by-wavenumber

basis with an implicit initial-value algorithm in the ballooning (or "flux-tube") limit.

Linear and quasilinear properties of the fastest growing (or least damped) eigenmode

at a given wavenumber may be calculated independently (and therefore reasonably

quickly). It can also undertake non-linear gyrokinetic simulations of fully developed

turbulence. All plasma species (electrons and various ion species) can be treated on

an equal, gyrokinetic footing. Nonlinear simulations provide fluctuation spectra,

anomalous (turbulent) heating rates, and species-by-species anomalous transport

coefficients for particles, momentum, and energy. However, full nonlinear

simulations are very computationally intensive so generally require parallel

computing to complete in a manageable time.

GS2 is a fully parallelised, open source, code written in Fortran90. The

parallelisation is implemented with MPI, with the work of a simulation in GS2 being

split up (decomposed) by assigning different parts of the distribution functions to

different processes to complete.

5

1.2 ingen

For any given GS2 input file (which specifies the simulation to be carried out,

including the domain decomposition layout) the program ingen provides a list of

recommended process counts (or “sweet spots”) for the GS2 simulation to be run on,

along with some other useful information on the simulation parameters provided by

the user. These recommendations are calculated from the properties prescribed in the

input file of the simulation to be run, and aim to split the data domain as evenly as

possible to achieve good “load-balancing” (which helps to optimise the performance

of the program and minimise the runtime). The primary list of recommended

process counts is based on the main data layout, g_lo, that is used for the linear

parts of the simulations. ingen also provides lists of process counts that are suitable

for the nonlinear parts of the calculations (referred to as xxf_lo and yxf_lo

process counts) which may differ from the process counts recommended for g_lo.

For optimal performance with GS2, choosing a process count that is in all three of the

lists of process counts that ingen provides is beneficial. However, this is not always

possible, especially at larger process counts, and in this scenario users generally

choose a process count that is optimal for g_lo.

1.3 HECToR

HECToR[7], a Cray XE6 computer, is the UK National Supercomputing Service.

This project utilised both the Phase 2b and Phase 3 phases of the system. Phase 2b

XE6 system consisted of 1856 compute nodes, each containing two 2.1 GHz 12-core

‘Magny-cours’ AMD Opteron processor and 32 GB of main memory, giving 1.33 GB

per core. The nodes were coupled with Cray’s Gemini network, providing a high

bandwidth and low latency 3D torus network. The peak performance of the system

was 360 TFlops, and ranked 16th in the June 2010 Top 500 list.

Phase 3, the current incarnation of HECToR, uses two 16-core 2.3 GHz ’Interlagos’

AMD Opteron processors per node, giving a total of 32 cores per node, with 1 GB of

memory per core. The addition of 10 cabinets (928 compute nodes) to the Phase 2b

configuration increased the peak performance of the whole system to over 820 TF.

1.4 Problem to be tackled

This DCSE project follows up on findings from a previous GS2 DCSE project

(“Upgrading the FFTs in GS2”) that was carried out by EPCC in 2010. The goal of

that project was to implement FFTW3 functionality and optimise the FFTs used by

GS2. During this work it was discovered that the GS2 code to transform data between

layouts associated with the FFTs was consuming a large fraction of the runtime.

Specifically, the routines c_redist_22 and c_redist_32 were highlighted as

being costly, with about 8% of runtime being spent on each (for a benchmark run on

1024 cores). These routines redistribute/rearrange data from xxf_lo to yxf_lo,

and from g_lo to xxf_lo, respectively, as required for performing FFTs. This

requires coordinating data to be communicated to or received from other processes,

http://www.hector.ac.uk/cse/distributedcse/reports/GS2/GS2.pdf

6

and rearranging the data that is available locally. These routines make extensive use

of indirect addressing when packing the buffers.

Indirect addressing is a form of array access where the indices of the array being

accessed are themselves stored in a separate array. Here is an example of a standard

FORTRAN array access:

 to_here(i, j) = from_here(i, j, k) code I

Similar array copying code is used in these GS2 routines, but making extensive use of

indirect addressing like this:

 to_here(to_index(i)%i, to_index(i)%j) =

from_here(from_index(i)%i, from_index(i)%j, code II

from_index(i)%k)

Whilst such functionality is very useful in providing a simple standard interface for a

program to access data stored in an array in a variety of different layout patterns

(indeed this allows GS2 to rearrange data layouts without having to change any array

index code at the point of use) and was common in codes exploiting vector

architectures, this functionality does introduce additional computational costs, and in

particular the memory access cost of this array transformation on modern computing

hardware increases significantly.

In the traditional example (code I) the code requires one memory load

(from_here(i, j, k)) and one memory store (to_here(i, j)) (assuming

the indexes i, j, and k are stored in cache or registers on the processor). With the

indirect addressing functionality (code II) six memory loads are required (one for each

index look-up and one to retrieve the data in from_here) and one memory store.

Given that undertaking memory operations is very costly on a modern processor

(compared to performing computation), and given that accesses like these take a

significant part of the routines highlighted as being costly in GS2, this is evidently

impacting performance.

In this report we:

 outline the current redistribution and indirect addressing functionality and

document its performance

 describe our approach for optimising the indirect addressing code and assess

the performance impact of these optimisations.

 discuss the data decompositions used by GS2 and how these can be optimised

further

 describe the functionality that is currently used for copying data between

processes and our attempts to optimise it.

2 Redistribution Functionality
GS2 supports six different data layouts for the g_lo datatype array containing the

perturbed distribution functions for all the plasma species. These layouts are:

”xyles”, ”yxles”, “lyxes”, “yxels”, “lxyes”, “lexys”. The layout can

be chosen at run time by the user (through the input parameter file).

7

Each character in the layout represents a dimension in the simulation domain as

follows (the name in brackets is the variable name used for the dimension in the code)

 x: Fourier wavenumber in X (ntheta0)

 y: Fourier wavenumber in Y (naky)

 l: Pitch angle (nlambda)

 e: Energy (negrid)

 s: Particle species (nspec)

The layout controls how the data domain in GS2 is distributed across the processes in

the parallel program, controlling the order in which individual dimensions in the data

domain iterate in the compound index that will be distributed (split up) across the

processes. For instance, in the “”xyles” layout the species index, “s”, iterates

most slowly, and “x” iterates most rapidly, whereas in the “lexys” “s” iterates

most slowly and the pitch angle index, “l”, iterates most rapidly..

Linear calculations with GS2 are performed in k-space using the g_lo layout as this

is computationally efficient. The nonlinear terms, however, are more efficiently

calculated in position space. Therefore, when GS2 undertakes a nonlinear simulation,

it computes the linear advance in k-space, and the nonlinear advance in position

space. While the majority of the simulation is in k-space, each timestep there are FFTs

into position space, to evaluate the nonlinear term, and an inverse FFT to return the

result into k-space. Whilst users need not concern themselves with these

implementation details, this use of both k- and position space can impact on

performance, depending on the number of processes used in the parallel computation.

In the linear part of calculations GS2's distribution functions are parallelised in k-

space, using the GS2 g_lo data layout. The non-linear parts of calculations, which

require FFTs, use two different data distribution layouts, namely xxf_lo and

yxf_lo. These are required for the two stages (one for 1D FFTs in x, the other for

1D FFTs in y)of each of the forward and inverse FFTs

Practically the GS2 data space is stored in a single array, but it can be considered

conceptually as a 7 dimensional data object. Five of the dimensions are the previously

discussed x,y,l,e,s, the other two are ig (the index corresponding to the spatial

direction parallel to the magnetic field) and isgn (isgn corresponds to the direction

of particle motion in the direction parallel to the magnetic field, b; for GS2 isgn =1

represents particles moving parallel to b, and isgn=2 represents particles moving

antiparallel to b). In this report we study the following three distribution layouts of the

distribution function in GS2:

 g_lo(ig,isgn:”layout”): indices ig and isgn are guaranteed to be

kept local to each process, and x,y,l,e,s are decomposed (with the

decomposition depending on the chosen “layout”).

 xxf_lo(ix:iy,ig,isgn,”les” data space only ix is guaranteed to be

kept local, and the compound index includes iy,ig,isgn,l,e,s (where y

is the fastest index and the order of l,e,s depends on the chosen “layout”).

 yxf_lo(iy:ix,ig,isgn,”les”) data space only iy is kept local and

the compound index contains ix,ig,isgn,l,e,s (where ix is the fastest

index and the order of “les” depends on the chosen “layout”).

8

GS2 uses a dealiasing algorithm to filter out high wavenumbers in X and Y, which is

a standard technique to avoid non-linear numerical instabilities in spectral codes.

g_lo contains the filtered data, which has lower ranges of indices in X and Y than in

the xxf_lo and yxf_lo layouts. This means that after the yxf_lo stage the

amount of data is larger than at the g_lo stage (approximately 2¼ times larger).

The functions we have considered for optimisation are the routines c_redist_22

and c_redist_32 and their inverse versions c_redist_22_inv and

c_redist_32_inv, which perform the data transformations required for the

FFTs. The evaluation of each 2D FFT requires transformations, or redistributions, to

be undertaken in two phases. Firstly, c_redist_32 transforms the data from the

three index g_lo data structure into the two index data structure xxf_lo which is

used for the first FFT in x. Later c_redist_22 performs the additional transpose

required for the FFT in y, converting from the intermediate xxf_lo data structure to

the yxf_lo layout. After the computation of the nonlinear terms in real space, the

transformations and FFTs must be performed in reverse using the _inv routines to

obtain the nonlinear term in k-space.

Within the redistribution routines there are two types of functionality, to perform local

and remote copies. The local copy redistributes any data which will belong to the

same process in both data layouts, and remote copy redistributes the data that must be

communicated between different processes (including collecting the data to be sent

to each process in a buffer, sending the data to that process, and unpacking all

received data into the local data array).

Initial benchmarking of the code using a representative benchmark case (see the GS2

input file in appendix A) produced the following performance figures on HECToR

Phase2b (where the times are seconds):

Number of Cores: 128 256 512 1024
c_redist_22 Local Copy 53.71 27.17 13.73 6.81

 Remote Copy 0.07 0.13 0.26 0.48
c_redist_22_inv Local Copy 13.73 6.90 3.46 1.76
 Remote Copy 0.01 0.03 0.05 0.10

c_redist_32 Local Copy 49.85 25.60 12.46 3.92
 Remote Copy 0.05 0.10 0.19 9.22
c_redist_32_inv Local Copy 12.31 6.26 2.79 0.77

 Remote Copy 0.01 0.03 0.05 1.99
Table 1: Initial Benchmarking of the redistribution functionality (using the “xyles” layout and

running for 500 iterations)

These results showed that:

 Local copy parts of the routine dominate performance of those routines for

lower core counts.

 At larger processor/core counts, e.g. 1024 cores, the remote copy

functionality significantly affects performance, especially for

c_redist_32.

In section 3 we describe our efforts to optimise the local copy parts of these routines

by replacing the currently implemented indirect addressing functionality. Section 4

9

outlines our approaches at optimisation of the remote copy code by introducing non-

blocking communications and by replacing some of the indirect addressing

functionality. Section 5 describes further optimisations of the data decompositions

used in GS2.

3 Indirect Addressing
As previously discussed indirect addressing, where the indexes used to access an

array of data are themselves stored in a separate array, is heavily used in GS2 to

perform the data redistributions required to undertake the 2D FFTs that compute the

nonlinear terms. As indirect addressing can be costly, both in terms of the impact on

computational time and memory consumption, we looked to replace this functionality

with a more direct approach to improve the performance of the local copy parts of

GS2. The next subsection outlines the original functionality in the code. The

subsections that follow outline our new optimised code and the performance

improvements that were achieved.

3.1 Original Code

The indirect addresses used in the redistribution in GS2 are constructed using the

following code (in the source file gs2_transforms.fpp):

Indirect addresses for the _22 routines (in subroutine init_y_redist):

do ixxf = xxf_lo%llim_world, xxf_lo%ulim_world

 do it = 1, yxf_lo%nx

 call xxfidx2yxfidx (it, ixxf, xxf_lo, yxf_lo, ik, iyxf)

 if (idx_local(xxf_lo,ixxf)) then

 ip = proc_id(yxf_lo,iyxf)

 n = nn_from(ip) + 1

 nn_from(ip) = n

 from_list(ip)%first(n) = it

 from_list(ip)%second(n) = ixxf

 end if

 if (idx_local(yxf_lo,iyxf)) then

 ip = proc_id(xxf_lo,ixxf)

 n = nn_to(ip) + 1

 nn_to(ip) = n

 to_list(ip)%first(n) = ik

 to_list(ip)%second(n) = iyxf

 end if

 end do

end do

Indirect address for the _32 routines (in subroutine init_x_redist):

do iglo = g_lo%llim_world, g_lo%ulim_world

 do isign = 1, 2

 do ig = -ntgrid, ntgrid

 call gidx2xxfidx (ig, isign, iglo, g_lo, xxf_lo, it, ixxf)

 if (idx_local(g_lo,iglo)) then

 ip = proc_id(xxf_lo,ixxf)

 n = nn_from(ip) + 1

 nn_from(ip) = n

 from_list(ip)%first(n) = ig

10

 from_list(ip)%second(n) = isign

 from_list(ip)%third(n) = iglo

 end if

 if (idx_local(xxf_lo,ixxf)) then

 ip = proc_id(g_lo,iglo)

 n = nn_to(ip) + 1

 nn_to(ip) = n

 to_list(ip)%first(n) = it

 to_list(ip)%second(n) = ixxf

 end if

 end do

 end do

end do

The from_list and to_list data structures are created on initialisation for each

of the xxf_lo and yxf_lo data formats (where they are called to and from rather

than to_list and from_list), and are dynamically allocated for each process by

iterating through the whole data space and calculating which indexes will be sent

from and received by a given process.

We can see from the above functionality that the to and from address lists are

constructed together, but using different functionality. In both cases there is a loop

across the full set of points defined by the lower and upper bounds

xxf_lo%llim_world and xxf_lo%ulim_world. These variables store the

lower and upper bounds of the compound index in the xxf_lo data structure, which are

the same for all processes and defined within a function called

init_x_transform_layouts (in the file gs2_layouts.fpp) as follows:

xxf_lo%llim_world = 0

xxf_lo%ulim_world = naky*(2*ntgrid+1)*2*nlambda*negrid*nspec - 1

The parameters used in the calculation of xxf_lo%ulim_world are defined in the

GS2 input file. The inner loops do not change their bounds for the iterations of the

outer loop and are also the same for all processes.

Within the main loops there is a function call and then two if branches: one to set

the indices for the to array; and the other to set the indices for the from array. The

indices are assigned as elements of the to_list(ip)%first and

to_list(ip)%second arrays, with each process in the program having these

arrays pointing to different ranges of indices (i.e. if we look at

to_list(ip)%first(n) the ip represents a particular process number and the

n represents how many entries for this processor have currently been assigned). The

indirect addresses constructed here in the from_list and to_list variables are

then stored as a redist_type variable r via a call to the init_redist

subroutine (in redistribute.f90).

These indirect addresses are then used in c_redist_22 routine as follows

(contained within source file utils/redistributed.f90):

do i = 1, r%from(iproc)%nn

to_here(r%to(iproc)%k(i), &

 r%to(iproc)%l(i)) &

 = from_here(r%from(iproc)%k(i), &

11

 r%from(iproc)%l(i))

end do

c_redist_32 is similar, but with the added complication that it reduces 3 indices

to 2 indices in the copy:

do i = 1, r%from(iproc)%nn

to_here(r%to(iproc)%k(i),&

 r%to(iproc)%l(i)) &

 = from_here(r%from(iproc)%k(i), &

 r%from(iproc)%l(i), &

 r%from(iproc)%m(i))

end do

A more optimal loop for c_redist_22, with a rather more efficient structure,

would be the following:

do i = 1, upperi

do j = 1, upperj

to_here(i,j) = from_here(i,j)

 end do

end do

Such a structure requires only one memory load (the from_here(i,j) part), one

memory store (for the to_here(i,j) part), a counter increment (do j), and a

loop counter comparison for each loop operation. This would be much more efficient

than the c_redist_22 loop which performs five memory loads and one memory

store plus one loop increment and one loop counter comparison. This, along with the

possibility for enabling better cache re-use (based on spatial or temporal locality),

shows the potential for optimising these loops by replacing the indirect addressing

with direct addressing.

3.2 Optimised Implementation

In optimising the implementation for local copies, we exploited the fact that the

indirect addresses from_list and to_list (constructed as described in Section

3.1) have their indices set to the same value (ip=iproc).

 in c_redist_22 this restricts the values of interest in the ixxf and it

loops to where iproc == iyxf/yxf_lo%blocksize ==

ixxf/xxf_lo%blocksize.

 in c_redist_32 this constraint restricts the values of interest in the iglo,

isgn, and ig loops to where iproc == iglo/g_lo%blocksize and

iproc == ixxf/xxf_lo%blocksize.

 With these equalities we can reduce the use of indirect addressing by using an initial

ixxf or iglo value (provided by the existing to and from arrays already

calculated in the code), and working through the existing loops (the it loop for

c_redist_22 and the ik and iyxf loops for c_redist_32) using the simple

rules that are currently used with those loops.

12

The only other functionality required is loop termination, or upper bounds, to enable

proper termination of the loops in the situation where the theoretical data space for

processes is larger than the actual data space assigned to each process (this is dealt

with in the existing indirect addressing code by comparing computed indices with the

appropriate %ulim_proc values, and this is what we do as well).

Using these different functional aspects it was possible to construct the following

replacement code for the c_redist_22 local copy functionality:

i = 1

do while (i .le. r%from(iproc)%nn)

 itmin = r%from(iproc)%k(i)

 ixxf = r%from(iproc)%l(i)

 ik = r%to(iproc)%k(i)

 iyxf = r%to(iproc)%l(i)

 it_nlocal = (yxf_lo%ulim_proc+1) - iyxf

 itmax = min((itmin-1)+it_nlocal,yxf_lo%nx)

 do it = itmin,itmax

 to_here(ik,iyxf) = from_here(it,ixxf)

 iyxf = iyxf + 1

 i = i + 1

 end do

end do

And likewise for the c_redist_32 local copy functionality the following code can

be constructed that removes most of the original indirect addressing functionality:

i = 1

nakyrecip = naky

nakyrecip = 1/nakyrecip

f2max = r%from_high(2)

do while(i .le. r%from(iproc)%nn)

 f2 = r%from(iproc)%l(i)

 f3 = r%from(iproc)%m(i)

 t1 = r%to(iproc)%k(i)

 do while (f2 .le. f2max)

 f1 = r%from(iproc)%k(i)

 t2 = r%to(iproc)%l(i)

 thigh = ceiling(((xxf_lo%ulim_proc+1) - t2)*nakyrecip)

 thigh = thigh + (f1-1)

 fhigh = min(thigh,r%from_high(1))

 do k = f1,fhigh

 to_here(t1,t2) = from_here(k,f2,f3)

 t2 = t2 + naky

 i = i + 1

 end do

 if(thigh .gt. r%from_high(1)) then

 f2 = f2 + 1

 else

 f2 = f2max + 1

 end if

 end do

end do

13

The above code is longer and more complex than the original local copy code, but it

avoids needing to use indirect addressing by computing the address indices

directly. The innermost loop is compact in both subroutines, i.e. for c_redist_22:

 do it = itmin,itmax

 to_here(ik,iyxf) = from_here(it,ixxf)

 iyxf = iyxf + 1

 i = i + 1

 end do

and for c_redist_32:

 do k = f1,fhigh

 to_here(t1,t2) = from_here(k,f2,f3)

 t2 = t2 + naky

 i = i + 1

 end do

If the it and k loops are sufficiently large, then the new routines should outperform

the old code, as they have only one memory load, one memory store and a number of

counter increments.

Benchmarking the new local copy functionality with the test case that was used for to

gather the original performance data gave the following results:

Number of Cores: 128 256 512 1024
c_redist_22 Original Code 53.71 27.17 13.73 6.81

 New Code 32.68 16.15 8.05 3.54
c_redist_22_inv Original Code 13.73 6.90 3.46 1.76

 New Code 8.77 4.39 2.21 1.10

c_redist_32
Original Code 49.85 25.60 12.46 3.92

 New Code 54.33 27.93 13.68 2.84
c_redist_32_inv Original Code 12.31 6.26 2.79 0.77

 New Code 8.82 4.48 2.33 0.55
Table 2: Performance results from the optimisation of the indirect addressing in the local copy

code (using the “xyles” layout for 500 iterations)

We can see that for three of the four routines (the exception being c_redist_32)

the new local copy code is approximately 40-50% faster than the original code.

Whilst we have replaced most of the indirect addressing in the original local copy

code, we have not replaced it entirely. Indirect addressing is still used to obtain the

indices of the start and finish of our loops in the new code. To completely remove the

indirect addressing (and the to and from data structures) the code would have to be

altered to calculate and store the minimal set of indices required by our optimised

code (i.e. the from and to values at the starts of the loops we have constructed). This

is possible, by modifying the init_x_redist and init_y_redist

functionality to only store the minimal set of indexes required (although we have not

currently performed this refactoring).

14

3.3 Optimising c_redist_32

c_redist_32 and c_redist_32_inv both use the same loop functionality, so it

is perhaps surprising that the inverse routine sees performance benefits from the

optimisations we have carried out whilst the forward routine does not. The only

differences between these two routines are the following data accesses:

 c_redist_32: to_here(t1,t2) = from_here(k,j,f3)

 c_redist_32_inv: to_here(k,j,f3) = from_here(t1,t2)

This suggested that the performance issue may be associated with how memory is

accessed/written in the two routines. We investigated the data access patterns of the

c_redist_32 routine and found that in this loop to_here strides across the

slowest index t2, for instance:

t1 t2 k j f3

66 40492 10 1 41108

66 40524 11 1 41108

66 40556 12 1 41108

66 40588 13 1 41108

66 40620 14 1 41108

… ….. .. . ……

The difference between c_redist_32 and c_redist_32_inv is that the strided

access in c_redist_32_inv is in the memory read (the right hand side of the

equals sign) whereas it is a memory write for c_redist_32.

Any memory access pattern where the slowest index is iterated through, rather than

the fastest index, is going to produce non-optimal performance. Such degradation of

performance is more severe for memory writes than it is for memory reads, as a

memory write miss (such as the one experienced in c_redist_32) will trigger a

“write allocate” where data is first loaded from memory into cache, then modified,

and then written back to memory. A read miss is less punishing, as then the data is

only read from memory into cache (so only requires one access to main memory

rather than the two accesses to main memory for the write miss).

Interestingly, the same functionality is used in c_redist_22 and

c_redist_22_inv, but we do not see the large performance penalty for the

strided write in c_redist_22 that we see in c_redist_32. Comparing the

_32 and _22 routines another significant difference is apparent. In c_redist_32

the t2 index is incremented by naky (which was 32 for the input data set we were

using) each iteration. In c_redist_22 the t2 index is incremented by only 1 each

iteration. It is therefore likely that the combination of the write allocate functionality

and the larger stride through the slowest index of the array is more severely disrupting

the use of the memory cache in c_redist_32 compared to the other routines.

Therefore, we optimised the local copy for c_redist_32 to improve on this

memory access pattern, by accessing memory as follows:

t1 t2 k j f3

66 40492 10 1 41108

15

67 40492 10 1 41109

68 40492 10 1 41110

69 40492 10 1 41111

… ….. .. . ……

Where the memory write is now accessing memory in the most optimal order and

the less punishing memory read is accessing memory more inefficiently (incrementing

through the slowest index, f3) but in a similar way to the other redistribute routines.

However, the functionality we constructed depends on the “layout” chosen for the

GS2 simulation, which makes the code appear significantly more complicated than

the first optimised code. The new optimised code is included in Appendix B, and the

benchmark results from this code are shown in the following table:

Number of Cores: 128 256 512 1024

c_redist_32
Original Code 49.85 25.60 12.46 3.92

 1
st
 New Code 54.33 27.93 13.68 2.84

 2
nd

 New Code 29.00 15.31 7.26 1.84
Table 3: Performance results from the new optimisation of the c_redist_32 indirect addressing

local copy code (using the “xyles” layout for 500 iterations)

With this additional optimisation, c_redist_32 achieves the same

performance enhancement as was obtained for the other local copy routines.

As we now have different optimisation routines for the c_redist_32 and

c_redist_32_inv functionality we have included both in GS2 and added some auto-

tuning functionality to the code to ensure the best performance is achieved. The first

time the optimised local copy routines are used the auto-tuning functionality runs the

different optimised local copy routines and times how long they take. It then selects

the fast routine and uses that for the rest of the execution of GS2.

4 Remote Data Copy
As highlighted in the initial performance evaluation outlined in Section 2, and in the

performance evaluation of the optimised local copy code outlined at the end of

Section 3, whilst the local copy code dominates the performance of the

redistribute routines for small numbers of processes (for the test case we used it

dominates performance at 512 processes and below), the remote copy

unsurprisingly starts to dominate at larger core counts.

We examined the remote copy code and identified two potential areas for

optimisation.

1. Blocking MPI communications (MPI_Send and MPI_Recv) are used to

transfer data between processes for the redistribution between FFT and

Real space. To avoid deadlock in the MPI code half the processes call

these communications in one order (send then receive) and the others call

them in the reverse order (receive then send). The use of blocking MPI

communications can introduce unnecessary synchronisation overheads

with processes waiting on messages from other processes.

2. The second area for potential optimisation is in the code that packs and

unpacks data to be sent and received between processes. The remote copy

16

code uses the same indirect addressing functionality as the original local

copy code. Indirect addressing optimisations may therefore yield

performance improvements, as for the local copy code.

4.1 Non-blocking communications

We replaced the existing blocking communications with equivalent non-blocking

communications. The original code took the following form (in simplified pseudo

code):

Loop through all the processes in the simulation, i

 Half the processes do this

 Check if I have data to send to i

 collect data into a buffer

 send data to i

 Check if I have data to receive from i

 receive data into a buffer

 put received data into main data structure

 The other half of processes do this

 Check if I have data to receive from i

receive data into a buffer

 put received data into main data structure

 Check if I have data to send to i

 collect data into a buffer

 send data to i

End Loop

We have replaced this with the following code (in pseudo code form) for both

c_redist_22 and c_redist_32 (the same is possible for the inverse routines

but they do not account for significant amounts of time so it was not implemented for

this exercise):

do i = 0, nproc - 1

if(have data to receive from process i)

 post non-blocking receive for data from i

 end if

end do

do i = 0, nproc - 1

 if(have data to send to process i)

 collect data into a buffer

 start non-blocking send of data to i

 end if

end do

do i = 1, number of non-blocking communications

 wait on any non-blocking communication finishing

 if(non-blocking communication was a receive)

17

 put received data into main data structure a

 end if

end do

The functionality does require some extra data structures to be created to enable the

non-blocking communications to proceed (buffers for data to be stored in).

Benchmarking this new functionality at 1536 and 2048 process counts gave the

following results:

Number of Cores: 1536 (yxles) 2048 (xyles)
 Min Max Average Min Max Average

c_redist_22
Original Code 1.26 33.43 16.58 1.47 12.92 2.79

New Code 1.24 42.34 18.76 1.36 8.06 2.29

c_redist_32
Original Code 12.56 37.67 21.98 8.28 15.26 10.96

New Code 14.02 53.16 30.86 8.33 29.86 12.52
Table 4: Timings for the remote copy functionality; a comparison of the original MPI

functionality and the new non-blocking MPI functionality (using 1000 iterations)

We did not expect this code to adversely impact performance, and were surprised that

using non-blocking communications increases the runtime of these routines in some

scenarios. There are a number of possible explanations for this. Firstly, whilst the

original pattern of executing sends and receives appears straight forward, the mixing

of different processes send and receiving is actually quite sophisticated, employing a

“red-black” tiling type selection of processes and alternating the selection through the

iterations of the communication loops.

Secondly, a side effect of the non-blocking functionality we are using may be to force

all the processes to communicate at the same time causing contention for the network

resources on the nodes in the system. The original functionality, where alternate

processes are sending and receiving, may have resulted in less contention on the

network.

4.2 Indirect addressing

The remote copy code uses indirect addressing to pack data into a buffer to be sent to

another process and unpack received data into the main data structure. Exactly the

same indirect addressing arrays are used. For instance, for the sending data in

c_redist_32 the following code is used:

if (r%from(ipto)%nn > 0) then

 do i = 1, r%from(ipto)%nn

 r%complex_buff(i) = from_here(r%from(ipto)%k(i), &

 r%from(ipto)%l(i), &

 r%from(ipto)%m(i))

 end do

 call send (r%complex_buff(1:r%from(ipto)%nn), ipto, idp)

end if

However, it is not possible here to simply replicate the functionality from the local

copy indirect addressing optimisation as that relied on both the ipto and ipfrom

indexes being equal to iproc for the indirect addressing loop (i.e. the data is being

sent and received on the same process, local copying). With the remote copy

18

functionality this assumption does not hold so it is necessary to add extra functionality

to calculate the range of data to be copied from the available data (either the existing

from%k and from%l or to%k, to%l, and to%m values). GS2 includes functions

to enable the calculation of a from index using a to index and vice versa, and these

can be used to calculate the data ranges. Using such functionality the following

routines were constructed to replicate the remote data copies in c_redist_22:

iyxfmax = (ipto+1)*yxf_lo%blocksize

do while(i .le. r%from(ipto)%nn)

 itmin = r%from(ipto)%k(i)

 ixxf = r%from(ipto)%l(i)

 call xxfidx2yxfidx(itmin, ixxf, xxf_lo, yxf_lo, ik, iyxf)

 itmax = itmin + (iyxfmax - iyxf) - 1

 itmax = min(itmax, yxf_lo%nx)

 do it = itmin,itmax

 r%complex_buff(i) = from_here(it, ixxf)

 i = i + 1

 end do

end do

t1 = r%to(ipfrom)%k(i)

t2 = r%to(ipfrom)%l(i)

iyxfmax = (iproc+1)*yxf_lo%blocksize

do while (i .le. r%to(ipfrom)%nn)

 t2max = mod(t2,yxf_lo%nx)

 t2max = t2 + (yxf_lo%nx - t2max)

 t2max = min(t2max,iyxfmax)

 do while(t2 .lt. t2max)

 to_here(t1,t2) = r%complex_buff(i)

 t2 = t2 + 1

 i = i + 1

 end do

 t1 = r%to(ipfrom)%k(i)

 t2 = r%to(ipfrom)%l(i)

end do

and likewise for c_redist_32:

f1 = r%from(ipto)%k(i)

f2 = r%from(ipto)%l(i)

ixxfmax = ((ipto+1)*xxf_lo%blocksize)

do while(i .le. r%from(ipto)%nn)

 f3 = r%from(ipto)%m(i)

 call gidx2xxfidx(f1,f2,f3,g_lo,xxf_lo,it,ixxf)

 f1limittemp = (ixxfmax-ixxf)/tempnaky

 f1limittemp = ceiling(f1limittemp)

 f1limit = f1limittemp - 1

 imax = i + f1limit

 do while(i .le. imax)

 r%complex_buff(i) = from_here(f1,f2,f3)

 f1 = f1 + 1

 i = i + 1

 if(f1 .gt. r%from_high(1) .and. f2 .lt. r%from_high(2)) then

 f2 = f2 + 1

 f1 = r%from(ipto)%k(i)

 else if(f1 .gt. r%from_high(1) .and. f2 .eq. r%from_high(2))

then

 exit

 end if

 end do

19

 f1 = r%from(ipto)%k(i)

 f2 = r%from(ipto)%l(i)

end do

ntgridmulti = (2*ntgrid)+1

ig_max = naky*ntgridmulti

t1 = r%to(ipfrom)%k(i)

t2 = r%to(ipfrom)%l(i)

t2ixxfmax = (iproc+1)*xxf_lo%blocksize

do while (i .le. r%to(ipfrom)%nn)

 remt2max = mod(t2,ig_max)

 remt2max = ntgridmulti - ((remt2max*ntgridmulti)/ig_max)

 t2max = t2 + (remt2max*naky)

 t2max = min(t2max, t2ixxfmax)

 do while(t2 .lt. t2max)

 to_here(t1,t2) = r%complex_buff(i)

 t2 = t2 + naky

 i = i + 1

 end do

 t1 = r%to(ipfrom)%k(i)

 t2 = r%to(ipfrom)%l(i)

end do

This functionality was benchmarked against the original code with the following

results:

Number of Cores: 1536 (yxles) 2048 (xyles)
 Min Max Average Min Max Average

c_redist_22 Original Code 1.26 33.43 16.58 1.47 12.92 2.79

New Code 1.13 27.58 13.92 1.50 10.97 2.79
c_redist_32 Original Code 12.56 37.67 21.98 8.28 15.26 10.96

New Code 17.93 43.96 28.61 15.51 21.18 18.04
Table 5: Timings for the remote copy functionality; performance comparison of the original data

copy code in the remote data copy part of the redistribute functionality with a new optimised

version (using 1000 iterations)

It is evident from these results that the optimisation of the c_redist_22 code has

been (relatively) successful with a reduction in the runtime. However, the

c_redist_32 has not been successful, with the new code increasing rather than

reducing the runtime of these routines. This is similar to the local copy optimisation

attempts, where the first set of optimisations were successful for all routines except

c_redist_32. It is not entirely clear why the optimisation is not successful in this

case but the c_redist_32 is more complicated than the c_redist_22

functionality, and any performance gain from the new code is dependent on the inner

loops being sufficiently large to mitigate these complications. If the amount of data

copied in these loops is not large then the functionality added to replace the indirect

addressing functionality could adversely affect the performance. Further investigation

of this code and its performance would be beneficial, especially looking at the

possible implementation of similar optimisations to those we applied on the

c_redist_32 indirect addressing functionality of the local data copy.

5 Unbalanced Decomposition
As previously described, GS2 is generally run on a “sweet spot” number of cores for

theg_lo decomposition. Whilst the sweet spots provided by the ingen program

20

represent optimal process counts for the g_lo data space the same is not necessarily

true for the other layouts, xxf_lo and yxf_lo, as these split the simulation data in

different ways to the g_lo layout. More specifically, it can be possible to choose a

process count for the parallel program that is good for the linear computations but

significantly increases the amount of communication required to undertake the non-

linear calculations.

The decomposition of data for each process is currently simply calculated by dividing

the total data space by the number of processes used. So the g_lo blocksize for each

process is calculated using a formula like this:

(naky*ntheta0*negrid*nlambda*nspec)/nprocs + 1

with the yxf_lo blocksize calculated as follows:

(nnx*(2*ntgrid+1)*isgn*nlambda*negrid*nspec)/nprocs + 1

and the xxf_lo blocksize as follows:

(naky*(2*ntgrid+1)*isgn*nlambda*negrid*nspec)/nprocs + 1

The – 1 inside the bracket and the + 1 at the end of each blocksize calculation ensures

that even when the data domain does not split exactly across the number of processes

available, it will be totally allocated by rounding up the blocksize. However, this

approach can lead to the situation where the data domain does not exactly divide

across the large number of processes and where some processes are left empty

having no assigned data (at least for some of the data decompositions).

Furthermore, the layout that users specify for a fully non-linear simulation can also

affect the parallel performance of GS2. Transforming data from xxf_lo to yxf_lo

involves swapping data from the x and y data dimensions. If the x and y data

dimensions are not split across processes in the parallel program then these transforms

simply involve moving data around in memory on each process. However, if the x or

y data dimensions are split across processes then these swapping of data will involve

sending data between processes, functionality which is typically more costly than

moving data locally. The number of processes used for a simulation, and the layout

chosen, can affect whether the x and y data dimensions are split across processes or

kept local to each process.

For instance, with the xyles layout the s, l, and e data dimensions (nspec,

nlambda,negrid) will be split across processes before the y and x dimensions for

the g_lo data space. However, if the lexys layout is used then x and y will be split

directly after s has been split up, meaning that data will be sent between processes at

a much smaller number of processes than with the xyles layout imposing a

significant performance cost on the program.

The current version of ingen provides both the suggestions of optimal processor

counts for the main data layout (g_lo), and for the xxf_lo and yxf_lo data

layouts. Therefore, for optimal performance for a given simulation it is always best to

choose a process count that is good for all three data layouts wherever possible.

21

However, there are times when it is not possible to do this (for instance above 1024

processes for the example outlined in Appendix A), and so we have created new

functionality that provides more optimal data distributions for xxf_lo and yxf_lo

in the scenario where the chosen process count is not currently optimal.

The redistribute functionality that we have been optimising in this work undertakes

the task of transforming the distribution of the simulation data from k-space to real

space to enable the FFTs required for the non-linear terms to be computed. This two

stage process involves moving from:

 g_lo, where ig and isgn are guaranteed to be local on each process (i.e.

each process has the full dimensions of ig and isgn for a given combination

of x,y,l,e,s) to xxf_lo where x is guaranteed local (i.e. each process

has the full dimension of x for a given combination of y,ig,isgn,l,e,s)

 and finally from xxf_lo to yxf_lo, where y is guaranteed local (for any

given combination of x,ig,isgn,l,e,s).

When running GS2 on large numbers of processes (above l*e*s processes) an

unavoidable amount of data communications required to achieve this, particularly to

move from g_lo to xxf_lo (i.e. move from ig,isgn local to x local) as xxf_lo

at such large process counts will have to split up isgn (and possibly ig depending)

whereas these data dimensions are not split up in the g_lo layout.

However, the amount, and complexity, of the communications required for the

redistribution will depend on the degree of splitting of data across processes. If the

data dimensions to be redistributed are only split across pairs of processes in a

balanced fashion then the number of messages required will be lower than if the data

is split up across three or four different processes.

Furthermore, if the decomposition is undertaken optimally it should be possible to

ensure than in the redistribution between g_lo and xxf_lo (i.e. the

c_redist_32 functionality) keeps both x and y as local as possible therefore

reducing or eliminating completely the communication cost of the xxf_lo to

yxf_lo step (the c_redist_22 functionality).

5.1 Poor Decomposition Performance

If we consider layouts “xyles” or “yxles”, if a user chooses process counts

suggested by the ingen program, the indices l,e,s will be well distributed for

the g_lo data space. Any recommended process counts that exceeds the product

les, will be an integer multiple j * les, and will have l,e,s maximally

distributed. At such process counts, the xxf_lo layout will also have l,e,s

maximally distributed. Therefore, the remaining elements of the xxf_lo compound

index (naky,(2*ntgrid+1),isgn) must be distributed over j processes. While isgn

has a range of 2, the allowed range for ig is always an odd number which commonly

does not factorise well (or may even be prime). We will see shortly that this can lead

to blocksizes for xxf_lo and yxf_lo that have unfortunate consequences for

communication.

22

Figure 1: Example of how the data will be distributed between 4 processes, when the allowed

range for naky is divisible by two. The colour indicates the process-id to which each piece of data

is assigned.

Figure 1 shows the situation where the three indices (naky,(2*ntgrid+1),isgn) can

be evenly divided across four processes, which is only possible if naky (Y) is even.

If, on the other hand, naky were odd, the work would not divide evenly over 4

processes, as indicated in Figure 2. This results in most processes being allocated the

same amount of data, but can very easily result in the situation, especially for large

problems and process counts, where one or more of the last processes in the

simulation will have little or no work assigned to them (i.e. their allocated blocksize

will be small or zero). While for large task counts this will not result in a significant

load imbalance in the computational work, it can dramatically increase the level of

communication that is required in the redistribution routines between xxf_lo

and yxf_lo.

Figure 2: Example of a decomposition that does not evenly split. In this example process 0 gets

more than ½ of the first box, and process 1 is then assigned some data points from the second

box. When all the data from the first two boxes are assigned, process 3 will still require data from

the next pair of boxes, as indicated by the small box to the right of the main picture.

We now consider the amount of data that must be passed between different processes

during the transformation between xxf_lo and yxf_lo. Figure 3 illustrates what

happens when both indices split evenly across the processes, clarifying that only a

small amount of the data held by a process needs to be transferred between

neighbouring processes.

23

Figure 3: Example of the data to be transferred between cores when transposing from xxf_lo to

yxf_lo. For xxf_lo, the lower ranking process holds the blue data and the shaded region. The

higher ranked process holds the red data. During the transformation the shaded region needs to

be transferred from the lower to the higher rank. There is a similar region in the bottom rear of

the cube, not visible in the figure, which needs transferring from the higher ranking to the lower

ranking process.

Figure 2 showed that, if xxf_lo or yxf_lo data spaces do not divide evenly across

all processes, the equal blocksizes allocated to each process will ensure all the data is

allocated, but not that all processes will be allocated data. The number of idle

processes can be calculated in the following equation:

xxfusedprocs=
xxftotalsize

xxfblocksize
xxfidleprocs= numberofprocesses− xxfusedprocs

Similarly the idle processes when using yxf_lo can be determined as follows:

yxfusedprocs=
yxftotalsize

yxfblocksize
yxfidleprocs= numberofprocesses− yxfusedprocs

If the numbers yxf_idleprocs and xxf_idleprocs differ significantly, it can

easily be shown that large MPI messages will be required in the transforms between

xxf_lo and yxf_lo. Figure 4 demonstrates clearly how the amount of data to be

sent to a different process increases linearly with increasing task number. If the

difference between yxf_idleprocs and xxf_idleprocs is larger than 1, the

highest ranking processes (those of rank k and above in Figure 4) will have to transfer

all of their data to different processes. Where the difference is less than one, all

processes will keep some of their data.

24

Figure 4: Example of the data redistributions required when xxf_lo and yxf_lo have

different numbers of idle processors. The colours label the data regions that are stored by each

processor in xxf_lo.

5.2 Optimised Decomposition

If the decomposition used is undertaken optimally it should be possible to ensure that

the redistribution between g_lo and xxf_lo keeps X and Y as local as possible and

thereby reduces or eliminates completely the MPI communication in the xxf_lo to

yxf_lo step.

Therefore, we have deliberately created unbalanced decomposition functionality

to optimise the data communications in mapping from the xxf_lo and yxf_lo

data layouts. The modified code replaces the current code that calculates the block

of xxf_lo and yxf_lo owned by each process, moving from a uniform blocksize

to two different blocksizes for process counts where the data spaces that preserve

locality in x or y do not exactly divide by the number of processes used.

The new, unbalanced, decomposition uses the process count to calculate which

indices can be completely split across the processes. This is done by iterating through

the indices in the order of the layout (so for the xxf_lo data distribution and the

“xyles” layout this order would be s,e,l,isgn,ig,Y) dividing the number of

processes by each index until a value of less than one is reached. At this point the

remaining number of processes is used, along with the index to be divided, to

configure an optimally unbalanced decomposition, by deciding on how to split the

remaining indices across the cores that are available. If this index dimension is less

than the number of cores available, then the index dimension is multiplied by the

following index dimension until a satisfactory decomposition becomes possible.

A worked example of the new decomposition algorithm is provided in Appendix C.

This new functionality was benchmarked using two layouts (xyles at 2048

processes and yxles at 1536 processes), with the results shown in the following

table. For the yxles layout the computational imbalance created by the new code

(the difference between the small and large blocks) is approximately 5% and for

xyles it is approximately 7%. This means that there is a 5% or 7% difference in the

amount of computational work that is performed in the non-linear calculations

between processes with the small and large blocks.

Number of Cores: “yxles”

1536

“yxles”

1536

unbalanced

“xyles”

2048

“xyles”

2048

unbalanced
c_redist_22 Local Copy 13.89 43.13 30.20 32.59

 Remote Copy 165.61 8.82 27.70 12.53

25

c_redist_22_inv Local Copy 3.61 16.44 8.86 8.76
 Remote Copy 48.19 2.43 4.78 2.99

c_redist_32 Local Copy 16.82 20.86 10.65 10.64
 Remote Copy 217.45 196.81 110.66 116.11
c_redist_32_inv Local Copy 2.77 3.48 1.97 1.79

 Remote Copy 46.51 33.18 25.69 25.36

Total Calculation Time 2390.40 2074.20 1867.80 1862.40
Table 6: Performance comparison of the code with and without the new unbalanced

decomposition functionality (using 10000 iterations)

We can see from the results that the unbalanced decomposition can significantly

improve the performance obtained from the code. Concentrating on the “yxles”

1536 results it is evident that moving from the original to the unbalanced code the

cost of the remote copy functionality for the c_redist_22 subroutines has been

significantly reduced (in fact almost removed altogether). This is also mirrored in the

corresponding inverse routine, and there are also reasonable reductions in remote

copy time for the c_redist_32 routine and its inverse. This is balanced with an

increase in the local copy cost when using the unbalanced optimisation, indicating

that the unbalanced distribution has indeed ensured that the x and y data has stayed

local to processes wherever possible. Overall the unbalanced optimisation saves

around 15% of the runtime of GS2 for the yxles layout on 1536 cores.

However, if we look at the 2048 results (where the xyles layout is used) the

unbalanced optimisation makes little difference to the overall runtime. The

optimisation still significantly reduces the runtime of the remote copy functionality in

c_redist_22; however that functionality is much less costly for this layout and

process count. If we compare the “yxles” 1536 and “xyles” 2048 results the

remote copy for c_redist_22 cost around 166 second in the 1536 case compared

to around 28 seconds for the 2048 case. Therefore, the unbalanced optimisation still

does what we would expect for 2048 process using the xyles layout (i.e.

significantly reduces the cost of the c_redist_22 communications) but this layout

and process count has little communication in this routine in the first place so this

optimisation does not have a significant impact on the overall runtime of the

simulation.

To understand why there is this performance difference between the xyles and

yxles layouts on these process counts we need to examine the differences between

the two layouts. Both layouts have the same blocksizes for the xxf_lo and yxf_lo

data distributions (for a given number of processes).

For “yxles” 1536 processes the original code produces a xxf_lo blocksize of

661⅓ which means that the y index is split unevenly between groups of 2 or 3

processes (661⅓ ig = 21⅓ which means that the first process has all the y indexes

associated with the first 21⅓ ig then the second process has the y indexes associate

with the next 9⅔ ig and then the following 11⅔ ig, and so on, iterating through

isgn,l,e,s). The actual blocksize used in GS2 must be an integer (it isn’t

possible to assign a fraction of a data entry to a process) so for the data decomposition

to work 661⅓ is rounded up to 662 and 662 elements are assigned to each process.

However, as this is a larger blocksize than the one actually needed in the data

decomposition then not all processes will be allocated data. The last process will

26

have no data in the xxf_lo data distribution, and the second to last process will only

have a partial block of data. These two factors together mean that for “yxles” on

1536 processes there is a large amount of data transfer required (as illustrated in

Figure 4).

However, for 2048 processes the blocksize of 496 maps exactly to 2048 processes so

all processes have the same amount of data, and furthermore the y index is split

evenly across pairs of processes so the amount of data that has to be communicated is

much smaller and only needs to be transferred between pairs of processes. This leads

to “xyles” 2048 processes having a much lower communication requirement for

the redistribution functionality than “yxles” 1536 processes. Indeed, at 2048

processes with the xyles layout there is no need for the unbalanced optimisation as

the decomposition is already adequate, although the unbalanced decomposition

functionality does not damage the performance either.

The unbalanced decomposition functionality also has the benefit of extending the

range of optimal process counts for a given GS2 simulation. As previously discussed

users generally select process counts for GS2 from the output of the ingen program.

This considers the factors of each of the layout variables separately, in the order

specified by the chosen layout, and uses those to construct a list of process counts that

match those factors. The unbalanced decomposition means that the list of suitable

process counts can be much wider, including the factors of a combination of the

layout variables. Not only does this provide users with a wider range of process

counts to use, which can enable more efficient use of different HPC resources (there

is more scope to matching to the available resource configuration i.e. number of cores

per node, number of available nodes, etc…), but also can reduce the runtime of the

simulation by enabling the selection of a more efficient layout and process count. An

example of this is shown in Table 7 where the performance of GS2 is shown with and

without the unbalanced functionality for the yxles layout. We can see good

performance improvements from using the unbalanced decomposition, however the

table also demonstrates that further optimisations can be achieved from using from the

yxles layout to the xyles layout when using the unbalanced decomposition, even

though 1536 processes was not an optimal process count for the xyles layout with the

original GS2.

Process

Count

yxles, original

decomposition

yxles, unbalanced

decomposition

xyles, unbalanced

decomposition

1536 7.07 6.12 5.94
Table 7: Performance improvement from using the unbalanced decomposition and enabling

different process counts for a given layout.

6 Summary
We have undertaken a number of different optimisations on the GS2 simulation code

to improve the parallel performance and both allow the code to scale more efficiently

to larger numbers of cores and to complete simulations quicker and therefore use less

computational resources (HECToR AUs) for any given scientific simulation.

Our primary focus was to improve the performance of the local data copies associated

with the data transform between the linear and non-linear calculations in GS2. We

achieved this by replacing costly indirect addressing functionality by direct access

mechanisms reducing the cost of the routines performing the local data copies by

27

around 40-50%. This optimisation has the most significant impact on performance at

lower process counts, as at larger core counts there is less data on each processor to be

kept local in the transformation, and therefore the performance is more influenced by

remote copies.

Following this optimisation we focussed on the remote copy functionality associated

with the same data transform. However, our optimisation attempts were not

successful for this particular functionality.

Finally, we were motivated to investigate optimising the data decompositions used for

the non-linear calculations. We discovered that the current functionality that creates

the data decomposition can lead to significant performance degradation through

increasing the amount of data to be transferred between processes for the transform by

a very large amount. We implemented a new unbalanced decomposition that

allocated slightly different amounts of data to each process, in order to alleviate large

communication costs observed at large processes.

Combining these optimisations (the local copy optimisation that optimises

performance for local process counts and the unbalanced optimisation that can

optimise performance for higher process counts) we have been able to reduce the

overall runtime of the code by up to 17% for a representative benchmark, as shown in

the following table (where the code was run for 10000 iterations).

Number of Cores: 512 1536

Original Code 4435.20 2385.60

Indirect Addressing and Unbalanced

Optimisations

4150.40 2074.20

Overall Percentage Optimisation 7% 17%
Table 8: Overall performance improvement of GS2 (using the “xyles” layout for 512 and “yxles”

for 1536)

At 512 cores the data “xyles” decompositions xxf_lo and yxf_lo keep BOTH

x and y local, so the unbalanced optimisation cannot play any useful role, but the

optimisation of the indirect addressing is still beneficial providing a 7% performance

improvement. At 1536 cores for “yxles” both the unbalanced optimisation and the

indirect addressing optimisation are beneficial, giving a total improvement of 17% in

the overall runtime of the simulation, despite the fact that the unbalanced

decomposition has introduced around 5% load imbalance into the simulation. In

addition to this, using the “xyles” layout at 2048 with all the new functionality we

have created reduces the runtime by just under 20%, a significant saving of

computational resources when considering the 75 Million AUs that have been or will

be used by GS2 users on HECToR.

Furthermore, it is likely that the unbalanced decomposition approach will be

applicable to other scientific simulation codes where both real space and k-space data

domains are used.

The redistribution functionality that we have optimised is also used in other parts of

GS2, particularly in the collision functionality within the code. Whilst we have not

studied that during this project it is likely that the local copy optimisation we

undertook during this work will be applicable to the part of GS2 that deals with the

28

collision operator and therefore that further performance optimisation could be

achieved by removing indirect addressing from this part of GS2 as well.

Furthermore, removing indirect addressing from the model collision operator

functionality should also enable the code to be refactored to remove the majority of

the data structures required for the indirect addressing functionality, hence saving

valuable memory.

The new functionality developed in this dCSE project has been undertaken using a

branch in the main GS2 SVN repository. All the new code is available to the GS2

developers and they are currently working to integrate this branch with the main GS2

trunk to ensure these developments can be exploited by all GS2 users, including

sister-codes AstroGK and Trinity (which runs GS2 in parallel in multi-scale plasma

simulations). We have also produced some separate documentation on the GS2

layouts and how to use the new GS2 functionality; including extending the ingen

tool that is used in conjunction with GS2 to ensure that GS2 is used in an optimal

manner.

7 Acknowledgements
This work was supported by Colin Roach at CCFE and Joachim Hein at EPCC, The

University of Edinburgh.

This project was funded under the HECToR Distributed Computational Science and

Engineering (CSE) Service operated by NAG Ltd. HECToR – A Research Councils

UK High End Computing Service - is the UK's national supercomputing service,

managed by EPSRC on behalf of the participating Research Councils. Its mission is to

support capability science and engineering in UK academia. The HECToR

supercomputers are managed by UoE HPCx Ltd and the CSE Support Service is

provided by NAG Ltd. http://www.hector.ac.uk

http://www.hector.ac.uk/

29

Appendix A – Input datafile
&theta_grid_knobs

 equilibrium_option='eik'

/

&theta_grid_parameters

 rhoc = 0.4

 ntheta = 30

 nperiod= 1

/

¶meters

 beta = 0.04948

 zeff = 1.0

 TiTe = 1.0

/

&collisions_knobs

 collision_model = 'none'

 !collision_model='lorentz'

/

&theta_grid_eik_knobs

 itor = 1

 iflux = 1

 irho = 3

 ppl_eq = .false.

 gen_eq = .false.

 vmom_eq = .false.

 efit_eq = .true.

 gs2d_eq = .true.

 local_eq = .false.

 eqfile = 'equilibrium.dat'

 equal_arc = .false.

 bishop = 1

 s_hat_input = 0.29

 beta_prime_input = -0.5

 delrho = 1.e-3

 isym = 0

 writelots = .false.

/

&fields_knobs

 field_option='implicit'

/

&gs2_diagnostics_knobs

 write_ascii = .false.

 print_flux_line = .true.

 write_flux_line = .true.

 write_nl_flux = .true.

30

 write_omega = .false.

 write_omavg = .false.

 write_phi =.true.

 write_final_moments = .false.

 write_final_fields=.false.

 print_line=.false.

 write_line=.false.

 write_qheat=.true.

 write_pflux=.false.

 write_vflux=.false.

 write_qmheat=.false.

 write_pmflux=.false.

 write_vmflux=.false.

 print_old_units=.false.

 save_for_restart=.false.

 nsave= 500

 nwrite= 100

 navg= 200

 omegatol= 1.0e-5

 omegatinst = 500.0

/

&le_grids_knobs

 ngauss = 8

 negrid = 8

 Ecut = 6.0

 advanced_egrid = .true.

/

&dist_fn_knobs

 boundary_option= "linked"

 gridfac= 1.0

/

&init_g_knobs

 !restart_file= "nc/input.nc"

 ginit_option= "noise"

 phiinit= 1.e-6

 chop_side = .false.

/

&kt_grids_knobs

 grid_option='box'

 norm_option='t_over_m'

/

&kt_grids_box_parameters

 y0 = 10

 ny = 96

31

 nx = 96

 jtwist = 2

/

&knobs

 fphi= 1.0

 fapar= 0.0

 faperp= 0.0

 delt= 1.0e-4

 nstep= 500

 wstar_units = .false.

/

&species_knobs

 nspec= 2

/

&species_parameters_1

 type = 'ion'

 z = 1.0

 mass = 1.0

 dens = 1.0

 temp = 1.0

 tprim = 2.04

 fprim = 0.0

 vnewk = 0.0

 uprim = 0.0

/

&dist_fn_species_knobs_1

 fexpr = 0.45

 bakdif = 0.05

/

&species_parameters_2

 type = 'electron'

 z = -1.0

 mass = 0.01

 dens = 1.0

 temp = 1.0

 tprim = 2.04

 fprim = 0.0

 vnewk = 0.0

 uprim = 0.0

/

&dist_fn_species_knobs_2

 fexpr= 0.45

 bakdif= 0.05

/

&theta_grid_file_knobs

32

 gridout_file='grid.out'

/

&theta_grid_gridgen_knobs

 npadd = 0

 alknob = 0.0

 epsknob = 1.e-5

 extrknob = 0.0

 tension = 1.0

 thetamax = 0.0

 deltaw = 0.0

 widthw = 1.0

/

&source_knobs

/

&nonlinear_terms_knobs

nonlinear_mode='on'

cfl = 0.5

/

&additional_linear_terms_knobs

/

&reinit_knobs

 delt_adj = 2.0

 delt_minimum = 1.e-8

/

&theta_grid_salpha_knobs

/

&hyper_knobs

/

&layouts_knobs

 layout = 'xyles'

 local_field_solve = .false.

/

33

Appendix B – Further optimised c_redist_32 code

 t1upper = ubound(to_here,1)

 f3upper = ubound(from_here,3)

 tempnaky = naky

 innermaxmultiplier = xxf_lo%ulim_proc+1

 select case (layout)

 case ('yxels')

 f3maxmultiple = xxf_lo%naky*xxf_lo%ntheta0

 f3incr = xxf_lo%naky

 case ('yxles')

 f3maxmultiple = xxf_lo%naky*xxf_lo%ntheta0

 f3incr = xxf_lo%naky

 case ('lexys')

 f3maxmultiple =

xxf_lo%nlambda*xxf_lo%negrid*xxf_lo%ntheta0

 f3incr = xxf_lo%nlambda*xxf_lo%negrid

 case ('lxyes')

 f3maxmultiple = xxf_lo%nlambda*xxf_lo%ntheta0

 f3incr = xxf_lo%nlambda

 case ('lyxes')

 f3maxmultiple =

xxf_lo%nlambda*xxf_lo%naky*xxf_lo%ntheta0

 f3incr = xxf_lo%nlambda*xxf_lo%naky

 case('xyles')

 f3maxmultiple = xxf_lo%ntheta0

 f3incr = 1

 end select

 i = 1

 iglomax = ((iproc+1)*g_lo%blocksize)

 t1test = ((xxf_lo%ntheta0+1)/2)+1

 do while(i .le. r%from(iproc)%nn)

 f1 = r%from(iproc)%k(i)

 f2 = r%from(iproc)%l(i)

 f3 = r%from(iproc)%m(i)

 t1 = r%to(iproc)%k(i)

 t2 = r%to(iproc)%l(i)

 outerf3limit = f3 + f3incr

 do while(f3 .lt. outerf3limit)

 iincrem = i

 innermaxrealvalue = (innermaxmultiplier-t2)/tempnaky

 innermax = ceiling(innermaxrealvalue)-1

 if(f2 .eq. 2 .and. (f1+innermax) .gt. ntgrid) then

 innermax = i + (ntgrid - f1)

 else if((f2 .eq. 1 .and. innermax .gt.

(((2*ntgrid)+1)+(ntgrid-f1)))) then

 innermax = i + ((2*ntgrid)+1) + (ntgrid - f1)

 else

34

 innermax = i + innermax

 end if

 do while(i .le. innermax)

 f1 = r%from(iproc)%k(i)

 f2 = r%from(iproc)%l(i)

 f3 = r%from(iproc)%m(i)

 t1 = r%to(iproc)%k(i)

 t2 = r%to(iproc)%l(i)

 startf3 = f3

 f3max = ((f3/f3maxmultiple)+1)*f3maxmultiple

 f3max = min(f3max,iglomax)

 do while (f3 .lt. f3max)

 to_here(t1,t2) = from_here(f1,f2,f3)

 f3 = f3 + f3incr

 t1 = t1 + 1

 if(t1 .eq. t1test) then

 t1 = t1 - xxf_lo%ntheta0 + xxf_lo%nx

 end if

 iincrem = iincrem + 1

 end do

 i = i + 1

 end do

 if(i .lt. r%from(iproc)%nn .and. iincrem .lt.

r%from(iproc)%nn) then

 f1 = r%from(iproc)%k(i)

 f2 = r%from(iproc)%l(i)

 t2 = r%to(iproc)%l(i)

 f3 = startf3 + 1

 else

 f3 = outerf3limit

 end if

 end do

 i = iincrem

 end do

35

Appendix C – Worked example of the unbalanced
decomposition algorithm

To illustrate the unbalanced decomposition algorithm with an example, for the

benchmarking in this document we have generally been using the following

parameters:

 y = 32

 ig = 31

 isgn = 2

 l = 32

 e = 8

 s = 2

For the xxf_lo data distribution, using 1536 processes, the unbalanced code does

the following:

 1536 s = 768

 768 e = 96

 96 l = 3

 3 isgn = 1.5, this is not whole so carry isgn forward

 3 isgn * ig < 1, this is the point to create the unbalanced blocks

The unbalanced block sizes are then created using the remaining number of processes

(3) and the index(s) to be split (isgn * ig = 62), as follows:

 62 3 = 20⅔

 This gives two sizes, 20 and 21. We have 3 blocks required, one of 20 and

two of 21 provide the 62 required

 20 and 21 are then used to calculate the xxf_lo blocksize by multiplying the

remaining indexes (those not split) by the two blocks calculates

 Blocksize 1 = 20 * y = 640

 Blocksize 2 = 21 * y = 672

 The original blocksize for this example is 662

 The new blocksize is 640 for ⅓ of the processes and 672 for ⅔ of the

processes

 Original data domain was y * ig * isgn * l * e * s = 1015808

 1015808 / 1536 = 661⅓ = original blocksize = 662

 640 * (⅓ * 1536) + 672 * (⅔ * 1536) = 1015808

 The new blocksizes exactly decompose the data domain over the number of

processes used.

Appendix D – Optimised Local Copies, Optimal Core
Counts and Domain Decompositions in Nonlinear GS2
Simulations
The updated GS2 code has been altered to allow users to select whether to use

unbalanced decompositions or not. With this new functionality the user should select

36

a processor count that is optimal for the linear calculations and utilise the unbalanced

optimisation code within GS2 by setting the following variables in the parameters

input file (in the section &layouts_knobs):

unbalanced_yxf = .true.

max_unbalanced_yxf = 0.15

unbalanced_xxf = .true.

max_unbalanced_xxf = 0.15

The value 0.15 using for the two max_unbalanced_* parameters sets the

maximum amount of unbalance allowed in the decompositions; 0.15 sets this as a

maximum of 15% but this can be chosen by the user (a default of zero is set if nothing

is chosen by the user which forces the unbalanced code not to be used, and the

maximum is 1.0). This enables users to cap the amount of computational imbalance

that is introduced into the code to address these performance issues to ensure that the

performance improvements achieved through the unbalanced functionality and not

negated by the added computational imbalance.

The ingen utility that accompanies GS2 has also been updated to ensure that those

core counts that it suggests (those optimal for the linear calculations) that are not

optimal for the nonlinear calculations are annotated with suggestions for the flags to

set in the input file to activate the required unbalanced functionality.

The new optimised local copy functionality can be enabled or disabled using the

following variable in the parameters input file (in the section &layouts_knobs):
opt_local_copy = .true.

If this parameter is set to .false. or omitted from the parameter input file then the

optimised local copy functionality is not used. If it is set to .true. then the

optimised local copy will be used.

