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Abstract 
GS2 is an initial value simulation code developed to study low-frequency turbulence 

in magnetized plasma. GS2 solves the gyrokinetic equations for perturbed distribution 

functions together with Maxwell’s equations for the turbulent electric and magnetic 

fields within a plasma.  It is typically used to assess the microstability of plasmas 

produced in the laboratory and to calculate key properties of the turbulence which 

results from instabilities. It is also used to simulate turbulence in plasmas which occur 

in nature, such as in astrophysical and magnetospheric systems. 

 

This report describes the work of a dCSE project to optimise parts of the GS2 code.  

We have worked to improve the performance of the transformation of data between 

the linear and non-linear parts of GS2.  This generally involves some FFT calculations 

along with associated data copying and MPI communications.  We have replaced the 

indirect addressing used in the data copying functionality with more efficient 

functionality.  We have also added new decomposition functionality to GS2 to reduce 

the amount of communications and data copying required when using none optimal 

process counts for a given user simulation.  The new decomposition functionality 

enables GS2 to efficiently use a much wider range of process count, thus providing 

flexibility to users to select the process count that matches the simulation, resources, 

and system they are using.  Furthermore, our optimisations can reduce the runtime of 

GS2 by up to 20% for large scale simulation, saving significant amounts of 

computational resources for GS2 users. 



3 

 

Table of Contents 
 

 

Table of Contents ........................................................................................................... 3 

1 Introduction ............................................................................................................ 4 
1.1 GS2 ................................................................................................................ 4 
1.2 ingen ............................................................................................................... 5 
1.3 HECToR ........................................................................................................ 5 
1.4 Problem to be tackled..................................................................................... 5 

2 Redistribution Functionality .................................................................................. 6 
3 Indirect Addressing ................................................................................................ 9 

3.1 Original Code ................................................................................................. 9 
3.2 Optimised Implementation........................................................................... 11 
3.3 Optimising c_redist_32 ................................................................................ 14 

4 Remote Data Copy ............................................................................................... 15 
4.1 Non-blocking communications .................................................................... 16 
4.2 Indirect addressing ....................................................................................... 17 

5 Unbalanced Decomposition ................................................................................. 19 

5.1 Poor Decomposition Performance ............................................................... 21 
5.2 Optimised Decomposition ........................................................................... 24 

6 Summary .............................................................................................................. 26 

7 Acknowledgements .............................................................................................. 28 
Appendix A – Input datafile ........................................................................................ 29 

Appendix B – Further optimised c_redist_32 code ..................................................... 33 
Appendix C – Worked example of the unbalanced decomposition algorithm ............ 35 
Appendix D – Optimised Local Copies, Optimal Core Counts and Domain 

Decompositions in Nonlinear GS2 Simulations .......................................................... 35 
 

 



4 

 

1 Introduction 
This report documents the work performed during the dCSE project titled “Improved 

Data Distribution Routines for Gyrokinetic Plasma Simulations”.  The project, 

undertaken at EPCC, The University of Edinburgh, in conjunction with CCFE at 

Culham, aimed to improve the overall performance of the GS2 code, thereby reducing 

the computational resources required to undertake scientific simulations, enabling 

more efficient use of the resources provided by the HECToR service (and other HPC 

systems). 

1.1 GS2 

GS2 is an initial value simulation code developed to study low-frequency turbulence 

in magnetized plasma. GS2 solves the gyrokinetic equations for perturbed distribution 

functions together with Maxwell’s equations for the turbulent electric and magnetic 

fields within a plasma.  It is typically used to assess the microstability of plasmas 

produced in the laboratory and to calculate key properties of the turbulence which 

results from instabilities. It is also used to simulate turbulence in plasmas which occur 

in nature, such as in astrophysical and magnetospheric systems. 

 

Gyrokinetic simulations solve the time evolution of the distribution functions of each 

charged particle species in the plasma, taking into account the charged particle motion 

in self-consistent magnetic and electric fields. These calculations are undertaken in a 

five dimensional data space, with three dimensions for the physical location of 

particles and two dimensions for the velocity of particles. More complete six 

dimensional kinetic plasma calculations (with three velocity space dimensions) are 

extremely time consuming (and therefore computational very costly) because of the 

very rapid gyration of particles under the strong magnetic fields.  Gyrokinetic 

simulations simplify this six dimensional data space by averaging over the rapid 

gyration of particles around magnetic field lines and therefore reducing the problem 

from six  to five dimensions (where velocity is represented by energy and pitch angle, 

and the gyrophase angle is averaged out). While the fast gyration of particles is not 

calculated in full, it is included in a gyro-averaged sense allowing lower frequency 

perturbations to be simulated faithfully at lower computational cost. 

 

GS2 can be used in a number of different ways, including linear microstability 

simulations, where growth rates are calculated on a wavenumber-by-wavenumber 

basis with an implicit initial-value algorithm in the ballooning (or "flux-tube") limit. 

Linear and quasilinear properties of the fastest growing (or least damped) eigenmode 

at a given wavenumber may be calculated independently (and therefore reasonably 

quickly).  It can also undertake non-linear gyrokinetic simulations of fully developed 

turbulence.  All plasma species (electrons and various ion species) can be treated on 

an equal, gyrokinetic footing. Nonlinear simulations provide fluctuation spectra, 

anomalous (turbulent) heating rates, and species-by-species anomalous transport 

coefficients for particles, momentum, and energy.  However, full nonlinear 

simulations are very computationally intensive so generally require parallel 

computing to complete in a manageable time. 

 

GS2 is a fully parallelised, open source, code written in Fortran90.   The 

parallelisation is implemented with MPI, with the work of a simulation in GS2 being 

split up (decomposed) by assigning different parts of the distribution functions to 

different processes to complete.   
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1.2 ingen 

For any given GS2 input file (which specifies the simulation to be carried out, 

including the domain decomposition layout) the program ingen provides a list of 

recommended process counts (or “sweet spots”) for the GS2 simulation to be run on, 

along with some other useful information on the simulation parameters provided by 

the user. These recommendations are calculated from the properties prescribed in the 

input file of the simulation to be run, and aim to split the data domain as evenly as 

possible to achieve good “load-balancing” (which helps to optimise the performance 

of the program and minimise the runtime).    The primary list of recommended 

process counts is based on the main data layout, g_lo, that is used for the linear 

parts of the simulations.  ingen also provides lists of process counts that are suitable 

for the nonlinear parts of the calculations (referred to as xxf_lo and yxf_lo 

process counts) which may differ from the process counts recommended for g_lo.   

 

For optimal performance with GS2, choosing a process count that is in all three of the 

lists of process counts that ingen provides is beneficial.  However, this is not always 

possible, especially at larger process counts, and in this scenario users generally 

choose a process count that is optimal for g_lo. 

 

1.3 HECToR 

HECToR[7], a Cray XE6 computer, is the UK National Supercomputing Service.  

This project utilised both the Phase 2b and Phase 3 phases of the system.   Phase 2b 

XE6 system consisted of 1856 compute nodes, each containing two 2.1 GHz 12-core 

‘Magny-cours’ AMD Opteron processor and 32 GB of main memory, giving 1.33 GB 

per core.  The nodes were coupled with Cray’s Gemini network, providing a high 

bandwidth and low latency 3D torus network. The peak performance of the system 

was 360 TFlops, and ranked 16th in the June 2010 Top 500 list.  

 

Phase 3, the current incarnation of HECToR, uses two 16-core 2.3 GHz ’Interlagos’ 

AMD Opteron processors per node, giving a total of 32 cores per node, with 1 GB of 

memory per core. The addition of 10 cabinets (928 compute nodes) to the Phase 2b 

configuration increased the peak performance of the whole system to over 820 TF. 

 

1.4 Problem to be tackled 

This DCSE project follows up on findings from a previous GS2 DCSE project 

(“Upgrading the FFTs in GS2”) that was carried out by EPCC in 2010.  The goal of 

that project was to implement FFTW3 functionality and optimise the FFTs used by 

GS2.  During this work it was discovered that the GS2 code to transform data between 

layouts associated with the FFTs was   consuming a large fraction of the runtime.   

 

Specifically, the routines c_redist_22 and c_redist_32 were highlighted as 

being costly, with about 8% of runtime being spent on each (for a benchmark run on 

1024 cores). These routines redistribute/rearrange data from xxf_lo to yxf_lo, 

and from g_lo to xxf_lo, respectively, as required for performing FFTs. This 

requires coordinating data to be communicated to or received from other processes, 

http://www.hector.ac.uk/cse/distributedcse/reports/GS2/GS2.pdf
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and rearranging the data that is available locally.  These routines make extensive use 

of indirect addressing when packing the buffers.  

 

Indirect addressing is a form of array access where the indices of the array being 

accessed are themselves stored in a separate array.  Here is an example of a standard 

FORTRAN array access: 
 

 to_here(i, j) = from_here(i, j, k)   code I 

 

Similar array copying code is used in these GS2 routines, but making extensive use of 

indirect addressing like this: 

 
 to_here(to_index(i)%i, to_index(i)%j) = 

from_here(from_index(i)%i, from_index(i)%j,   code II 

from_index(i)%k) 

 

Whilst such functionality is very useful in providing a simple standard interface for a 

program to access data stored in an array in a variety of different layout patterns 

(indeed this allows GS2 to rearrange data layouts without having to change any array 

index code at the point of use) and was common in codes exploiting vector 

architectures, this functionality does introduce additional computational costs, and in 

particular the memory access cost of this array transformation on modern computing 

hardware increases significantly.  

 

In the traditional example (code I) the code requires one memory load 

(from_here(i, j, k)) and one memory store (to_here(i, j)) (assuming 

the indexes i, j, and k are stored in cache or registers on the processor).  With the 

indirect addressing functionality (code II) six memory loads are required (one for each 

index look-up and one to retrieve the data in from_here) and one memory store.  

Given that undertaking memory operations is very costly on a modern processor 

(compared to performing computation), and given that accesses like these take a 

significant part of the routines highlighted as being costly in GS2, this is evidently 

impacting performance. 

 

In this report we: 

 outline the current redistribution and indirect addressing functionality and 

document its performance  

 describe our approach for optimising the indirect addressing code and assess 

the performance impact of these optimisations.   

 discuss the data decompositions used by GS2 and how these can be optimised 

further  

 describe the functionality that is currently used for copying data between 

processes and our attempts to optimise it.  

 

2 Redistribution Functionality 
GS2 supports six different data layouts for the g_lo datatype array containing the 

perturbed distribution functions for all the plasma species. These layouts are: 

”xyles”, ”yxles”, “lyxes”, “yxels”, “lxyes”, “lexys”. The layout can 

be chosen at run time by the user (through the input parameter file).   
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Each character in the layout represents a dimension in the simulation domain as 

follows (the name in brackets is the variable name used for the dimension in the code) 

 x: Fourier wavenumber in X (ntheta0) 

 y: Fourier wavenumber in Y (naky) 

 l: Pitch angle (nlambda) 

 e: Energy (negrid) 

 s: Particle species (nspec) 

 

The layout controls how the data domain in GS2 is distributed across the processes in 

the parallel program, controlling the order in which individual dimensions in the data 

domain iterate in the compound index that will be  distributed (split up) across the 

processes.  For instance, in the “”xyles” layout the species index, “s”, iterates 

most slowly, and “x” iterates most rapidly,  whereas in the “lexys” “s” iterates 

most slowly and the pitch angle index, “l”, iterates most rapidly.. 

 

Linear calculations with GS2 are performed in k-space using the g_lo layout as this 

is computationally efficient.  The nonlinear terms, however, are more efficiently 

calculated in position space.  Therefore, when GS2 undertakes a nonlinear simulation, 

it computes the linear advance in k-space, and the nonlinear advance in position 

space. While the majority of the simulation is in k-space, each timestep there are FFTs 

into position space, to evaluate the nonlinear term, and an inverse FFT to return the 

result into k-space.  Whilst users need not concern themselves with these 

implementation details, this use of both k- and position space can impact on 

performance, depending on the number of processes used in the parallel computation.   

 

In the linear part of calculations GS2's distribution functions are parallelised in k-

space, using the GS2 g_lo data layout. The non-linear parts of calculations, which 

require FFTs, use two different data distribution layouts,  namely xxf_lo and 

yxf_lo.  These are required for the two stages (one for 1D FFTs in x, the other for 

1D FFTs in y)of each of the forward and inverse FFTs  

 

Practically the GS2 data space is stored in a single array, but it can be considered 

conceptually as a 7 dimensional data object. Five of the dimensions are the previously 

discussed x,y,l,e,s, the other two are ig (the index corresponding to the spatial 

direction parallel to the magnetic field) and isgn (isgn corresponds to the direction 

of particle motion in the direction parallel to the magnetic field, b; for GS2 isgn =1 

represents particles moving parallel to b, and isgn=2 represents particles moving 

antiparallel to b). In this report we study the following three distribution layouts of the 

distribution function in GS2: 

 g_lo(ig,isgn:”layout”): indices ig and isgn are guaranteed to be 

kept local to each process, and x,y,l,e,s are decomposed (with the 

decomposition depending on the chosen “layout”).  

 xxf_lo(ix:iy,ig,isgn,”les” data space only ix is guaranteed to be 

kept local, and the compound index includes iy,ig,isgn,l,e,s (where y 

is the fastest index and the order of l,e,s  depends on the chosen “layout”).  

 yxf_lo(iy:ix,ig,isgn,”les”) data space only iy is kept local and 

the compound index contains ix,ig,isgn,l,e,s (where ix is the fastest 

index and the order of “les” depends on the chosen “layout”). 
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GS2 uses a dealiasing algorithm to filter out high wavenumbers in X and Y, which is 

a standard technique to avoid non-linear numerical instabilities in spectral codes. 

g_lo contains the filtered data, which has lower ranges of indices in X and Y than in 

the xxf_lo and yxf_lo layouts. This means that after the yxf_lo stage the 

amount of data is larger than at the g_lo stage (approximately 2¼ times larger). 

 

The functions we have considered for optimisation are the routines c_redist_22 

and c_redist_32 and their inverse versions c_redist_22_inv and 

c_redist_32_inv,  which perform the data transformations required for the 

FFTs.   The evaluation of each 2D FFT requires  transformations, or redistributions, to 

be undertaken in two phases.  Firstly, c_redist_32 transforms the data from the 

three index g_lo data structure into the two index data structure xxf_lo which is 

used for the first FFT in x.  Later c_redist_22 performs the additional transpose 

required for the FFT in y, converting from the intermediate xxf_lo data structure to 

the yxf_lo layout.    After the computation of the nonlinear terms in real space, the 

transformations and FFTs must be performed in reverse using the _inv routines to 

obtain the nonlinear term in k-space. 

 

Within the redistribution routines there are two types of functionality, to perform local 

and remote copies.  The local copy redistributes any data which will belong to the 

same process in both data layouts, and remote copy redistributes the data that must be 

communicated between different  processes (including collecting the data to be sent 

to each process in a buffer, sending the data to that process, and unpacking all 

received data into the local data array). 

 

Initial benchmarking of the code using a representative benchmark case (see the GS2 

input file in appendix A) produced the following performance figures on HECToR 

Phase2b (where the times are seconds): 

Number of Cores: 128 256 512 1024 
c_redist_22 Local Copy 53.71 27.17 13.73 6.81 

 Remote Copy 0.07 0.13 0.26 0.48 
c_redist_22_inv Local Copy 13.73 6.90 3.46 1.76 
 Remote Copy 0.01 0.03 0.05 0.10 

c_redist_32 Local Copy 49.85 25.60 12.46 3.92 
 Remote Copy 0.05 0.10 0.19 9.22 
c_redist_32_inv Local Copy 12.31 6.26 2.79 0.77 

 Remote Copy 0.01 0.03 0.05 1.99 
Table 1: Initial Benchmarking of the redistribution functionality (using the “xyles” layout and 

running for 500 iterations) 

 

 

These results showed that: 

 Local copy parts of the routine dominate performance of those routines for 

lower core counts.   

 At larger processor/core counts, e.g. 1024 cores, the remote copy 

functionality significantly affects performance, especially for 

c_redist_32. 

 

In section 3 we describe our efforts to optimise the local copy parts of these routines 

by replacing the currently implemented indirect addressing functionality.  Section 4 
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outlines our approaches at optimisation of the remote copy code by introducing non-

blocking communications and by replacing some of the indirect addressing 

functionality.  Section 5 describes further optimisations of the data decompositions 

used in GS2. 

 

3 Indirect Addressing 
As previously discussed indirect addressing, where the indexes used to access an 

array of data are themselves stored in a separate array, is heavily used in GS2 to 

perform the data redistributions required to undertake the 2D FFTs that compute the 

nonlinear terms.  As indirect addressing can be costly, both in terms of the impact on 

computational time and memory consumption, we looked to replace this functionality 

with a more direct approach to improve the performance of the local copy parts of 

GS2.  The next subsection outlines the original functionality in the code. The 

subsections that follow outline our new optimised code and the performance 

improvements that were achieved. 

3.1 Original Code 

The indirect addresses used in the redistribution in GS2 are constructed using the 

following code (in the source file gs2_transforms.fpp): 

 

Indirect addresses for the _22 routines (in subroutine init_y_redist): 

 
do ixxf = xxf_lo%llim_world, xxf_lo%ulim_world 

   do it = 1, yxf_lo%nx 

      call xxfidx2yxfidx (it, ixxf, xxf_lo, yxf_lo, ik, iyxf) 

      if (idx_local(xxf_lo,ixxf)) then 

         ip = proc_id(yxf_lo,iyxf) 

         n = nn_from(ip) + 1 

         nn_from(ip) = n 

         from_list(ip)%first(n) = it 

         from_list(ip)%second(n) = ixxf 

      end if 

      if (idx_local(yxf_lo,iyxf)) then 

         ip = proc_id(xxf_lo,ixxf) 

         n = nn_to(ip) + 1 

         nn_to(ip) = n 

         to_list(ip)%first(n) = ik 

         to_list(ip)%second(n) = iyxf 

      end if 

   end do 

end do 

 

Indirect address for the _32 routines (in subroutine init_x_redist): 

  
do iglo = g_lo%llim_world, g_lo%ulim_world 

   do isign = 1, 2 

      do ig = -ntgrid, ntgrid 

         call gidx2xxfidx (ig, isign, iglo, g_lo, xxf_lo, it, ixxf) 

         if (idx_local(g_lo,iglo)) then 

            ip = proc_id(xxf_lo,ixxf) 

            n = nn_from(ip) + 1 

            nn_from(ip) = n 

            from_list(ip)%first(n) = ig 
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            from_list(ip)%second(n) = isign 

            from_list(ip)%third(n) = iglo 

         end if 

         if (idx_local(xxf_lo,ixxf)) then 

            ip = proc_id(g_lo,iglo) 

            n = nn_to(ip) + 1 

            nn_to(ip) = n 

            to_list(ip)%first(n) = it 

            to_list(ip)%second(n) = ixxf 

         end if 

      end do 

   end do 

end do 

 

The from_list and to_list data structures are created on initialisation for each 

of the xxf_lo and yxf_lo data formats (where they are called to and from rather 

than to_list and from_list), and are dynamically allocated for each process by 

iterating through the whole data space and calculating which indexes will be sent 

from and received by a given process. 

 

We can see from the above functionality that the to and from address lists are 

constructed together, but using different functionality.  In both cases there is a loop 

across the full set of points defined by the lower and upper bounds 

xxf_lo%llim_world and xxf_lo%ulim_world.  These variables store the 

lower and upper bounds of the compound index in the xxf_lo data structure, which are 

the same for all processes and defined within a function called 

init_x_transform_layouts (in the file gs2_layouts.fpp) as follows:    
 

xxf_lo%llim_world = 0 

xxf_lo%ulim_world = naky*(2*ntgrid+1)*2*nlambda*negrid*nspec - 1 

 

The parameters used in the calculation of xxf_lo%ulim_world are defined in the 

GS2 input file.  The inner loops do not change their bounds for the iterations of the 

outer loop and are also the same for all processes. 

  

Within the main loops there is a function call and then two if branches: one to set 

the indices for the to array; and the other to set the indices for the from array.  The 

indices are assigned as elements of the to_list(ip)%first and 

to_list(ip)%second  arrays, with each process in the program having these 

arrays pointing to different ranges of indices (i.e. if we look at 

to_list(ip)%first(n) the ip represents a particular process number and the 

n represents how many entries for this processor have currently been assigned).  The 

indirect addresses constructed here in the from_list and to_list variables are 

then stored as a redist_type variable r via a call to the init_redist 

subroutine (in redistribute.f90).   

 

These indirect addresses are then used in c_redist_22 routine as follows 

(contained within source file utils/redistributed.f90): 

 
do i = 1, r%from(iproc)%nn 

to_here(r%to(iproc)%k(i), & 

             r%to(iproc)%l(i)) & 

             = from_here(r%from(iproc)%k(i), & 
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                         r%from(iproc)%l(i)) 

end do 

 

c_redist_32 is similar, but with the added complication that it reduces 3 indices 

to 2 indices in the copy: 
 

do i = 1, r%from(iproc)%nn 

to_here(r%to(iproc)%k(i),& 

             r%to(iproc)%l(i)) & 

     = from_here(r%from(iproc)%k(i), & 

                 r%from(iproc)%l(i), & 

                 r%from(iproc)%m(i)) 

end do 

 

A more optimal loop for c_redist_22, with a rather more efficient structure, 

would be the following: 

 
do i = 1, upperi 

do j = 1, upperj 

to_here(i,j) = from_here(i,j) 

     end do 

end do 

 

Such a structure requires only one memory load (the from_here(i,j) part), one 

memory store (for the to_here(i,j) part), a counter increment (do j), and a 

loop counter comparison for each loop operation.  This would be much more efficient 

than the c_redist_22 loop which performs five memory loads and one memory 

store plus one loop increment and one loop counter comparison.  This, along with the 

possibility for enabling better cache re-use (based on spatial or temporal locality), 

shows the potential for optimising these loops by replacing the indirect addressing 

with direct addressing. 

 

3.2 Optimised Implementation 

In optimising the implementation for local copies, we exploited the fact that   the 

indirect addresses from_list and to_list  (constructed as described in Section 

3.1)  have their indices  set to the same value (ip=iproc).   

 in c_redist_22 this restricts the values of interest  in the ixxf and it 

loops to where iproc == iyxf/yxf_lo%blocksize == 

ixxf/xxf_lo%blocksize. 

 in c_redist_32 this constraint restricts the values of interest in the iglo, 

isgn, and ig loops to where iproc == iglo/g_lo%blocksize and 

iproc == ixxf/xxf_lo%blocksize. 

 

 With these equalities we can reduce the use of indirect addressing by using an initial 

ixxf or iglo value (provided by the existing to and from arrays already 

calculated in the code), and working through the existing loops (the it loop for 

c_redist_22 and the ik and iyxf loops for c_redist_32) using the simple 

rules that are currently used with those loops. 
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The only other functionality required is loop termination, or upper bounds, to enable 

proper termination of the loops in the situation where the theoretical data space for 

processes is larger than the actual data space assigned to each process (this is dealt 

with in the existing indirect addressing code by comparing computed indices with the 

appropriate %ulim_proc values, and this is what we do as well).   

 

Using these different functional aspects it was possible to construct the following 

replacement code for the c_redist_22 local copy functionality: 

 
i = 1 

do while (i .le. r%from(iproc)%nn) 

   itmin = r%from(iproc)%k(i) 

   ixxf = r%from(iproc)%l(i) 

   ik = r%to(iproc)%k(i) 

   iyxf = r%to(iproc)%l(i) 

   it_nlocal = (yxf_lo%ulim_proc+1) - iyxf 

   itmax = min((itmin-1)+it_nlocal,yxf_lo%nx) 

   do it = itmin,itmax 

      to_here(ik,iyxf) = from_here(it,ixxf) 

      iyxf = iyxf + 1 

      i = i + 1 

   end do 

end do 

 

And likewise for the c_redist_32 local copy functionality the following code can 

be constructed that removes most of the original indirect addressing functionality: 

 
i = 1 

nakyrecip = naky 

nakyrecip = 1/nakyrecip 

f2max = r%from_high(2) 

do while(i .le. r%from(iproc)%nn) 

   f2 = r%from(iproc)%l(i) 

   f3 = r%from(iproc)%m(i) 

   t1 = r%to(iproc)%k(i) 

   do while (f2 .le. f2max) 

      f1 = r%from(iproc)%k(i) 

      t2 = r%to(iproc)%l(i) 

      thigh = ceiling(((xxf_lo%ulim_proc+1) - t2)*nakyrecip) 

      thigh = thigh + (f1-1) 

      fhigh = min(thigh,r%from_high(1)) 

      do k = f1,fhigh 

         to_here(t1,t2) = from_here(k,f2,f3) 

         t2 = t2 + naky 

         i = i + 1 

      end do 

      if(thigh .gt. r%from_high(1)) then 

         f2 = f2 + 1 

      else 

         f2 = f2max + 1 

      end if 

   end do 

end do 
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The above code is longer and more complex than the original local copy code, but it 

avoids needing to use indirect addressing by computing the address indices 

directly. The innermost loop is compact in both subroutines, i.e. for c_redist_22: 

 
   do it = itmin,itmax 

      to_here(ik,iyxf) = from_here(it,ixxf) 

      iyxf = iyxf + 1 

      i = i + 1 

   end do 

 

and for c_redist_32: 

 
   do k = f1,fhigh 

      to_here(t1,t2) = from_here(k,f2,f3) 

      t2 = t2 + naky 

      i = i + 1 

   end do 

 

If  the it and k loops are sufficiently large, then the new routines  should outperform 

the old code,  as they  have only one memory load, one memory store and a number of 

counter increments. 

 

Benchmarking the new local copy functionality with the test case that was used for to 

gather the original performance data gave the following results: 

Number of Cores: 128 256 512 1024 
c_redist_22 Original Code 53.71 27.17 13.73 6.81 

 New Code 32.68 16.15 8.05 3.54 
c_redist_22_inv Original Code 13.73 6.90 3.46 1.76 

 New Code 8.77 4.39 2.21 1.10 
 

c_redist_32 
Original Code 49.85 25.60 12.46 3.92 

 New Code 54.33 27.93 13.68 2.84 
c_redist_32_inv Original Code 12.31 6.26 2.79 0.77 

 New Code 8.82 4.48 2.33 0.55 
Table 2: Performance results from the optimisation of the indirect addressing in the local copy 

code (using the “xyles” layout for 500 iterations) 

 

We can see that for three of the four routines (the exception being c_redist_32) 

the new local copy code is approximately 40-50% faster than the original code. 

Whilst we have replaced most of the indirect addressing in the original local copy 

code, we have not replaced it entirely.  Indirect addressing is still used to obtain the 

indices of the start and finish of our loops in the new code.  To completely remove the 

indirect addressing (and the to and from data structures) the code would have to be 

altered to calculate and store the minimal set of indices required by our optimised 

code (i.e. the from and to values at the starts of the loops we have constructed).  This 

is possible, by modifying the init_x_redist and init_y_redist 

functionality to only store the minimal set of indexes required (although we have not 

currently performed this refactoring). 
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3.3 Optimising c_redist_32 

c_redist_32 and c_redist_32_inv both use the same loop functionality, so it 

is perhaps surprising that the inverse routine sees performance benefits from the 

optimisations we have carried out whilst the forward routine does not.  The only 

differences between these two routines are the following data accesses: 

 
      c_redist_32:     to_here(t1,t2) = from_here(k,j,f3) 

      c_redist_32_inv: to_here(k,j,f3) = from_here(t1,t2) 

 

This suggested that the performance issue may be associated with how memory is 

accessed/written in the two routines.  We investigated the data access patterns of the 

c_redist_32 routine and found that in this loop to_here strides across the 

slowest index t2, for instance: 

 
t1  t2     k    j  f3 

66  40492  10   1  41108 

66  40524  11   1  41108 

66  40556  12   1  41108 

66  40588  13   1  41108 

66  40620  14   1  41108 

…      …..           ..          .      …… 

 

The difference between c_redist_32 and c_redist_32_inv is that the strided 

access in c_redist_32_inv is in the memory read (the right hand side of the 

equals sign) whereas it is a memory write for c_redist_32. 

 

Any memory access pattern where the slowest index is iterated through, rather than 

the fastest index, is going to produce non-optimal performance. Such degradation of 

performance is more severe for  memory writes than it is for memory reads, as a 

memory write miss (such as the one experienced in c_redist_32) will trigger a 

“write allocate” where data is first loaded from memory into cache, then modified, 

and then written back to memory.   A read miss is less punishing, as then the data is 

only read from memory into cache (so only requires one access to main memory 

rather than the two accesses to main memory for the write miss). 

 

Interestingly, the same functionality is used in c_redist_22 and 

c_redist_22_inv, but we do not see the large performance penalty for the 

strided write in c_redist_22 that we see in c_redist_32.  Comparing the 

_32 and _22 routines another significant difference is apparent.  In c_redist_32 

the t2 index is incremented by naky (which was 32 for the input data set we were 

using) each iteration.  In c_redist_22 the t2 index is incremented by only 1 each 

iteration.  It is therefore likely that the combination of the write allocate functionality 

and the larger stride through the slowest index of the array is more severely disrupting 

the use of the memory cache  in c_redist_32 compared to the other routines. 

 

Therefore, we optimised the local copy for c_redist_32 to improve on this 

memory access pattern, by accessing memory as follows: 

 
t1  t2     k    j  f3 

66  40492  10   1  41108 
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67  40492  10   1  41109 

68  40492  10   1  41110 

69  40492  10   1  41111 

…      …..           ..          .      …… 

 

Where the memory write is now accessing memory in the most optimal order and 

the less punishing memory read is accessing memory more inefficiently (incrementing 

through the slowest index, f3) but in a similar way to the other redistribute routines. 

 

However, the functionality we constructed depends on the “layout” chosen for the 

GS2 simulation, which makes the code appear significantly more complicated than 

the first optimised code.  The new optimised code is included in Appendix B, and the 

benchmark results from this code are shown in the following table: 

Number of Cores: 128 256 512 1024 
 

c_redist_32 
Original Code 49.85 25.60 12.46 3.92 

 1
st
 New Code 54.33 27.93 13.68 2.84 

 2
nd

 New Code 29.00 15.31 7.26 1.84 
Table 3: Performance results from the new optimisation of the c_redist_32 indirect addressing 

local copy code (using the “xyles” layout for 500 iterations) 

 

With this additional optimisation, c_redist_32 achieves the same 

performance enhancement as was obtained for the other local copy routines. 

 

As we now have different optimisation routines for the c_redist_32 and 

c_redist_32_inv functionality we have included both in GS2 and added some auto-

tuning functionality to the code to ensure the best performance is achieved.   The first 

time the optimised local copy routines are used the auto-tuning functionality runs the 

different optimised local copy routines and times how long they take.  It then selects 

the fast routine and uses that for the rest of the execution of GS2. 

  

4 Remote Data Copy 
As highlighted in the initial performance evaluation outlined in Section 2, and in the 

performance evaluation of the optimised local copy code outlined at the end of 

Section 3, whilst the local copy code dominates the performance of the 

redistribute routines for small numbers of processes (for the test case we used it 

dominates performance at 512 processes and below), the remote copy 

unsurprisingly starts to dominate at larger core counts.  

 

We examined the remote copy code and identified two potential areas for 

optimisation.   

1.  Blocking MPI communications (MPI_Send and MPI_Recv) are used to 

transfer data between processes for the redistribution between FFT and 

Real space.  To avoid deadlock in the MPI code half the processes call 

these communications in one order (send then receive) and the others call 

them in the reverse order (receive then send).  The use of blocking MPI 

communications can introduce unnecessary synchronisation overheads 

with processes waiting on messages from other processes. 

2. The second area for potential optimisation is in the code that packs and 

unpacks data to be sent and received between processes.  The remote copy 
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code uses the same indirect addressing functionality as the original local 

copy code.  Indirect addressing optimisations may therefore yield 

performance improvements, as for the local copy code. 

4.1 Non-blocking communications 

We replaced the existing blocking communications with equivalent non-blocking 

communications.  The original code took the following form (in simplified pseudo 

code): 

 
Loop through all the processes in the simulation, i 

 

 Half the processes do this 

 

  Check if I have data to send to i 

   collect data into a buffer 

   send data to i 

   

  Check if I have data to receive from i 

   receive data into a buffer 

   put received data into main data structure 

   

 

 The other half of processes do this 

 

  Check if I have data to receive from i    

receive data into a buffer 

   put received data into main data structure 

   

  Check if I have data to send to i 

   collect data into a buffer 

   send data to i 

 

End Loop 

 

We have replaced this with the following code (in pseudo code form) for both 

c_redist_22 and c_redist_32 (the same is possible for the inverse routines 

but they do not account for significant amounts of time so it was not implemented for 

this exercise): 

 
do i = 0, nproc - 1 

if(have data to receive from process i) 

  post non-blocking receive for data from i 

 end if 

end do 

 

do i = 0, nproc - 1 

 if(have data to send to process i) 

  collect data into a buffer 

  start non-blocking send of data to i 

 end if 

end do 

 

do i = 1, number of non-blocking communications 

 wait on any non-blocking communication finishing 

 if(non-blocking communication was a receive) 
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  put received data into main data structure a 

 end if 

end do 

 

The functionality does require some extra data structures to be created to enable the 

non-blocking communications to proceed (buffers for data to be stored in). 

 

Benchmarking this new functionality at 1536 and 2048 process counts gave the 

following results: 

 

Number of Cores: 1536 (yxles) 2048 (xyles) 
  Min Max Average Min Max Average 

 

c_redist_22 
Original Code 1.26 33.43 16.58 1.47 12.92 2.79 

New Code 1.24 42.34 18.76 1.36 8.06 2.29 
 

c_redist_32 
Original Code 12.56 37.67 21.98 8.28 15.26 10.96 

New Code 14.02 53.16 30.86 8.33 29.86 12.52 
Table 4: Timings for the remote copy functionality; a comparison of the original MPI 

functionality and the new non-blocking MPI functionality (using 1000 iterations) 

 

We did not expect this code to adversely impact performance, and were surprised that 

using non-blocking communications increases the runtime of these routines in some 

scenarios.  There are a number of possible explanations for this.  Firstly, whilst the 

original pattern of executing sends and receives appears straight forward, the mixing 

of different processes send and receiving is actually quite sophisticated, employing a 

“red-black” tiling type selection of processes and alternating the selection through the 

iterations of the communication loops. 

  

Secondly, a side effect of the non-blocking functionality we are using may be to force 

all the processes to communicate at the same time causing contention for the network 

resources on the nodes in the system.  The original functionality, where alternate 

processes are sending and receiving, may have resulted in less contention on the 

network.    

 

4.2 Indirect addressing 

The remote copy code uses indirect addressing to pack data into a buffer to be sent to 

another process and unpack received data into the main data structure.  Exactly the 

same indirect addressing arrays are used.  For instance, for the sending data in 

c_redist_32 the following code is used: 

 
if (r%from(ipto)%nn > 0) then 

   do i = 1, r%from(ipto)%nn 

      r%complex_buff(i) = from_here(r%from(ipto)%k(i), & 

                                    r%from(ipto)%l(i), & 

                                    r%from(ipto)%m(i)) 

   end do 

   call send (r%complex_buff(1:r%from(ipto)%nn), ipto, idp) 

end if 

 

However, it is not possible here to simply replicate the functionality from the local 

copy indirect addressing optimisation as that relied on both the ipto and ipfrom 

indexes being equal to iproc for the indirect addressing loop (i.e. the data is being 

sent and received on the same process, local copying).  With the remote copy 
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functionality this assumption does not hold so it is necessary to add extra functionality 

to calculate the range of data to be copied from the available data (either the existing 

from%k and from%l or to%k, to%l, and to%m values).   GS2 includes functions 

to enable the calculation of a from index using a to index and vice versa, and these 

can be used to calculate the data ranges.  Using such functionality the following 

routines were constructed to replicate the remote data copies in c_redist_22: 

 
iyxfmax = (ipto+1)*yxf_lo%blocksize  

do while(i .le. r%from(ipto)%nn) 

   itmin = r%from(ipto)%k(i) 

   ixxf = r%from(ipto)%l(i) 

   call xxfidx2yxfidx(itmin, ixxf, xxf_lo, yxf_lo, ik, iyxf) 

   itmax = itmin + (iyxfmax - iyxf) - 1 

   itmax = min(itmax, yxf_lo%nx) 

   do it = itmin,itmax 

      r%complex_buff(i) = from_here(it, ixxf) 

      i = i + 1 

   end do 

end do 

              

t1 = r%to(ipfrom)%k(i) 

t2 = r%to(ipfrom)%l(i) 

iyxfmax = (iproc+1)*yxf_lo%blocksize  

do while (i .le. r%to(ipfrom)%nn) 

   t2max = mod(t2,yxf_lo%nx) 

   t2max = t2 + (yxf_lo%nx - t2max) 

   t2max = min(t2max,iyxfmax) 

   do while(t2 .lt. t2max) 

      to_here(t1,t2) = r%complex_buff(i) 

      t2 = t2 + 1 

      i = i + 1 

   end do 

   t1 = r%to(ipfrom)%k(i) 

   t2 = r%to(ipfrom)%l(i) 

end do 

 

and likewise for c_redist_32: 

 
f1 = r%from(ipto)%k(i) 

f2 = r%from(ipto)%l(i) 

ixxfmax = ((ipto+1)*xxf_lo%blocksize) 

do while(i .le. r%from(ipto)%nn) 

   f3 = r%from(ipto)%m(i)                   

   call gidx2xxfidx(f1,f2,f3,g_lo,xxf_lo,it,ixxf) 

   f1limittemp = (ixxfmax-ixxf)/tempnaky 

   f1limittemp = ceiling(f1limittemp) 

   f1limit = f1limittemp - 1 

   imax = i + f1limit 

   do while(i .le. imax) 

      r%complex_buff(i) = from_here(f1,f2,f3) 

      f1 = f1 + 1 

      i = i + 1 

      if(f1 .gt. r%from_high(1) .and. f2 .lt. r%from_high(2)) then 

         f2 = f2 + 1 

         f1 = r%from(ipto)%k(i) 

      else if(f1 .gt. r%from_high(1) .and. f2 .eq. r%from_high(2)) 

then 

         exit 

      end if 

   end do 
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   f1 = r%from(ipto)%k(i) 

   f2 = r%from(ipto)%l(i) 

end do 

 
ntgridmulti = (2*ntgrid)+1 

ig_max =  naky*ntgridmulti 

t1 = r%to(ipfrom)%k(i) 

t2 = r%to(ipfrom)%l(i) 

t2ixxfmax = (iproc+1)*xxf_lo%blocksize 

do while (i .le. r%to(ipfrom)%nn) 

   remt2max = mod(t2,ig_max) 

   remt2max = ntgridmulti - ((remt2max*ntgridmulti)/ig_max) 

   t2max = t2 + (remt2max*naky) 

   t2max = min(t2max, t2ixxfmax) 

   do while(t2 .lt. t2max) 

      to_here(t1,t2) = r%complex_buff(i) 

      t2 = t2 + naky 

     i = i + 1 

   end do 

   t1 = r%to(ipfrom)%k(i) 

   t2 = r%to(ipfrom)%l(i) 

end do 

 

This functionality was benchmarked against the original code with the following 

results: 

Number of Cores: 1536 (yxles) 2048 (xyles) 
  Min Max Average Min Max Average 

c_redist_22 Original Code 1.26 33.43 16.58 1.47 12.92 2.79 

New Code 1.13 27.58 13.92 1.50 10.97 2.79 
c_redist_32 Original Code 12.56 37.67 21.98 8.28 15.26 10.96 

New Code 17.93 43.96 28.61 15.51 21.18 18.04 
Table 5: Timings for the remote copy functionality; performance comparison of the original data 

copy code in the remote data copy part of the redistribute functionality with a new optimised 

version (using 1000 iterations) 

 

It is evident from these results that the optimisation of the c_redist_22 code has 

been (relatively) successful with a reduction in the runtime.  However, the 

c_redist_32 has not been successful, with the new code increasing rather than 

reducing the runtime of these routines.  This is similar to the local copy optimisation 

attempts, where the first set of optimisations were successful for all routines except 

c_redist_32.  It is not entirely clear why the optimisation is not successful in this 

case but the c_redist_32 is more complicated than the c_redist_22 

functionality, and any performance gain from the new code is dependent on the inner 

loops being sufficiently large to mitigate these complications.  If the amount of data 

copied in these loops is not large then the functionality added to replace the indirect 

addressing functionality could adversely affect the performance.  Further investigation 

of this code and its performance would be beneficial, especially looking at the 

possible implementation of similar optimisations to those we applied on the 

c_redist_32 indirect addressing functionality of the local data copy. 

 

5 Unbalanced Decomposition 
As previously described, GS2 is generally run on a “sweet spot” number of cores for 

theg_lo decomposition. Whilst the sweet spots provided by the ingen program 
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represent optimal process counts for the g_lo data space the same is not necessarily 

true for the other layouts, xxf_lo and yxf_lo, as these split the simulation data in 

different ways to the g_lo layout.  More specifically, it can be possible to choose a 

process count for the parallel program that is good for the linear computations but 

significantly increases the amount of communication required to undertake the non-

linear calculations. 

 

The decomposition of data for each process is currently simply calculated by dividing 

the total data space by the number of processes used.  So the g_lo blocksize for each 

process is calculated using a formula like this: 

 
(naky*ntheta0*negrid*nlambda*nspec)/nprocs + 1 

 

with the yxf_lo blocksize calculated as follows: 

 
(nnx*(2*ntgrid+1)*isgn*nlambda*negrid*nspec)/nprocs + 1 

 

and the xxf_lo blocksize as follows: 

 
(naky*(2*ntgrid+1)*isgn*nlambda*negrid*nspec)/nprocs + 1 

 

The – 1 inside the bracket and the + 1 at the end of each blocksize calculation ensures 

that even when the data domain does not split exactly across the number of processes 

available, it will be totally allocated by rounding up the blocksize.   However, this 

approach can lead to the situation where the data domain does not exactly divide 

across the large number of processes and  where some processes are left empty 

having  no assigned data (at least for some of the data decompositions). 

 

Furthermore, the layout that users specify for a fully non-linear simulation can also 

affect the parallel performance of GS2.  Transforming data from xxf_lo to yxf_lo 

involves swapping data from the x and y data dimensions.  If the x and y data 

dimensions are not split across processes in the parallel program then these transforms 

simply involve moving data around in memory on each process.  However, if the x or 

y data dimensions are split across processes then these swapping of data will involve 

sending data between processes, functionality which is typically more costly than 

moving data locally.  The number of processes used for a simulation, and the layout 

chosen, can affect whether the x and y data dimensions are split across processes or 

kept local to each process. 

 

For instance, with the xyles layout the s, l, and e data dimensions (nspec, 

nlambda,negrid) will be split across processes before the y and x dimensions for 

the g_lo data space.  However, if the lexys layout is used then x and y will be split 

directly after s has been split up, meaning that data will be sent between processes at 

a much smaller number of processes than with the xyles layout imposing a 

significant performance cost on the program.    

 

The current version of ingen provides both the suggestions of optimal processor 

counts for the main data layout (g_lo), and for the xxf_lo and yxf_lo data 

layouts.  Therefore, for optimal performance for a given simulation it is always best to 

choose a process count that is good for all three data layouts wherever possible.  
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However, there are times when it is not possible to do this (for instance above 1024 

processes for the example outlined in Appendix A), and so we have created new 

functionality that provides more optimal data distributions for xxf_lo and yxf_lo 

in the scenario where the chosen process count is not currently optimal. 

 

The redistribute functionality that we have been optimising in this work undertakes 

the task of transforming the distribution of the simulation data from k-space to real 

space to enable the FFTs required for the non-linear terms to be computed.  This two 

stage process involves moving from: 

 g_lo, where ig and isgn are guaranteed to be local on each process (i.e. 

each process has the full dimensions of ig and isgn for a given combination 

of x,y,l,e,s)  to xxf_lo  where x is guaranteed local (i.e. each process 

has the full dimension of x for a given combination of y,ig,isgn,l,e,s)  

  and finally from xxf_lo to yxf_lo, where y is guaranteed local (for any 

given combination of x,ig,isgn,l,e,s).   

 

When running GS2 on large numbers of processes (above l*e*s processes) an 

unavoidable amount of data communications required to achieve this, particularly to 

move from g_lo to xxf_lo (i.e. move from ig,isgn local to x local) as xxf_lo  

at such large  process counts will have to split up isgn (and possibly ig depending) 

whereas these data dimensions are not split up in the g_lo layout. 

 

However, the amount, and complexity, of the communications required for the 

redistribution will depend on the degree of  splitting of data across processes.  If the 

data dimensions to be redistributed are only split across pairs of processes in a 

balanced fashion then the number of messages required will be lower than if the data 

is split up across three or four different processes. 

 

Furthermore, if the decomposition is undertaken optimally it should be possible to 

ensure than in the redistribution between g_lo and xxf_lo (i.e. the 

c_redist_32 functionality) keeps both x and y as local as possible therefore 

reducing or eliminating completely the communication cost of the xxf_lo to 

yxf_lo step (the c_redist_22 functionality). 

 

5.1 Poor Decomposition Performance 

If we consider layouts “xyles” or “yxles”, if a user chooses process counts 

suggested by the ingen program, the indices l,e,s will be well distributed for 

the g_lo data space.  Any recommended process counts that exceeds the product 

les, will be an integer multiple j * les, and will have l,e,s maximally 

distributed.  At such process counts, the xxf_lo layout will also have l,e,s 

maximally distributed. Therefore, the remaining elements of the xxf_lo compound 

index (naky,(2*ntgrid+1),isgn) must be distributed over j processes. While isgn 

has a range of 2, the allowed range for ig is always  an odd number which commonly 

does not factorise well (or may even be prime). We will see shortly that this can lead 

to blocksizes for xxf_lo and yxf_lo that have unfortunate consequences for 

communication. 
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Figure 1: Example of how the data will be distributed between 4 processes, when the allowed 

range for naky is divisible by two. The colour indicates the process-id to which each piece of data 

is assigned. 

Figure 1 shows the situation where the three indices (naky,(2*ntgrid+1),isgn) can 

be evenly divided across four processes, which is only possible if naky (Y) is even. 

If, on the other hand,  naky were odd, the work would not divide evenly over 4 

processes, as indicated  in Figure 2.  This results in most processes being allocated the 

same amount of data, but can very easily result in the situation, especially for large 

problems and process counts, where one or more of the last processes in the 

simulation will have little or no work assigned to them (i.e. their allocated blocksize 

will be small or zero). While for large task counts this will not result in a significant 

load imbalance in the computational work, it can dramatically increase the level of 

communication that is required in the redistribution routines between xxf_lo 

and yxf_lo. 

 

 
Figure 2: Example of a decomposition that does not evenly split. In this example process 0 gets 

more than ½ of the first box, and process 1 is then assigned some data points from the second 

box. When all the data from the first two boxes are assigned, process 3 will still require data from 

the next pair of boxes, as indicated by the small box to the right of the main picture. 

 

We now consider the amount of data that must be passed between different processes 

during the transformation between xxf_lo and yxf_lo. Figure 3 illustrates what 

happens when both indices split evenly across the processes, clarifying that only a 

small amount of the data held by a process needs to be transferred between 

neighbouring processes.  
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Figure 3: Example of the data to be transferred between cores when transposing from xxf_lo to 

yxf_lo. For xxf_lo, the lower ranking process holds the blue data and the shaded region. The 

higher ranked process holds the red data. During the transformation the shaded region needs to 

be transferred from the lower to the higher rank. There is a similar region in the bottom rear of 

the cube, not visible in the figure, which needs transferring from the higher ranking to the lower 

ranking process. 

 

 

Figure 2 showed that, if xxf_lo or yxf_lo data spaces do not divide evenly across 

all processes, the equal blocksizes allocated to each process will ensure all the data is 

allocated, but not that all processes will be allocated data.  The number of idle 

processes can be calculated in the following equation: 
 

xxfusedprocs=
xxftotalsize

xxfblocksize
xxfidleprocs= numberofprocesses− xxfusedprocs

 

 

Similarly the idle processes when using yxf_lo can be determined as follows: 

 

yxfusedprocs=
yxftotalsize

yxfblocksize
yxfidleprocs= numberofprocesses− yxfusedprocs

 

 

If the numbers yxf_idleprocs and xxf_idleprocs differ significantly, it can 

easily be shown that large MPI messages will be required in the transforms between 

xxf_lo and yxf_lo.  Figure 4 demonstrates clearly how the amount of data to be 

sent to a different process increases linearly with increasing task number. If the 

difference between yxf_idleprocs and xxf_idleprocs is larger than 1, the 

highest ranking processes (those of rank k and above in Figure 4) will have to transfer 

all of their data to different processes. Where the difference is less than one, all 

processes will keep some of their data. 
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Figure 4: Example of the data redistributions required when xxf_lo and yxf_lo have 

different numbers of idle processors. The colours label the data regions that are stored by each 

processor in xxf_lo. 

 

5.2 Optimised Decomposition 

If the decomposition used is undertaken optimally it should be possible to ensure that 

the redistribution between g_lo and xxf_lo keeps X and Y as local as possible and 

thereby reduces or eliminates completely the MPI communication in the xxf_lo to 

yxf_lo step. 

 

Therefore, we have deliberately created unbalanced decomposition functionality 

to optimise the data communications in mapping from the xxf_lo and yxf_lo 

data layouts.  The modified code replaces the current code that calculates the block 

of xxf_lo and yxf_lo owned by each process, moving from a uniform blocksize 

to two different blocksizes for process counts where the data spaces that preserve 

locality in x or y do not exactly divide by the number of processes used. 

 

The new, unbalanced, decomposition uses the process count to calculate which 

indices can be completely split across the processes. This is done by iterating through 

the indices in the order of the layout (so for the xxf_lo data distribution and the 

“xyles” layout this order would be s,e,l,isgn,ig,Y) dividing the number of 

processes by each index until a value of less than one is reached. At this point the 

remaining number of processes is used, along with the index to be divided, to 

configure an optimally unbalanced decomposition, by deciding on how to split the 

remaining indices across the cores that are available. If this index dimension is less 

than the number of cores available, then the index dimension is multiplied by the 

following index dimension until a satisfactory decomposition becomes possible. 

A worked example of the new decomposition algorithm is provided in Appendix C. 

 

This new functionality was benchmarked using two layouts (xyles at 2048 

processes and yxles at 1536 processes), with the results shown in the following 

table.  For the yxles layout the computational imbalance created by the new code 

(the difference between the small and large blocks) is approximately 5% and for 

xyles it is approximately 7%.  This means that there is a 5% or 7% difference in the 

amount of computational work that is performed in the non-linear calculations 

between processes with the small and large blocks. 

 

Number of Cores: “yxles” 

1536 

“yxles” 

1536 

unbalanced 

“xyles” 

2048 

“xyles” 

2048 

unbalanced 
c_redist_22 Local Copy 13.89 43.13 30.20 32.59 

 Remote Copy 165.61 8.82 27.70 12.53 
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c_redist_22_inv Local Copy 3.61 16.44 8.86 8.76 
 Remote Copy 48.19 2.43 4.78 2.99 

c_redist_32 Local Copy 16.82 20.86 10.65 10.64 
 Remote Copy 217.45 196.81 110.66 116.11 
c_redist_32_inv Local Copy 2.77 3.48 1.97 1.79 

 Remote Copy 46.51 33.18 25.69 25.36 

Total Calculation Time 2390.40 2074.20 1867.80 1862.40 
Table 6: Performance comparison of the code with and without the new unbalanced 

decomposition functionality (using 10000 iterations) 

 

We can see from the results that the unbalanced decomposition can significantly 

improve the performance obtained from the code.  Concentrating on the “yxles” 

1536 results it is evident that moving from the original to the unbalanced code the 

cost of the remote copy functionality for the c_redist_22 subroutines has been 

significantly reduced (in fact almost removed altogether).  This is also mirrored in the 

corresponding inverse routine, and there are also reasonable reductions in remote 

copy time for the c_redist_32 routine and its inverse.  This is balanced with an 

increase in the local copy cost when using the unbalanced optimisation, indicating 

that the unbalanced distribution has indeed ensured that the x and y data has stayed 

local to processes wherever possible.  Overall the unbalanced optimisation saves 

around 15% of the runtime of GS2 for the yxles layout on 1536 cores. 

 

However, if we look at the 2048 results (where the xyles layout is used) the 

unbalanced optimisation makes little difference to the overall runtime.  The 

optimisation still significantly reduces the runtime of the remote copy functionality in 

c_redist_22; however that functionality is much less costly for this layout and 

process count.  If we compare the “yxles” 1536 and “xyles” 2048 results the 

remote copy for c_redist_22 cost around 166 second in the 1536 case compared 

to around 28 seconds for the 2048 case.  Therefore, the unbalanced optimisation still 

does what we would expect for 2048 process using the xyles layout (i.e. 

significantly reduces the cost of the c_redist_22 communications) but this layout 

and process count has little communication in this routine in the first place so this 

optimisation does not have a significant impact on the overall runtime of the 

simulation. 

 

To understand why there is this performance difference between the xyles and 

yxles layouts on these process counts we need to examine the differences between 

the two layouts.  Both layouts have the same blocksizes for the xxf_lo and yxf_lo 

data distributions (for a given number of processes).   

 

For “yxles” 1536 processes the original code produces a xxf_lo blocksize of 

661⅓ which means that the y index is split unevenly between groups of 2 or 3 

processes (661⅓  ig = 21⅓ which means that the first process has all the y indexes 

associated with the first 21⅓ ig then the second process has the y indexes associate 

with the next 9⅔ ig and then the following 11⅔ ig, and so on, iterating through 

isgn,l,e,s).  The actual blocksize used in GS2 must be an integer (it isn’t 

possible to assign a fraction of a data entry to a process) so for the data decomposition 

to work 661⅓ is rounded up to 662 and 662 elements are assigned to each process.  

However, as this is a larger blocksize than the one actually needed in the data 

decomposition then not all processes will be allocated data.  The last process will 



26 

 

have no data in the xxf_lo data distribution, and the second to last process will only 

have a partial block of data.  These two factors together mean that for “yxles” on 

1536 processes there is a large amount of data transfer required (as illustrated in 

Figure 4). 

 

However, for 2048 processes the blocksize of 496 maps exactly to 2048 processes so 

all processes have the same amount of data, and furthermore the y index is split 

evenly across pairs of processes so the amount of data that has to be communicated is 

much smaller and only needs to be transferred between pairs of processes.  This leads 

to “xyles” 2048 processes having a much lower communication requirement for 

the redistribution functionality than “yxles” 1536 processes.  Indeed, at 2048 

processes with the xyles layout there is no need for the unbalanced optimisation as 

the decomposition is already adequate, although the unbalanced decomposition 

functionality does not damage the performance either. 

 

The unbalanced decomposition functionality also has the benefit of extending the 

range of optimal process counts for a given GS2 simulation.  As previously discussed 

users generally select process counts for GS2 from the output of the ingen program.  

This considers the factors of each of the layout variables separately, in the order 

specified by the chosen layout, and uses those to construct a list of process counts that 

match those factors.  The unbalanced decomposition means that the list of suitable 

process counts can be much wider, including the factors of a combination of the 

layout variables.  Not only does this provide users with a wider range of process 

counts to use, which can enable more efficient use of different HPC resources (there 

is more scope to matching to the available resource configuration i.e. number of cores 

per node, number of available nodes, etc…), but also can reduce the runtime of the 

simulation by enabling the selection of a more efficient layout and process count.  An 

example of this is shown in Table 7 where the performance of GS2 is shown with and 

without the unbalanced functionality for the yxles layout.  We can see good 

performance improvements from using the unbalanced decomposition, however the 

table also demonstrates that further optimisations can be achieved from using from the 

yxles layout to the xyles layout when using the unbalanced decomposition, even 

though 1536 processes was not an optimal process count for the xyles layout with the 

original GS2. 
 

Process 

Count 

yxles, original 

decomposition  

yxles, unbalanced 

decomposition  

xyles, unbalanced 

decomposition 

1536 7.07 6.12 5.94 
Table 7: Performance improvement from using the unbalanced decomposition and enabling 

different process counts for a given layout.   

6 Summary 
We have undertaken a number of different optimisations on the GS2 simulation code 

to improve the parallel performance and both allow the code to scale more efficiently 

to larger numbers of cores and to complete simulations quicker and therefore use less 

computational resources (HECToR AUs) for any given scientific simulation. 

 

Our primary focus was to improve the performance of the local data copies associated 

with the data transform between the linear and non-linear calculations in GS2.  We 

achieved this by replacing costly indirect addressing functionality by direct access 

mechanisms reducing the cost of the routines performing the local data copies by 
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around 40-50%.  This optimisation has the most significant impact on performance at 

lower process counts, as at larger core counts there is less data on each processor to be 

kept local in the transformation, and therefore the performance is more influenced by 

remote copies.  

 

Following this optimisation we focussed on the remote copy functionality associated 

with the same data transform.  However, our optimisation attempts were not 

successful for this particular functionality. 

 

Finally, we were motivated to investigate optimising the data decompositions used for 

the non-linear calculations.  We discovered that the current functionality that creates 

the data decomposition can lead to significant performance degradation through 

increasing the amount of data to be transferred between processes for the transform by 

a very large amount.  We implemented a new unbalanced decomposition that 

allocated slightly different amounts of data to each process, in order to alleviate large 

communication costs observed at large processes. 

 

Combining these optimisations (the local copy optimisation that optimises 

performance for local process counts and the unbalanced optimisation that can 

optimise performance for higher process counts) we have been able to reduce the 

overall runtime of the code by up to 17% for a representative benchmark, as shown in 

the following table (where the code was run for 10000 iterations). 

 

Number of Cores: 512  1536  

Original Code 4435.20 2385.60 

Indirect Addressing and Unbalanced 

Optimisations 

4150.40 2074.20 

Overall Percentage Optimisation 7% 17% 
Table 8: Overall performance improvement of GS2 (using the “xyles” layout for 512 and “yxles” 

for 1536) 

 

At 512 cores the data “xyles” decompositions xxf_lo and yxf_lo keep BOTH 

x and y local, so the unbalanced optimisation cannot play any useful role, but the 

optimisation of the indirect addressing is still beneficial providing a 7% performance 

improvement.  At 1536 cores for “yxles” both the unbalanced optimisation and the 

indirect addressing optimisation are beneficial, giving a total improvement of 17% in 

the overall runtime of the simulation, despite the fact that the unbalanced 

decomposition has introduced around 5% load imbalance into the simulation.  In 

addition to this, using the “xyles” layout at 2048 with all the new functionality we 

have created reduces the runtime by just under 20%, a significant saving of 

computational resources when considering the 75 Million AUs that have been or will 

be used by GS2 users on HECToR. 

 

Furthermore, it is likely that the unbalanced decomposition approach will be 

applicable to other scientific simulation codes where both real space and k-space data 

domains are used. 

 

The redistribution functionality that we have optimised is also used in other parts of 

GS2, particularly in the collision functionality within the code.  Whilst we have not 

studied that during this project it is likely that the local copy optimisation we 

undertook during this work will be applicable to the part of GS2 that deals with the 
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collision operator and therefore that further performance optimisation could be 

achieved by removing indirect addressing from this part of GS2 as well. 

 

Furthermore, removing indirect addressing from the model collision operator 

functionality should also enable the code to be refactored to remove the majority of 

the data structures required for the indirect addressing functionality, hence saving 

valuable memory.  

 

The new functionality developed in this dCSE project has been undertaken using a 

branch in the main GS2 SVN repository.  All the new code is available to the GS2 

developers and they are currently working to integrate this branch with the main GS2 

trunk to ensure these developments can be exploited by all GS2 users, including 

sister-codes AstroGK and Trinity (which runs GS2 in parallel in multi-scale plasma 

simulations).  We have also produced some separate documentation on the GS2 

layouts and how to use the new GS2 functionality; including extending the ingen 

tool that is used in conjunction with GS2 to ensure that GS2 is used in an optimal 

manner. 
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Appendix A – Input datafile 
&theta_grid_knobs 

 equilibrium_option='eik' 

/ 

 

&theta_grid_parameters 

 rhoc = 0.4 

 ntheta = 30 

 nperiod= 1 

/ 

 

&parameters 

 beta = 0.04948 

 zeff =   1.0 

 TiTe = 1.0 

/ 

 

&collisions_knobs 

 collision_model = 'none' 

 !collision_model='lorentz' 

/ 

 

&theta_grid_eik_knobs 

 itor = 1 

 iflux = 1 

 irho = 3 

 ppl_eq = .false. 

 gen_eq =  .false. 

 vmom_eq = .false. 

 efit_eq = .true. 

 gs2d_eq = .true. 

 local_eq = .false. 

 eqfile = 'equilibrium.dat' 

 equal_arc = .false. 

 bishop = 1 

 s_hat_input = 0.29 

  beta_prime_input = -0.5 

 delrho = 1.e-3 

 isym = 0 

 writelots = .false. 

/ 

 

&fields_knobs 

 field_option='implicit' 

/ 

 

&gs2_diagnostics_knobs 

 write_ascii = .false. 

 print_flux_line = .true. 

 write_flux_line = .true. 

 write_nl_flux = .true. 
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 write_omega = .false. 

 write_omavg = .false. 

 write_phi =.true. 

 write_final_moments = .false. 

 write_final_fields=.false. 

 print_line=.false. 

 write_line=.false. 

 write_qheat=.true. 

 write_pflux=.false. 

 write_vflux=.false. 

 write_qmheat=.false. 

 write_pmflux=.false. 

 write_vmflux=.false. 

 print_old_units=.false. 

 

 save_for_restart=.false. 

 nsave=         500 

 

 nwrite=        100 

 navg=          200 

 

 omegatol=  1.0e-5 

 omegatinst = 500.0 

/ 

 

&le_grids_knobs 

 ngauss = 8 

 negrid = 8 

 Ecut   = 6.0 

 advanced_egrid = .true. 

/ 

 

&dist_fn_knobs 

 boundary_option= "linked" 

 gridfac=   1.0 

/ 

 

&init_g_knobs 

 !restart_file= "nc/input.nc" 

 ginit_option= "noise" 

 phiinit=   1.e-6 

 chop_side = .false. 

/ 

 

&kt_grids_knobs 

 grid_option='box' 

 norm_option='t_over_m' 

/ 

 

&kt_grids_box_parameters 

 y0 = 10 

 ny = 96     
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 nx = 96     

 jtwist = 2   

/ 

 

&knobs 

 fphi= 1.0 

 fapar= 0.0 

 faperp= 0.0 

 delt= 1.0e-4 

 nstep= 500 

 wstar_units = .false. 

/ 

 

&species_knobs 

 nspec=  2 

/ 

 

&species_parameters_1 

 type  = 'ion' 

 z     = 1.0 

 mass  = 1.0 

 dens  = 1.0 

 temp  = 1.0 

 tprim = 2.04 

 fprim = 0.0 

 vnewk = 0.0 

 uprim = 0.0 

/ 

 

&dist_fn_species_knobs_1 

 fexpr  = 0.45 

 bakdif = 0.05 

/ 

 

&species_parameters_2 

 type  = 'electron' 

 z     = -1.0 

 mass  = 0.01 

 dens  = 1.0 

 temp  = 1.0 

 tprim = 2.04 

 fprim = 0.0 

 vnewk = 0.0 

 uprim = 0.0 

/ 

 

&dist_fn_species_knobs_2 

 fexpr= 0.45 

 bakdif=  0.05 

/ 

 

&theta_grid_file_knobs 
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 gridout_file='grid.out' 

/ 

 

&theta_grid_gridgen_knobs 

 npadd = 0 

 alknob = 0.0 

 epsknob = 1.e-5 

 extrknob = 0.0 

 tension = 1.0 

 thetamax = 0.0 

 deltaw = 0.0 

 widthw = 1.0 

/ 

 

&source_knobs 

/ 

 

&nonlinear_terms_knobs 

nonlinear_mode='on' 

cfl = 0.5 

/ 

 

&additional_linear_terms_knobs 

/ 

 

&reinit_knobs 

 delt_adj = 2.0 

 delt_minimum = 1.e-8 

/ 

 

&theta_grid_salpha_knobs 

/ 

&hyper_knobs 

/ 

 

&layouts_knobs 

 layout = 'xyles' 

 local_field_solve = .false. 

/ 
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Appendix B – Further optimised c_redist_32 code 
 
    t1upper = ubound(to_here,1) 

    f3upper = ubound(from_here,3) 

 

    tempnaky = naky 

    innermaxmultiplier = xxf_lo%ulim_proc+1 

 

    select case (layout) 

    case ('yxels') 

       f3maxmultiple = xxf_lo%naky*xxf_lo%ntheta0 

       f3incr = xxf_lo%naky 

    case ('yxles') 

       f3maxmultiple = xxf_lo%naky*xxf_lo%ntheta0 

       f3incr = xxf_lo%naky 

    case ('lexys') 

       f3maxmultiple = 

xxf_lo%nlambda*xxf_lo%negrid*xxf_lo%ntheta0 

       f3incr = xxf_lo%nlambda*xxf_lo%negrid 

    case ('lxyes') 

       f3maxmultiple = xxf_lo%nlambda*xxf_lo%ntheta0 

       f3incr = xxf_lo%nlambda 

    case ('lyxes') 

       f3maxmultiple = 

xxf_lo%nlambda*xxf_lo%naky*xxf_lo%ntheta0 

       f3incr = xxf_lo%nlambda*xxf_lo%naky 

    case('xyles') 

       f3maxmultiple = xxf_lo%ntheta0 

       f3incr = 1 

    end select 

           

    i = 1 

    iglomax = ((iproc+1)*g_lo%blocksize) 

    t1test  = ((xxf_lo%ntheta0+1)/2)+1 

    do while(i .le. r%from(iproc)%nn) 

 

       f1 = r%from(iproc)%k(i) 

       f2 = r%from(iproc)%l(i) 

       f3 = r%from(iproc)%m(i) 

       t1 = r%to(iproc)%k(i) 

       t2 = r%to(iproc)%l(i) 

 

       outerf3limit = f3 + f3incr 

       do while(f3 .lt. outerf3limit) 

           

          iincrem = i 

           

          innermaxrealvalue = (innermaxmultiplier-t2)/tempnaky 

          innermax = ceiling(innermaxrealvalue)-1 

          if(f2 .eq. 2 .and. (f1+innermax) .gt. ntgrid) then 

             innermax = i + (ntgrid - f1) 

          else if((f2 .eq. 1 .and. innermax .gt. 

(((2*ntgrid)+1)+(ntgrid-f1)))) then 

             innermax = i + ((2*ntgrid)+1) + (ntgrid - f1) 

          else 
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             innermax = i + innermax 

          end if 

           

          do while(i .le. innermax)  

              

             f1 = r%from(iproc)%k(i) 

             f2 = r%from(iproc)%l(i) 

             f3 = r%from(iproc)%m(i) 

             t1 = r%to(iproc)%k(i) 

             t2 = r%to(iproc)%l(i) 

              

             startf3 = f3 

             f3max = ((f3/f3maxmultiple)+1)*f3maxmultiple 

             f3max = min(f3max,iglomax) 

             do while (f3 .lt. f3max) 

                to_here(t1,t2) = from_here(f1,f2,f3)                    

                f3 = f3 + f3incr 

                t1 = t1 + 1 

                if(t1 .eq. t1test) then 

                   t1 = t1 - xxf_lo%ntheta0 + xxf_lo%nx 

                end if 

                iincrem = iincrem + 1 

             end do 

              

             i = i + 1 

                           

          end do 

 

          if(i .lt. r%from(iproc)%nn .and. iincrem .lt. 

r%from(iproc)%nn) then 

             f1 = r%from(iproc)%k(i) 

             f2 = r%from(iproc)%l(i) 

             t2 = r%to(iproc)%l(i)           

             f3 =  startf3 + 1 

          else 

             f3 = outerf3limit 

          end if 

 

       end do 

        

       i = iincrem 

        

    end do 
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Appendix C – Worked example of the unbalanced 
decomposition algorithm 
 

To illustrate the unbalanced decomposition algorithm with an example, for the 

benchmarking in this document we have generally been using the following 

parameters: 

 y = 32 

 ig = 31 

 isgn = 2 

 l = 32 

 e = 8 

 s = 2 

 

For the xxf_lo data distribution, using 1536 processes, the unbalanced code does 

the following: 

 1536  s = 768 

 768  e = 96 

 96  l = 3 

 3  isgn  = 1.5, this is not whole so carry isgn forward 

 3  isgn  * ig  < 1, this is the point to create the unbalanced blocks 

 

The unbalanced block sizes are then created using the remaining number of processes 

(3) and the index(s) to be split (isgn  * ig  =  62), as follows: 

 62  3 = 20⅔ 

 This gives two sizes, 20 and 21.  We have 3 blocks required, one of 20 and 

two of 21 provide the 62 required 

 20 and 21 are then used to calculate the xxf_lo blocksize by multiplying the 

remaining indexes (those not split) by the two blocks calculates 

 Blocksize 1 = 20 * y = 640 

 Blocksize 2 = 21 * y = 672 

 The original blocksize for this example is 662 

 The new blocksize is 640 for ⅓ of the processes and 672 for ⅔ of the 

processes 

 Original data domain was y * ig * isgn * l * e * s = 1015808 

 1015808 / 1536 = 661⅓ = original blocksize = 662 

 640 * (⅓ * 1536) + 672 * (⅔ * 1536) =  1015808  

 The new blocksizes exactly decompose the data domain over the number of 

processes used. 
 

 

Appendix D – Optimised Local Copies, Optimal Core 
Counts and Domain Decompositions in Nonlinear GS2 
Simulations 
The updated GS2 code has been altered to allow users to select whether to use 

unbalanced decompositions or not.  With this new functionality the user should select 
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a processor count that is optimal for the linear calculations and utilise the unbalanced 

optimisation code within GS2 by setting the following variables in the parameters 

input file (in the section &layouts_knobs): 

 
unbalanced_yxf = .true. 

max_unbalanced_yxf = 0.15 

unbalanced_xxf = .true. 

max_unbalanced_xxf = 0.15 

 

The value 0.15 using for the two max_unbalanced_* parameters sets the 

maximum amount of unbalance allowed in the decompositions; 0.15 sets this as a 

maximum of 15% but this can be chosen by the user (a default of zero is set if nothing 

is chosen by the user which forces the unbalanced code not to be used, and the 

maximum is 1.0).  This enables users to cap the amount of computational imbalance 

that is introduced into the code to address these performance issues to ensure that the 

performance improvements achieved through the unbalanced functionality and not 

negated by the added computational imbalance. 

 

The ingen utility that accompanies GS2 has also been updated to ensure that those 

core counts that it suggests (those optimal for the linear calculations) that are not 

optimal for the nonlinear calculations are annotated with suggestions for the flags to 

set in the input file to activate the required unbalanced functionality.  

 

The new optimised local copy functionality can be enabled or disabled using the 

following variable in the parameters input file (in the section &layouts_knobs): 
opt_local_copy = .true. 

 

If this parameter is set to .false. or omitted from the parameter input file then the 

optimised local copy functionality is not used.  If it is set to .true. then the 

optimised local copy will be used.   


