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Abstract 

GS2 uses a gyrokinetic approach to simulate micro-turbulence within magnetised fusion 

plasmas.  The application code spends significant amounts of time performing fast Fourier 

transformations.  The project succeeds in upgrading GS2 from the legacy library FFTW2 to 

the contemporary library FFTW3.  For this work an in-depth analysis of how GS2 uses FFTW 

was required.  The benchmarking involved in this project revealed that the anticipated 

performance gain from exploiting SSE instructions could not be realised for the FFTs 

performed in GS2 on HECToR.  The project further demonstrated that indirect addressing, 

which is widely used in GS2, presents a significant resource overhead when using larger 

numbers of processors.  This overhead can probably be reduced. 
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1. Introduction 
For over half a century it has been a goal to produce energy inexpensively from nuclear 

fusion.  Confining the fusion plasma inside magnetic fields is presently the most promising 

approach to achieve this goal.   To achieve this, further advances in both experiment and 

theory are required.   Modelling fusion plasmas using high performance computing is a key 

tool to further our theoretical understanding of the problem.  Due to the large range of spatial 

and temporal scales involved, applications typically model only specific aspects of the fusion 

plasma.  This project worked on the application GS2, which uses the gyrokinetic approach to 

investigate micro turbulence within the fusion plasma. 

 

The flux-tube gyrokinetic code GS2 is an initial value code that solves the gyrokinetic 

equations for the perturbed distribution functions together with Maxwell’s equations for the 

turbulent electric and magnetic fields. GS2 is a mature open source code written in Fortran90.  

It was originally developed in the US by Dorland, Kotschenreuther and Liu.  It is parallelised 

using MPI and offers a number of different parallelisation schemes, which can be switched at 

runtime.  The source files contain over 65000 lines in 60 files. 

 

By integrating over the Larmor motion, the six dimensional phase space is reduced to 5 

dimensions.  As a consequence the data structures in GS2 are five dimensional. The advance 

in time is calculated, with the two perpendiculars to the field position space coordinates in 

Fourier space (aka. k-space). The non-linear terms are, however, best calculated in position 

space.  For the required fast Fourier transformations (FFT) GS2 deploys version 2 of FFTW 

library.  In 2003 version 2 of FFTW got replaced by version 3.  In contrast to version 2, 

FFTW version 3 is capable of utilising the SSE instructions offered by modern processors, 

promising to be a better performing FFT library.  When releasing FFTW version 3, FFTW 

version 2 became legacy code, which is no longer actively supported by its developers.   

Upgrading GS2 from FFTW2 to FFTW3 is the key aim of this HECToR dCSE project.  Since 

the interfaces to FFTW2 and FFTW3 are incompatible, upgrading GS2 to FFTW3 involves 

significant re-engineering.   

 

This document reports the work done to upgrade the FFTs in GS2. Section 2 gives a brief 

comparison between the FFTW2 and the FFTW3. An analysis of the existing GS2 code is 

described in the Section 3. Section 4 shows the performance study of the GS2 accelerated 

transform implementation and the details of its re-engineering work are explained in the 

Section 5. Section 6 describes the investigation on the non-accelerated transform 

implementation and the related Totalview results are listed in the appendix for details, after 

the report conclusions in Section 7. 

 

2. FFTW version 2 and FFTW version 3 
The FFTW library is a widely deployed library to calculate fast Fourier transformations in 

scientific codes.  The source is available for download from the FFTW website 

(www.fftw.org).  On the HECToR system FFTW version 2 and version 3 are provided by 

Cray as part of the system software.  As noted before the interfaces of these versions are 

incompatible.  In the next sub-section we will outline the key issue. 
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2.1 FFTW2 and FFTW3 interface 

In this subsection we will shortly outline the key differences between the user interfaces of 

FFTW2 and FFTW3.  For a more in-depth discussion we refer to the documentation available 

from the FFTW website. 

 

The key difference between the two libraries is that in FFTW3, the input and output arrays 

need to be known at the time of plan creation, while for FFTW2 they are not required at this 

stage.  Knowing the input and output arrays, FFTW3 can examine the alignment properties of 

these arrays to deploy the SSE instructions and hopefully deliver better performance over its 

predecessor.  In the latest releases of FFTW3, plans can be reused for other arrays than the 

ones used at plan creation, provided that these arrays have the same alignment properties as 

the original ones.  However this is hard to control in a portable way in Fortran. 

 

GS2 utilises the advanced interface of FFTW which allows for several FFTs to be calculated 

in a single call.  In FFTW3 this requires a proper description of the data layout, such as the 

stride between individual elements and the distance between transformations, at the time of 

plan creation.  Also the number of FFTs that requires calculating needs to be known at plan 

creation.   GS2 has a separate module to create the plans for the FFT.  Since FFTW2 does not 

require this information for the plan creation, in the original GS2 code the additional 

information required for FFTW3 is not available to the module creating the plans. Re-

engineering of the application is required to make the information available. 

 

A further complication is, if there are arrays that need transforming, which have the same size 

for the FFT, but differ with respect to their data layout or the number of FFTs that need 

calculating, they can in FFTW2 use the same plan.  In FFTW3, different plans are needed, 

since the data layout and the number of FFTs needs to be specified at the plan creation stage. 

 

2.2 FFTW3 performance on HECToR 

At the application stage of the proposal, we performed a simple benchmark comparing the 

performance of FFTW2 and FFTW3 for a simple FFT using one dimensional input and output 

arrays of complex numbers.  The benchmark repeatedly calculates the same FFT to obtain 

stable timings.  The results are shown in Figure 1.   

 

 
Figure 1 Performance comparison for a simple benchmark 
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The results suggest a performance improvement of about a factor of 2, even for input data 

exceeding the size of the L3 cache of 2 MB shared between the four cores.  Since GS2 can 

spend substantial amounts of time in the FFT library, it was hoped at the proposal stage, that 

an upgrade from FFTW2 to FFTW3 would give similar performance improvements for GS2. 

 

FFTW2 is now a legacy library, which is not developed an updated any more.  Upgrading 

GS2 to use FFTW3 will move the code to a contemporary library which is still supported by 

its authors.  

 

3. Analysis of the existing code 
As described, in the case of GS2 the upgrade requires re-engineering of the code.  To 

facilitate changes to the code, a deep understanding of the existing code is required.  This 

section gives an overview of the code analysis carried out during this project.  

 

3.1 Routines which access the fft type variables 

Most FFT libraries (including FFTW) require a two stage process to calculate an FFT.  This 

way, many expensive calculations, such as the evaluation of trigonometric functions, are 

called once and the result is then stored for future use.  This first step is typically called “plan 

creation”. Assuming the same FFT is executed many times this is typically more efficient.  To 

pass information between the plan creation step and to the actual calculation of the FFT, 

FFTW uses a handle, which in Fortran gets declared as an 8-byte integer. 

 

One can learn a lot about the existing code, by investigating which parts access these integer 

variables commonly called “plan”.  In GS2 these variables are stored in a type-definition 

called fft_type.  These are defined as: 
 

  type :: fft_type 

     integer :: n, is, type 

     integer (kind_id) :: plan 

     real :: scale 

  end type fft_type 

 

and contain a member “plan”.  The file gs2_transforms.fpp has seven variables of the above 

described derived type type :: fft_type. Their names are: 

 
    xf_fft, xb_fft, yf_fft, yb_fft, zf_fft, xf3d_cr, xf3d_rc 

 

The plans associated with xf_fft, xb_fft, yf_fft, yb_fft, zf_fft are not 

destroyed during execution of the program.  The plans associated with xf3d_cr, xf3d_r 

will be deleted by init_3d, if they are associated with different sized transformations than 

required. 

 

Figures 2 – 5 detail the usage of xf_fft, yf_fft, zf_fft, xf3d_cr, xf3d_rc.  

The variables xb_fft and yb_fft are associated with the backward transformations 

matching onto xf_fft and yf_fft and are used in a similar fashion.  For the 

understanding of Figures 2 and 3 it is helpful to know how the parallelisation effects the 

transformations.   
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For smaller numbers of processors, both the x and y direction are local to the processor.  In 

this case GS2 performs what it calls an “accelerated” transformation.  A single plan is created 

to perform a set of 2D FFTs in a single call and xf_fft and xb_fft are never accessed 

throughout the entire program execution.  In this case the actual FFTs are calculated by 

calling transform_5d_accel (via the interface transform2). 

 

For large number of processors, the x and y directions get distributed.  In this case two plans 

for the forward transformation (associated with xf_fft and yf_fft) and two plans for the 

backward transformation (associated with xb_fft and yb_fft) get created.  The actual 

transformations are calculated by doing each direction x and y separately by first calling 

transform_x5d and then transform_y5d.  In this case, transform2_5d_accel is not  accessed 

during program execution. 

 

 
Figure 2  Access to yf_fft 
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Figure 3  Access to xf_fft 

 

 

 
Figure 4  Access to zf_fft 
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Figure 5 Access to xf3d_rc and xf3d_cr 
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3.2 Call structure of fft interfaces 

GS2 uses Fortran interfaces to make the code for initialising and accessing the 

transformations more legible.  To better understand how these interfaces work, the project 

documents which routines are called when the interface gets accessed.  A graphical 

representation of this analysis is given in Figures 6 and 7. 

 

Figure 6 shows the call tree for the interfaces transform2, transform_x and 

transform_y.  The code contains similar interfaces inverse2, inverse_x and 

inverse_y, which are not documented here, since they are the inverse of the above.  They 

are easy to understand once the transform interfaces are understood. 

 

The interface transform2 matches onto five different routines.  The chosen routine 

depends on the number and dimensionality of the arguments: 

 

transform2_5d: this is chosen if transform2 is called with 2 arguments 

transform2_5d_accel: this is chosen if transform2 is called with 3 arguments 

transform2_4d: this is chosen if transform2 is called with 4 arguments and the first 

argument is a 4 dimensional array 

transform2_3d:  this is chosen if transform2 is called with 4 arguments and the first 

argument is a 3 dimensional array 

transform2_2d: this is chosen if transform2 is called with 4 arguments and the first 

argument is a 2 dimensional array 

 

We like to note that there is no inverse to transform2_4d. The call structure in Figure 6 

also shows that the routines transform2_4d, transform2_3d and transform2_2d 

call their respective initialisation routines.  These routines, not shown in the figure, create the 

required plans and there is no public interface to allow plan creation in any other way.  This 

shows that the present routines are not set up to achieve the highest performance, but for 

functionality.  Since these are not called during critical parts of the benchmarks used so far in 

the project, at present we do not believe this presents a performance issue. 

 

Figure 7 shows the call structure for the public subroutines used to initialise the 

transformations.   Of particular interest is the public subroutine init_x_transform.  In 

the present version of the code this does not get called at all.  As visible in the graph, if plans 

for the x transforms are required, these get created by init_transforms.  This is for large 

processor counts, if the variable accel is set to false, marked as “non-accel” in the figure.  
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Figure 6  Call structure of the interfaces associated with the exectution of the FFT transformation 
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Figure 7  Call structure of the public subroutines required for the initialisation and plan creation for the 

FFTs 
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3.3 Callers of the transformations 

Figures 8 and 9 show the routines in GS2 that access the interfaces transform2 and 

kz_spectrum.   For the interface transform2, we show the name of the actual routine 

called instead of just the interface name.  The figure shows that the routines 

transform2_3d, transform2_4d, inverse2_2d and inverse2_3d are only used 

in either the initialisation or the diagnostic part, which are not critical to performance. 

 

 
Figure 8  Routines accessing the interface transform2 (part 1) 

 

 



 13 

 
Figure 9  Routines accessing the interface transform2 (part 2) 
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Figure 10 shows routines that access transform_x and transform_y. The interfaces 

transform_x and transform_y are presently only accessed from transform2_5d. 

 
Figure 10  Routines accessing the interface transform_x and transform_y 

 

The last Figure of this section, Figure 11 shows access to the initialisation routines. 

 
Figure 11 Routines calling the initialisation routines 

 

3.4 Input data of Complex-to-Real transformations 

When using the advanced interface of FFTW, complex-to-real transformations will destroy 

their input data: see the FFTW user guide for details.  We confirmed that the routines 

transform_y5d, transform2_5d_accel, transform2_4d, transform2_3d and transform2_2d, 

which perform complex-to-real transformations, copy the data into a work buffer, which in 

turn is passed as an input array to FFTW.  While this has disadvantages from a performance 

point of view, it prevents the destruction of data that is still needed. 

 

4. Benchmark Studies 
The project performed two benchmark style studies to guide the coding, and these studies 

were performed outside GS2 using a test-harness suite.  The first checked on the importance 

of controlling the alignment of input and output data.  The other study was to investigate the 

best strategy for deploying FFTW3 within transform2_5d_accel. 

 

4.1 Importance of 16-byte alignment 

A question that arose during the dCSE meeting in September 2009 in Oxford was, whether 

the alignment was still an issue or whether modern compilers and processors could deal with 

any alignment, when using SSE.  GS2’s data structures use 8-byte real (aka. double precision) 

variables.  For complex variables this translates into 16-byte numbers.  For a double precision 

code, the processor can access two words from the cache line simultaneously, but needs 
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different instructions depending on the location of the words on the cache line with respect to 

the 16-byte boundary. 

 

We conducted a simple test, which sets up a complex-to-complex transformation using 

dfftw_plan_dft_1d and a real-to-complex transformation using 

dfftw_plan_dft_r2c_1d.  The FFTW3 commands dfftw_execute_dft and 

dfftw_execute_dft_r2c then allow deploying these plans to transform arrays different 

from the ones used at for the plan creation. By handing e.g. a(0) of an array a declared as 8-

byte real numbers to FFTW3 for the plan creation and then handing e.g. a(1) as input data to 

dfftw_execute_dft_r2c for the execution, one can test how the code reacts when 

differently aligned data are used for plan creation and execution. 

 

We noticed that this code crashes in a non-deterministic way.  On repeated runs this code core 

dumps in different places.  The reason for this non-deterministic behaviour might be 

operational noise during plan creation.  In FFTW it is not guaranteed that repeated runs use 

the same plan. 

 

We did not notice any problems, for the complex-to-complex transformation when using 

shifted indices.  This is expected since these variables occupy 16-byte each and are naturally 

aligned by most compilers. 

 

The conclusion of this test is, that when modifying GS2, we have to control the alignment of 

real input or output data, when plans are used for arrays different from the ones used at plan 

creation. 

 

4.2 Performance study of 2D FFT for transform2_5d_accel 

When having the x and y (or their respective Fourier space coordinates) processor local, the 

initial version of GS2 issues calls to rfftwnd_f77_complex_to_real and 

rfftwnd_f77_real_to_complex to calculate a number of 2D FFTs within a single call.   

We assumed fairly typical array dimensions from GS2 simulations, and set up the code so that 

each call calculates 62 FFTs of dimension 96 × 96.  The input data are laid out in the program 

such that the data points belonging to the same FFT, are separated by 61 data point belonging 

to other FFTs.   

 

The obvious question is, whether it is more advantageous to rearrange (transpose) the data, 

such that data points belonging to the same FFT are subsequent, followed by the data required 

for the next FFT and so on.  Obviously, the strided copy required for the transposition of the 

data will also be expensive.  We conducted a small simple test to determine what is effective 

on the present HECToR. 

 

To avoid alignment issues when using SSE instructions, one can declare input and output 

work arrays for all FFTs.  These work arrays are supplied to the planning routines. When 

conducting the actual FFTs, the input data, as supplied by the code, need to be copied into the 

input work array that was used for plan creation.  Once the FFT has been completed, results 

must be  copied from the output work array into the place where the code requires this data.  

The aim of this study is to examine whether the additional cost of a strided copy over a 

straight copy can be recouped by the actual FFT becoming faster with the improved  data 

layout. 
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An alternative is to use FFTW3 without any SSE, which can be accomplished by adding 

FFTW_UNALIGNED to the flags at the planning stage.  This way, the plan is safe to be 

reused on any array, irrespective of its alignment, and if one keeps the original strided data 

layout no additional copy is required. 

The Benchmark 

For the benchmark, we compared 6 strategies in the code.  In 1-5 we copied data into the FFT 

input array, performed the FFT, and copied the output into a result array.   

 

1. Simple copy that preserves the original data layout.  Using the PGI 10 compiler, explicit 

loops tended to give better performance than using Fortran array syntax. 

 

2. Transpose the data and copy into a single array with more efficient “normal” order: ie first 

all the data of the first FFT followed by the data for the second FFT and so on. The 62 

FFTs are performed in a single call. 

 

3. Copy into a smaller input array, which holds the data for a single FFT.  This also involves 

a strided copy of the data.  This technique might be more cache friendly. 

 

4. Copy into a small input array, which can hold the data for two FFTs.  The hope was, that 

this would benefit from better cache reuse, being more cache efficient with respect to the 

copy. 

 

5. Abandon SSE instructions by using the FFTW3 planning flag FFTW_UNALIGNED, which 

should lead to a performance penalty, at least when using data which can be cached on the 

highest cache levels.  The advantage of using this flag is that it resolves alignment issues, 

and the plans can be used in a similar fashion to FFTW2: i.e. any array with the right size 

and data layout can be transformed using fftw_executed_dft_r2c.  It is interesting 

to assess how much of a penalty this involves for the GS2 data structures.  Copies 

preserved the original data layout. 

 

6. No copies.  Having tested the FFTW_UNALIGNED, it is also interesting to test, how the 

performance changes if FFTW works directly on the data without copies into input and 

output buffers.  For GS2 this is not fully applicable due to the anti-aliasing.  There has to 

be an output buffer in case of a real-to-complex transformation.  Without a copy,  the 

inverse 2D complex-to-real FFT cannot preserve the input data (as is required in GS2).  

Hence at least one data copy is needed in GS2. 

 

This code was compiled using version 10.0 of the PGI compiler and executed on the HECToR 

backend quad-core nodes.  Each node got four MPI tasks, using all its cores.  The code has 

Barriers to synchronise the tasks.  To get meaningful results, the code is run once without 

measurement to heat up the caches.  This is followed by 500 repeated executions of the 

measurement subroutine.  For each task, these 500 results are averaged. 

 

We also studied the effect of the following planner flags: FFT_ESTIMATE, 

FFT_MEASURE, FFTW_PATIENT and FFTW_EXHAUSTIVE. 

 

Results 

Table 1 give results using FFTW_PATIENT for the plan: “strided” uses the original data 

layout;  “transpose” transposes the data to have all data belonging to a single FFT 
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consecutive; “single” performs a single FFT each FFTW call; and “double” performs blocks 

of two FFTs.  The column “sum” contains the sum of the copy times and the fft time.  The 

key differences in results using the other planner flags are, that when using FFT_ESTIMATE 

the FFT times are for No 1 and 2 are slightly longer and when using FFT_EXHAUSTIVE the 

time in the FFT for No 2 reduces to 0.009s.   

 

No Test Copy in FFT Copy out Sum 

1 Strided 0.0070s 0.016s 0.0071s 0.030s 

2 Normal 0.010s 0.014s 0.0084s 0.032s 

3 Single 0.016s 0.0074s 0.0076s 0.031s 

4 Double 0.020s 0.008s 0.008s 0.036s 

5 Nosimd 0.0071s 0.015s 0.0072s 0.029s 

6 Nocopy N/A 0.014s N/A 0.014s 
Table 1 Benchmark results using FFTW_PATIENT plans 

 

The results are slightly surprising.  For this problem there is no significant benefit from the 

SSE instructions here: this can be seen by comparing the FFT time for No 5 with No 1.  For 

the problem size used in this benchmark, the input and output data for the FFT are 4.5MB 

each.  No 3 and 4 which have smaller input and output data fields (by a factor1/62 and 1/31) 

spend much less time in the FFT.  

 

In an attempt to understand the reasons, we repeated the experiments with different problem 

sizes and also studied using one and four tasks per XT4 node.  The rational behind these tests 

is to check whether SSE instructions can improve performance if the data is cached or if the 

task has more memory bandwidth available.  We tried the following problem sizes: 

 

Number of FFTs Size of FFT Size of FFT in kB Array size in kB 

20 48×48 18 360 

20 96×96 72 1440 

62 48×48 18 1116 

62 96×96 72 4464 

Table 2 Overview on sizes used for SSE study 

 

We used FFTW_PATIENT for the plan and for the largest problem size we also checked 

whether using FFTW_UNALIGNED, that is disabling SSE instructions in the FFT, makes a 

difference for the “single” test.  The results are shown in the following figure: 
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Figure 12 Time spend in FFT for different problem sizes for the strided and the single test. The figure 

shows results when using one or four tasks per node as well as the effect of FFTW abandoning SSE 

instructions. 

 

The figure shows that giving the task more resources by running only a single task per node, 

improves performance for the medium and larger problem sizes of the strided test.  For the 

single test and the smallest problem size the effect of placing a single task on a quadcore node 

is small.  Allowing SSE instructions modestly speeds up the single test, and for the strided 

tests the impact of SSE instructions is even smaller. 

   

We have not seen any significant FFT performance difference between the “strided” and the 

“normal” test, which doesn’t have a strided data layout, when using FFTW_PATIENT.  

However with exhaustive plans (using FFTW_EXHAUSTIVE), the “normal” test spends 

similar time to “single” and “double” in FFT.  The insensitivity of the “single” test to 

planning with or without SSE instructions, suggests that this performance enhancement has 

nothing to do with SSE. 

 

From this investigation we concluded that FFTW3 on the HECToR service is not capable of 

taking advantage of the SSE instructions for the transformations required in the GS2 routines 

transform2_5d_accel and its inverse.   

 

Based on this result we implemented a strategy based on option “single” for the subroutine 

transform2_5d_accel and its inverse.  For all problems sizes under investigation, we 

observed this option to be the fastest option when the time spent in the copying of the data is 

considered. The present implementation uses FFTW_UNALIGNED for the plan and does not 

increase the number of data copies that were performed in the original code.  

 

5. Re-engineering of GS2 
At this stage we can report that all the routines deploying fast Fourier transformations have 

been upgraded to be able to use FFTW version 3.  The code is available from the SVN 
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repository on http://sourceforge.net/projects/gyrokinetics/ inside the 

FFTW3_develop branch. 

 

The changes by this project concern the files 

• gs2_transforms.fpp 

• utils/fft_work.fpp 

• dist_fn.f90 

 

The changes to dist_fn.f90 are minor and concern the call to init_zf, to allow for the 

additional parameter required when FFTW version 3 is used.  The changes to the other two 

files are explained in more detail below. 

 

5.1 Comments on the design 

Pre-processing 

To manage different options within GS2 the C pre-processor cpp is used in GS2.  Source 

files requiring pre-processing carry the file extension .fpp.  

 

Prior to this project, the pre-processor variable FFT had to be set to _FFTW_ at the pre-

processing step, when using FFTW version 2 was desired.  To keep everything consistent, this 

has not been changed.   

 

This project has added the value _FFTW3_ to the pre-processor variable FFT.  By adding 

 
-DFFT=_FFTW3_ 

 

to the CPPFLAGS, the code modifications required for FFTW version 3 become active and 

the code specific to FFTW version 2 becomes inactive.  

 

Additions to the derived data type: fft_type 

As discussed in sub-section 2.1, much of the information required at execution time in FFTW 

version 2, is now required at plan creation time.  While an implementation specifying 

FFTW_UNALIGNED does not require control of the alignment of the input and output arrays, 

the number of FFTs to be performed and the data layout has to be specified at plan creation 

time.  Hence re-engineering is still required.  We decided to extend the existing Fortran 

derived data type fft_type.  The fft_type is defined in the file 

utils/fft_work.fpp.  The extension can be used to facilitate a check whether or not a 

given plan is suitable or not.  The new fft_type looks as follows: 

 
   type :: fft_type 

      integer :: n, is, type 

      integer (kind_id) :: plan 

 # if FFT == _FFTW3_ 

      integer :: howmany 

      logical :: strided 

 # endif      

      real :: scale 

   end type fft_type 
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The new additions howmany and strided are “guarded” by the pre-processor directives.   

• howmany, is set to the number of FFTs performed in a single call to FFTW3 routines 

dfftw_execute, dfftw_execute_dft, dfftw_execute_dft_r2c or 

dfftw_execute_dft_c2r.   

• strided describes the data layout.  It is set to .true. if elements associated with 

the same individual FFT are separated by howmany elements and to .false. if 

they are subsequent. 

 

Modifications to FFT initialisation routines 

All initialisation routines for the FFTs, which includes the plan creation, are located in the file 

utils/fft_work.fpp.  When using FFTW version 3, the number of FFTs performed 

needs to be passed to the routines.  In case of the routines 

• init_z 

• init_ccfftw 

 

this was done as an optional argument, which doesn’t interfere with the old interface.  In the 

present implementation the routine init_ccfftw carries an additional optional argument 

data_array.  The init_ccfftw initialises an in-place FFT, using a single data structure 

for its input and output data, as suitable for transform_x5d and inverse_x5d.  These 

latter routines are only called internally from transform2_5d with the same array xxf for 

the FFT’s input and output data.  When using FFTW3 our implementation of init_ccfftw 

expects xxf to be given as 5
th

 dummy argument.  This way a full alignment analysis of the 

actual array at plan creation is possible. 

 

Due to the use of Fortran interfaces the use of optional arguments to pass the number of FFTs 

to be calculated to the routines 

• init_crfftw_1d 

• init_crfftw_2d 

• init_rcfftw_1d 

• init_rcfftw_2d 

 

was not possible.  The file therefore contains separate implementations of these routines for 

FFTW version 2 and version 3.  These implementations are guarded by pre-processor 

directives. 

 

As required by the matching transformation routines, the initialisation routines 

• init_z 

• init_ccfftw 

• init_rcfftw_1d 

• init_crfftw_1d 

 

implement non-strided FFTs and only 

• init_rcfftw_2d 

• init_crfftw_2d 

 

implement strided FFTs.   
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With the exception of init_ccfftw all routines implement plans using the 

FFTW_UNALIGNED flag.  These routines internally allocate suitably sized input and ouput 

arrays, which are used for plan creation and destroyed before exiting the routine.  The present 

plans can be used with any array of the correct size by calling either of 

dfftw_execute_dft_c2r, dfftw_execute_dft_r2c or dfftw_execute_dft.  

 

The benchmark studies  above  indicate that the use of FFTW_UNALIGNED may at most an 

issue for the plans used by transform_y5d, inverse_y5d, transform2_5d_accel 

and inverse2_5d_accel.  The performance study of subsection 5.5 will show that this is 

not an issue at all.  The remaining transformation calls are within parts of the code that are not 

critical to performance.  The plans used by transform_x5d and inverse_x5d are 

created by init_ccfftw and do not use FFTW_UNALIGNED.  For these transformations 

the original code using FFTW2 is already using work arrays.  In the FFTW3 implementation 

these arrays have been passed to the planning routines, so that no alignment issues will occur. 

 

Modifications to the routines in gs2_transform.fpp 

A number of changes are required to the routines in gs2_transform.fpp.  These changes 

are guarded by checking that the pre-processor variable FFT == _FFTW3_ is set.  We 

describe the key changes.  For details we recommend checking the source in the SVN-

repository 

• In init_x_transform, the calls to init_ccfftw need to receive the number of 

FFTs to be performed and the actual data array to be used in transform_x5d.  

Since an in-place transformation will be set up, a single array is all that is needed. 

 

• A number of changes are required in init_y_fft.  In an “accelerated” run (x and y 

processor local, and a single FFT call makes a 2D FFT), the calls to init_crfftw 

and init_rcfftw need the number of FFTs per call as an extra argument.  In a 

“non-accelerated” run (either x or y-direction distributed), the calls to init_ccfftw 

need the number of FFTs and the data field xxf as extra arguments.  In the non-

accelerated case, the calls to init_crfftw and init_rcfftw set up a 

transformation along the y-axis only.  They require the number of FFTs to be passed. 

 

• Since the number of FFTs and the specification of the data layout is now performed at 

plan creation, the actual execution of the FFT in the transform or inverse 

routines is now much simpler.    

 

• The greatest simplifications are in transform_x5d and inverse_x5d, which 

now only have calls to dfftw_execute with the appropriate plan specified. 

 

• transform_y5d, transform2_5d_accel, transform2_4d, 

transfrom2_3d and transform2_2d: FFTs are executed by calling 

dfftw_execute_dft_c2r with the relevant plan, input and output array 

specified.   

 

• inverse_y5d, inverse2_5d_accel, inverse2_3d and inverse2_2d: 

call dfftw_execute_dft_r2c with the relevant plan, input and output array. 
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• The routine init_3d had its interface extended by adding an additional input 

parameter how_many_in.  This parameter is not optional.  Since init_3d is only 

called from transform2_3d, which is in the same file, this will not create any 

problems.  If this routine has been called before, the revised routine now checks 

whether this was with the same how_many.  If these match no new plan is created.  If 

they don’t match, the old plans are deleted and new plans that match how_many_in 

are created.  This strategy matches the pre-existing code, which does similar checks on 

the size of the FFT.  Since the matching transformations are deployed only in non-

performance critical sections of the code, we do not see problems with this approach. 

 

• Throughout the file, calls to the init_rcfftw, init_crfftw and init_z had 

to be updated for the additional input variable specifying the number of FFTs to be 

performed. 

 

• To facilitate passing the number of FFTs to init_z the interface of init_zf had to 

be extended to receive this number as an input argument. 

 

• In the routines transform2_5d_accel and inverse2_5d_accel, we have 

rewritten the anti-aliasing step.  The new code is expected to have fewer write and 

read cache misses.  By setting the parameter fastcopy to .true. the new code 

can be activated (compile time) while by setting it to .false. the original code is 

used. A final performance assessment is still required. 

 

5.2 Code tests 

To verify the correctness of the new code, Colin Roach provided a tester for the FFTs, which 

tests the transform2 and inverse2 routines for correctness by using trigonometric 

functions.  This code is called ffttester. It also served as a test bed for benchmarking in 

the later stages of the project (See the section 6).  We also checked that the outcome using 

GS2 is unchanged within reasonable rounding errors when the FFTW version 3 routines are 

used. 

 

5.3 Performance assessment of GS2 

The performance assessment was done for 500 time steps and the results are summarised in 

Table 3 

 

No cores Using FFTW2 Using FFTW3 

64 15.6 15.5 

256 4.2 4.2 

1024 1.7 1.8 

Table 3 Initial performance assessment of 500 advance steps 

 

This was run using all the four cores available on the HECToR processors.  For 64 and 256 

cores, the code deploys the transform2_5d_accel and inverse2_5d_accel 

routines, while for 1024 cores the transform2_5d and inverse2_5d routines are used.  

Unfortunately, we do not notice any performance improvement due to the upgrade to FFTW3.  
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5.4 Where time is spent 

To better understand the performance of the present code we started profiling the code using 

the Craypat tool.  To reduce the impact of the initialisation we report on the differences 

between a 1500 step run and a 500 step run.   

 

Table 4 shows timings from a 256 core run, using the accelerated transformations. Table 5 

shows timings from a 1024 core run, using the non-accelerated routines.  

 

The tables show time spent in: user code; FFTW library, MPI synchronisation (load 

imbalance of collective communication calls); and actual MPI data transmission.  For each of 

these four groups the time spent in the most expensive routines is shown.  We also give the 

percentage of the total time.  Since the results originate from two different runs, operational 

noise (as congestion on the network cause by other user’s activities) will slightly affect the 

results. This analysis should give a good indication of which parts of the code are most 

expensive.  The last column gives the percentage of the total execution time. 

 

Routine time  percentage 
    

TOTAL 520.4  100.0% 

    

USER 322.0  61.9% 

dist_fn_get_source_term_ 69.2  13.3% 

dist_fn_invert_rhs_1_ 45.0  8.7% 

Nonlinear_terms_add_nl_ 88.8  17.1% 

gs2_transforms_transform2_5d_accel_ 54.5  10.5% 

le_grids_integrate_species_ 10.4  2.0% 

dist_fn_getan_ 8.9  1.7% 

dist_fn_invert_rhs_linked_ 14.2  2.7% 

Main 21.0  4.0% 

dist_fn_getfieldeq1_ 3.8  0.7% 

    

    

FFTW 177.5  34.1% 

dfftw_execute_dft_c2r_ 137.0  26.3% 

dfftw_execute_dft_r2c_ 26.9  5.2% 

fftw_cpy2d_co 19.8  3.8% 

    

MPI_SYNC 12.3  2.4% 

mpi_allreduce_(sync) 10.2  2.0% 

mpi_bcast_(sync) 4.2  0.8% 

    

MPI 8.6  1.7% 

MPI_allreduce 10.6  2.0% 

Table 4  Profile for 1000 advance steps on 256 cores 

 

Table 4 shows that on 256 cores, about a third of the execution time is spent in FFTW, and 

mainly in dfftw_execute_dft_c2r.  From the above analysis of the program’s call tree, 

it can be concluded that this time is associated with the routine transform2_5d_accel.  

It is also interesting to note that about 10% of the time is spent in the actual 

transform2_5d_accel.  Further analysis is desirable to understand this further. 
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Routine time  Percentage 

    

TOTAL 213.9  100.0% 

    

USER 144.5  67.6% 

Main 17.5  8.2% 

dist_fn_get_source_term_ 17.8  8.3% 

le_grids_integrate_species_ 7.7  3.6% 

dist_fn_invert_rhs_1_ 11.4  5.3% 

Nonlinear_terms_add_nl_ 20.7  9.7% 

dist_fn_getan_ 5.0  2.3% 

redistribute_c_redist_22_ 18.3  8.5% 

redistribute_c_redist_32_ 16.6  7.7% 

dist_fn_getfieldeq1_ 3.8  1.8% 

dist_fn_invert_rhs_linked_ 4.6  2.1% 

redistribute_c_redist_22_inv_ 8.1  3.8% 

    

    

MPI 23.3  10.9% 

mpi_allreduce_ 13.7  6.4% 

mpi_barrier_ -2.9  -1.4% 

mpi_recv_ 15.7  7.4% 

mpi_bcast_ -0.4  -0.2% 

    

    

MPI_SYNC 10.6  5.0% 

mpi_bcast_(sync) 3.7  1.7% 

mpi_allreduce_(sync) 1.3  0.6% 

mpi_barrier_(sync) 5.2  2.4% 

    

    

FFTW 35.5  16.6% 

dfftw_execute_dft_c2r_ 23.4  10.9% 

fftw_dft_solve 8.3  3.9% 

fftw_rdft_solve 0.1  0.0% 

Table 5 Profile for 1000 advance steps on 1024 cores 

 

Table 5 shows the results when using 1024 cores.  For this task count, the routine 

transform2_5d and inverse2_5d are used.  In the context of a capability service 

such as HECToR, getting good performance at large task count is most important.  Hence this 

data is perhaps more interesting than the data from 256 cores in Table 4.  In comparison to 

Table 4, we notice that a substantially smaller fraction of the time is spent in the FFTW libray 

when using 1024 cores.  Still about 11% of the time is attributed to 

dfftw_execute_dft_c2r.  From the code analysis it is clear that this call is associated 

with the transform_y5d routine.  It is interesting to note that the dfftw_execute call 

associated with the transform_x5d and inverse_x5d doesn’t even feature in the 

profile. The same holds for the dfftw_execute_dft_r2c, which is associated with the 

inverse_y5d routine.  The USER part of the table shows the routines c_redist_22 

and c_redist_32 to be quite costly, with about 8% each.   The purpose of these routines is 

to pack and unpack communications buffers to facilitate the data transpositions required for 
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the FFT calls.  These routines make extensive use of indirect addressing when packing the 

buffers.  

 

It is interesting to note, that the even for 1024 tasks, the time spend in MPI is quite modest.  

 

5.5 Effect of SSE instructions in dfftw_execute_dft_c2r 

The profiling results for 1024 cores show that a substantial amount of time is spent in the 

routine dfftw_execute_dft_c2r, which performs the actual complex to real Fourier 

transformation inside transform_y.  Since dfftw_execute_dft_c2r writes directly 

into an application data structure instead of workspace internal to the transformation routines, 

planning for this routine is done, as previously reported, with FFTW_UNALIGNED.  This 

disables SSE instructions during the actual Fourier transformation, but avoids the possible 

alignment issues associated with writing directly into data structures external to the 

transformation routines. 

 

For the benchmark code used for this project, however, it turns out that there are no alignment 

issues and FFTW_UNALIGNED can be removed from the plan creation without causing the 

code to crash.  This allows an estimate of the scope for performance improvement if one were 

able to ensure proper alignment of the output structures in all cases.  It turned out, that 

removing FFTW_UNALIGNED did not suggest that a significant performance improvement 

would be available for GS2.  We have to conclude there is no scope for performance 

improvement by re-engineering the code to avoid the FFTW_UNALIGNED.  Hence the flag 

FFTW_UNALIGNED was added back into the code. 

 

6 Performance of transform2_5d and inverse2_5d 

It has been identified that the buffer packing routines c_redist_22 and c_redist_32, 

which are called by transform2_5d, are rather expensive when GS2 is used at scale.  The 

remaining project effort was directed towards understanding the costs of these routines and 

developing strategies to improve them. 

 

6.1 Benchmarking 

The original GS2 code requires quite long initialisation and execution times when the routines 

transform2_5d and inverse2_5d are used. To simplify the investigation, we studied 

the performance of transform2_5d and inverse2_5d within the simpler 

ffttester, which was discussed in subsection 5.2 already.  Compared to GS2, 

ffttester initialises faster.  In this part of the project, we only run the tests of 

transform2_5d and inverse2_5d in ffttester and named the modified code 

ffttester_5d.   The same problem size as in the previous chapters was used. 

 

As discussed, with the standard input files, transform2_5d is only used for over 512 cores.  

Benchmarking with such a large number of processors is a slow process, due to the long 

waiting time in the job queue.  To be able to work more rapidly, we changed the data layout 

from “yxles” to “xyles”.  When using “xyles” the routines transform2_5d and 

inverse2_5d get deployed even for low numbers of processors. The layout “yxles”, 

which was used for the previous section, will auto-switch to transform2_5d_accel and 

inverse2_5d_accel for smaller number of processors.  
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For the profiling in this part of the project, a modified version of GS2 which switches off the 

auto-acceleration for the “yxles” layout was used.  This verified that the layout differences 

between “xyles” and “yxles” do not affect the profiling results of the transform routines.  

 

6.2 High Initialisation Time Cost 

Even after simplifying the input file as much as possible, the initialisation cost when using the 

standard, non-accelerated transformation routines is a lot higher, when compared to the 

accelerated implementation.  

 

To quantify this, the time taken by ffttester_5d was measured using both the accelerated 

implementation and the non-accelerated implementation on 128 cores.  After a full running of 

all the loop iterations (the full test), the tests were repeated with only half of the total loop 

iterations (the half test). The timing difference between the full test and the half test gives an 

estimate of the time consumed by transformations. The initialisation time can be estimated 

from the time of the full test minus the time spent on the transformations. The following table 

shows the benchmarking results as well as the initialisation cost estimation. 

 

ffttester_5d  on 128 cores  Non-Accelerated Accelerated 

ffttester_5d (the full test)  1517 s 288 s 

ffttester_5d (the half test)  1360 s 184 s 

full transform calculations 314 s 208 s 

Initialisation cost  1203 s 80 s 
Table 6 Estimation of initialisation cost for ffttester_5d on 128 cores. 

 

From the above table it can be seen that the non-accelerated ffttester_5d required about 20 

minutes for the initialisation, which is around 15 times longer than the initialisation for the 

accelerated implementation. As the main goal of this project is to investigate the performance 

of the actual transformation routines and not the initialisation of GS2, the underlying reasons 

were not studied further. However to obtain a better signal when profiling the actual 

transform routines in craypat, we increased the number of transformations in 

ffttester_5D by a factor of four for further benchmarking.  

 

6.3 Craypat Profiling 

The ffttester_5d was profiled with the CrayPat tool on 128 cores using both “xyles” 

layout and the “yxles” layout. To use the non-accelerated implementation, the code was 

modified to switch off the auto-acceleration for “yxles” on small number of processors. The 

profiling tests were also taken on 1024 cores using both layouts, in which case both layouts 

have to use the non-accelerated implementations by default. 

 

The above four tests showed that changing the layouts or processor counts resulted only in 

small differences for the percentage of time spent in the layout routines and the initialisation. 

The Craypat results show that the most expensive transformation routines are 

c_redist_22_inv, c_redist_32_inv, c_redist_22 and c_redist_32, 

irrespective of layout and processor count.  Below is the Craypat profiling results for the 

“xyles” layout for ffttester_5d. This test has the number of transformations 

increased by a factor of four, as described above and was done on 128 cores.  
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Time % |        Time | Imb. Time |   Imb. |       Calls |Group 

        |             |           | Time % |             | Function 

        |             |           |        |             |  PE='HIDE' 

 

 100.0% | 1937.148832 |        -- |     -- | 152415504.9 |Total 

|-------------------------------------------------------------------- 

|  56.6% | 1095.712252 |        -- |     -- |     31752.0 |USER 

||------------------------------------------------------------------- 

||  12.1% |  234.504941 |  1.101836 |   0.5% |         1.0 |main 

||   8.3% |  161.292080 | 12.236146 |   7.1% |      3968.0 |redistribute_c_redist_22_inv_ 

||   8.1% |  155.955182 | 20.772738 |  11.8% |      3971.0 |redistribute_c_redist_32_inv_ 

||   7.8% |  151.572061 | 17.199143 |  10.3% |      3968.0 |ffttest_ 

||   6.5% |  125.364034 |  1.143944 |   0.9% |      3968.0 |redistribute_c_redist_22_ 

||   5.0% |   96.416044 |  1.968193 |   2.0% |      3971.0 |redistribute_c_redist_32_ 

 

When profiling with sampling, craypat can highlight individual segments in the source which 

are consuming substantial amounts of CPU time. Taking the routine c_redist_22_inv 

as an example, the Craypat results show the bottleneck is the loop transposing the local data, 

which is in the code utils/redistribute.f90 line 519:  

do i = 1, r%to(iproc)%nn 

to_here( r%from(iproc)%k(i), & 

           r%from(iproc)%l(i)) & 

                = from_here(r%to(iproc)%k(i), & 

                        r%to(iproc)%l(i)) 

     end do 

 

This loop makes extensive use of indirect addressing.  To understand why this loop is that 

expensive, one needs to understand the contents of the arrays r%from(iproc)%k, 

r%from(iproc)%l, r%to(iproc)%k and r%to(iproc)%l. 
 

6.4 Totalview Investigation 

It turned out to be very difficult to reverse engineer the contents of the arrays 

r%from(iproc)%k, r%from(iproc)%l, r%to(iproc)%k and 

r%to(iproc)%l from the application source.  We decided to use the Totalview debugger 

to read the contents of these arrays, while running the code with 128 tasks using the xyles 

layout.  

 

The following are the mainly used datatypes in the copying loops in the four c_redist 

routines. 

• r: a derived data type named redist_type. 

• iproc: a integer pointer which stores the related rank number for each process. 

• to and from:  derived data type index_map, which are part of r.  The type 

index_map contains the integer nn, the integer array k, l and m.  The integer 

array m is used in c_redist_32 and c_redist_32_inv.  

• from_here and to_here: two complex 2D data arrays to hold the input and output 

data of the  transpose.  

 

As the index values are organised in the similar way in all redist routines, here a detailed 

explanation is only given for the c_redist_22_inv. Further details of the Totalview 

results can be found in the appendix. 

 

In the local processor data transpose copying loop of c_redist_22_inv at line 519: 



 28 

• r%to(iproc)%nn = 761856   
 This is the total loop iteration number, i.e. the loop has total 761856 iterations. 

 

• r%to(iproc)%k = (1:96) 1, (97:192) 2, (193:288) 3, 
(289:384) 4, … (2977:3072)32 , (3073:3168)1, …32, 1, … 

(761761:761856)32  

 This r%to(iproc)%k stores the first index of the 2D data array from_here. The 

index value is increased by one after 96 elements. Once the value of 32 has been 

reached, it starts again from 1.  
 

• r%to(iproc)%l = (1:96) v1:v1+95, (97:192) v1:v1+95 … 
V2:v2+n … 

 This r%to(iproc)%l stores the second index of the 2D  array from_here. Its 

value starts at a base value v1 and keeps incrementing until v1+95 is reached. This 

pattern is repeated many times until at some point in sequence the base value changes 

to a new base value v2. The rules for the changes in the base value are not clear at 

present. 

 

• r%from(iproc)%k = (1:96) 1:96, (97:192) 1:96, (193:288) 
1:96 … (761761:761856) 1:96 

 This r%from(iproc)%k stores the first index of the 2D data array to_here. 

The index repeatedly increases from 1 to 96. 

 

• r%from(iproc)%l = (1:96) w1, (97:192) w1 + 1, … 
(761761:761856) w1 + 7935  

 This r%from(iproc)%l stores the second index of the 2D data array to_here. 

Starting with some base value w1, the index value is increased by one after 96 

elements.  How w1 is generated is presently not understood and requires further study.  

 

6.5 Performance impact of indirect addressing  

Based on the Totalview results, the original indirect addressing for the array index in the loop 

was replaced by the direct addressing using standard loop indices.  Removing the index arrays 

from the loop reduces the memory traffic and might help with a better compiling 

optimisation. A simple demonstrator was implemented for the loops in c_redist_22_inv 

and c_redist_22.  This demonstrator can only be deployed for the test problem, when 

running on 128 tasks with the xyles layout. 

  

New direct addressing index in c_redist_22_inv: 

do kxj = 1, r%to(iproc)%nn, 32*96 

     valueF = r%from(iproc)%l(kxj) - 1 

     valueT = r%to(iproc)%l(kxj)   - 1 

      do ixj = 1, 96 

                do jxj = 1, 32 

                     to_here(ixj, valueF + jxj) & 

                           = from_here(jxj, valueT + ixj) 

                  enddo           

               enddo 

     enddo 
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New direct addressing index in c_redist_22: 

do kxj = 1, r%from(iproc)%nn, 32*96 

     valueF = r%from(iproc)%l(kxj) - 1 

     valueT = r%to(iproc)%l(kxj)   - 1 

      do jxj = 1, 32 

        do ixj = 1, 96 

                 to_here(jxj, valueT + ixj ) & 

                           = from_here(ixj, valueF + jxj) 

             enddo           

               enddo 

   enddo 

 

The ffttester_5d with four times increased number of transformations was profiled 

again with Craypat, using the new direct addressing in c_redist_22_inv and 

c_redist_22. The results show a substantial reduction of the time spent on these two 

routines, when compared to the results in subsection 6.3. 

 
Time % |        Time | Imb. Time |   Imb. |       Calls |Group 

        |             |           | Time % |             | Function 

        |             |           |        |             |  PE='HIDE' 

 

 100.0% | 1857.409021 |        -- |     -- | 152413235.0 |Total 

|-------------------------------------------------------------------- 

|  52.8% |  980.349695 |        -- |     -- |     31752.0 |USER 

||------------------------------------------------------------------- 

||  12.7% |  235.792116 |  4.502582 |   1.9% |         1.0 |main 

||   8.5% |  157.066856 | 17.384290 |  10.0% |      3971.0 |redistribute_c_redist_32_inv_ 

||   8.2% |  153.185754 | 14.905105 |   8.9% |      3968.0 |ffttest_ 

||   5.2% |   96.455140 |  2.003495 |   2.1% |      3971.0 |redistribute_c_redist_32_ 

||   4.6% |   86.226295 |  0.811170 |   0.9% |      3968.0 |redistribute_c_redist_22_ 

||   4.4% |   81.752637 |  4.964743 |   5.8% |      3968.0 |redistribute_c_redist_22_inv_ 

 

The time spent in c_redist_22_inv is about halved after removing the indirect 

addressing in the copying loop.  The cost of c_redist_22 reduces from 6.5% to 4.6% of 

the total execution time, which was also reduced by around a factor of 1.5. 

 

These results show that we have successfully identified indirect addressing as a serious 

performance obstacle in the redistribute routines.  We have shown a way how these routines 

could be rewritten to deliver better performance.  Unfortunately this was understood late into 

the project, when there was no time left for a proper implementation considering that the 

indirect addressing is deeply embedded into the code. 

 

7 Conclusions 
This report details the progress achieved by the project.  

 

1. GS2 has been re-engineered to gain the option of using FFTW3  

• We have provided a detailed analysis of the call tree of GS2 giving a detailed 

understanding how the FFT routines are utilised in the code.   

• Based on this analysis the transformation routines have been re-implemented 

using version 3 of the FFTW library.   

• This is the version of the library which is currently supported by its authors, in 

contrast to version 2 of FFTW which is legacy code. 
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2. FFTW3's exploitation of SSE instructions has not improved GS2's performance: 

• At the outset of the project it was expected that moving GS2 onto FFTW3 

would reduce the time spent on the FFTs.  This is because version 3 of FFTW 

can utilise the SSE instructions of the Opteron processors deployed on the 

HECToR system, while FFTW version 2 cannot.    

• Our detailed analysis shows that for the FFT calls relevant for GS2, the 

benefits from the SSE instructions are at best minimal.  This was unexpected 

and should be of general interest to the HECToR user community.  Our 

detailed analysis has shown, that there is little benefit from the SSE even when 

using smaller problems to make the problem fit into cache or when placing 

only a single core of the processors to give the compute task more memory 

bandwidth and level 3 cache. 

 

3. Other significant GS2 Performance Issues have been Identified 

• An in-depth analysis of the profile after upgrading the FFTW library has 

shown the data redistribution routines inside the transformation routines to be 

very costly.   

• Profiling showed that for small processor numbers, the time was consumed 

inside a single loop that rearranges the data.  This loop makes extensive use of 

indirect addressing, which cannot be optimised by the compiler.  This was 

uncovered late in the project, and insufficient resources were available to fully 

understand this complex code.   

• For a special case the project demonstrated that substantial performance gains 

can be achieved by removing the indirect addressing. For the subroutines 

c_redist_22_inv and c_redist_22, their time cost was reduced by 

almost a factor of 2 after removing the indirect addressing. 

• Since indirect addressing is at the core of the application, a clean well 

engineered solution to this problem will be very worthwhile, but this will 

require a substantial and focussed effort.  

• Removing the indirect addressing from all the performance critical routines of 

the application should be the aim of a future optimisation project.   

• It was also found that the initialisation cost was expensive for the non-

accelerated transform implementation. It would be interesting to understand 

the reason for the high initialisation cost of the non-accelerated transform 

implementations. 
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Appendix: Totalview Profiling Results Details 
This appendix gives in-depth results on the Totalview investigations in subsection 6.4.  We 

also include the performance counter results we obtained from Craypat for the routines under 

investigation. 

A.1 Routine c_redist_22_inv 

The copying loop in line 519: 
do i = 1, r%to(iproc)%nn 

   to_here(r%from(iproc)%k(i), & 

           r%from(iproc)%l(i)) & 

           = from_here(r%to(iproc)%k(i), & 

                       r%to(iproc)%l(i)) 

end do 

 

Datatypes in the loop: 

r is a redist_type structure. 

iproc is a integer pointer. Iproc stores the related rank number for each process. 

to and from are two index_map structure pointer in r, the index_map structures 

contains the integer nn, integer array k and integer array l.      

from_here and to_here are two complex 2D array.  
complex, dimension (r%to_low(1):, r%to_low(2):), intent (in) 

:: from_here 

complex, dimension (r%from_low(1):, r%from_low(2):), intent 

(out) :: to_here 

where to_low and  from_low are two 1D array  in r.     

 

From Totalview results: 
• r%to(iproc)%nn = 761856   

       This is the total loop iteration number, i.e. the loop has total 761856 iterations. 

 
• r%to(iproc)%k = (1:96) 1, (97:192) 2, (193:288) 3,  

  (289:384) 4, … (2977:3072)32 , (3073:3168)1, …32, 1, …    

  (761761:761856)32  

This r%to(iproc)%k stores the first index of the 2D data array from_here. The 

index value is increased by one every 96 elements. Once the value of 32 has been 

reached, it starts again from 1.  
 

• r%to(iproc)%l = (1:96) v1:v1+95, (97:192) v1:v1+95 …  

  V2:v2+n … 

This r%to(iproc)%l stores the second index of the 2D  array from_here. Its 

value starts at a base value v1 and keeps incrementing until v1+95 is reached. This 

pattern is repeated many times until at some point in sequence the base value changes 

to a new base value v2. The rules for the changes in the base value are not clear at 

present. Note: neighbour processes have the continuous end/start 2D index, e.g. rank1 

from_here 2D index min:max is  23808:47615, then rank2 from_here 2D index 

min:max is 47616:71423. 

 
• r%from(iproc)%k = (1:96) 1:96, (97:192) 1:96, (193:288)  

  1:96 … (761761:761856) 1:96 
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This r%from(iproc)%k stores the first index of the 2D data array to_here. 

The index repeatedly increases from 1 to 96. 

 
• r%from(iproc)%l = (1:96) w1, (97:192) w1 + 1, …  

  (761761:761856) w1 + 7935  

This r%from(iproc)%l stores the second index of the 2D data array to_here. 

Starting with some base value w1, the index value was increased by one every 96 

elements.  Again how w1 is generated is presently not understood and requires further 

study.  
 

In c_redist_22_inv, with the continuous loop index i, the from_here() continuously 

loops over the second dimension (r%to(iproc)%l(i)) first, then changing the index in 

the first dimension (r%to(iproc)%k(i)).  

 

Craypat HPMCounter results: 
USER / redistribute_c_redist_22_inv_ 

--------------------------------------------------------------------- 

  Time%                                               8.3% 

  Time                                          161.292080 secs 

  Imb.Time                                       12.236146 secs 

  Imb.Time%                                           7.2% 

  Calls                            24.6 /sec        3968.0 calls 

  PAPI_L1_DCM                     5.797M/sec     935092001 misses 

  PAPI_TLB_DM                     0.262M/sec      42200138 misses 

  PAPI_L1_DCA                   674.731M/sec  108842506055 refs 

  PAPI_FP_OPS                                            0 ops 

  User time (approx)            161.312 secs  371018596645 cycles  

100.0%Time 

  Average Time per Call                           0.040648 sec 

  CrayPat Overhead : Time          0.0% 

  HW FP Ops / User time                                  0 ops   

0.0%peak(DP) 

  HW FP Ops / WCT 

  Computational intensity          0.00 ops/cycle     0.00 ops/ref 

  MFLOPS (aggregate)               0.00M/sec 

  TLB utilization               2579.20 refs/miss    5.037 avg uses 

  D1 cache hit,miss ratios        99.1% hits          0.9% misses 

  D1 cache utilization (misses)  116.40 refs/miss   14.550 avg hits 

 

A.2 Routine c_redist_22 

The copying loop in line 446: 
do i = 1, r%from(iproc)%nn  

   to_here(r%to(iproc)%k(i), & 

           r%to(iproc)%l(i)) & 

           = from_here(r%from(iproc)%k(i), & 

                       r%from(iproc)%l(i)) 

end do 

 

Datatypes in the loop: 

r is a redist_type structure. 

iproc is a integer pointer. Iproc stores the related rank number for each process. 

to and from are two index_map structure pointer in r, the index_map structures 

contains the integer nn, integer array k and integer array l.      
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from_here and to_here are two complex 2D array.  

complex, dimension (r%from_low(1):, r%from_low(2):), &  

intent (in) :: from_here 

complex, dimension (r%to_low(1):, r%to_low(2):), &  

intent (out) :: to_here 

where to_low and  from_low are two 1D array  in r.     

The data lower limits of from_here and to_here are just opposite to those in the 

c_redist_22_inv. 
 

From Totalview results: 

� r%from(iproc)%nn = 761856 

  The total loops iteration number is 761856. 
 

� r%from(iproc)%k = (1:96) 1:96, (97:192) 1:96, (193:288)  

 1:96 … (761761:761856)1:96 

 This r%from(iproc)%k stores the first index of the 2D data array from_here. 

The index repeatedly increases from 1 to 96. 
 

� r%from(iproc)%l = (1:96) value, (97:192) value+1, …  

  (761761:761856) value+7935 

 This r%from(iproc)%l stores the second index of the 2D data array 

from_here The index value increased by 1 every 96 iterations. Note: the second 

dimension index of from_here array starts from one base value for each process.  
 

� r%to(iproc)%nn = 761856 

 

� r%to(iproc)%k = (1:96) 1, (97:192)2, … 32, 1  

  (761761:761856)32 

The r%to(iproc)%k stores the first index of the 2D data array to_here. The 

index value is increased by one, every 96 elements. Once the value of 32 has been 

reached, it starts again from 1. 

 

� r%to(iproc)%l = (1:96) v1:v1+95, (97:192) v1:v1+95 …  

 V2:v2+n … 

This r%to(iproc)%l stores the second index of the 2D  array to_here. Its value 

starts at a base value v1 and keeps incrementing until v1+95 is reached. This pattern 

is repeated many times until at some point in sequence the base value changes to a 

new base value v2. The rules for the changes in the base value are not clear at present. 
 

Craypat HPMCounter results: 
USER / redistribute_c_redist_22_ 

--------------------------------------------------------------------- 

  Time%                                               6.5% 

  Time                                          125.364034 secs 

  Imb.Time                                        1.143944 secs 

  Imb.Time%                                           0.9% 

  Calls                            31.6 /sec        3968.0 calls 

  PAPI_L1_DCM                     7.556M/sec     947428198 misses 

  PAPI_TLB_DM                     0.337M/sec      42192590 misses 

  PAPI_L1_DCA                   868.082M/sec  108843981308 refs 

  PAPI_FP_OPS                                            0 ops 

  User time (approx)            125.384 secs  288384195963 cycles  

100.0%Time 
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  Average Time per Call                           0.031594 sec 

  CrayPat Overhead : Time          0.0% 

  HW FP Ops / User time                                  0 ops   

0.0%peak(DP) 

  HW FP Ops / WCT 

  Computational intensity          0.00 ops/cycle     0.00 ops/ref 

  MFLOPS (aggregate)               0.00M/sec 

  TLB utilization               2579.69 refs/miss    5.038 avg uses 

  D1 cache hit,miss ratios        99.1% hits          0.9% misses 

  D1 cache utilization (misses)  114.88 refs/miss   14.360 avg hits 

 

A.3 Routine c_redist_32_inv 

The copying loop in line 671: 
do i = 1, r%to(iproc)%nn 

    to_here(r%from(iproc)%k(i), & 

            r%from(iproc)%l(i), & 

            r%from(iproc)%m(i)) & 

            = from_here(r%to(iproc)%k(i), & 

                        r%to(iproc)%l(i)) 

end do 

 

Datatypes in the loop: 

r is a redist_type structure. 

iproc is a integer pointer. Iproc stores the related rank number for each process. 

to and from are two index_map structure pointer in r, the index_map structures 

contains the integer nn, integer array k, integer array l (and integer array m, structure 

from only).      

from_here and to_here are two complex 2D and 3D array.  
complex, dimension (r%to_low(1):, r%to_low(2):), & 

intent (in) :: from_here 

complex, dimension (r%from_low(1):, r%from_low(2):, & 

r%from_low(3):), intent (out) :: to_here 

where to_low and  from_low are two 1D array  in r.     

 

From Totalview results: 

� r%to(iproc)%nn = 62496 

 The total loops iteration number is 62496. 
 

� r%to(iproc)%k = (1:31)value1, (32:62) value2, value2+2, …  

 value2+30, value2+ 28, value2… (15625:15655) value1+1,  

(15656:15686) value2-1, value2+1,…, value2+29, 

value2+27…value2-1 … (31249:)value1+2, 

 Note: The first dimension index of from_here is either kept as a fixed value, or 

being as a “wave”.  
 

� r%to(iproc)%l = (1:31)(value:value+30), (32:155)  

 (value:value+132), …(value+x, value+x+y)… 

 The value in array l continuously increased for several iterations then re-start again. 

The rules for the value changes are not clear at present. 
 

� r%from(iproc)%k = (1:31) -15:15, (32:62) -15:15 … 
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 The value increased from -15 to 15, then repeated the 

increasing again from -15. 

 

� r%from(iproc)%l = (1:31)1,(32:62)2,(63:93)1,(94:124)2 … 

 The value was either 1 or 2, changing every 31 elements. 

 

� r%from(iproc)%m = (1:62) value1, (63:124) value+1 … 

 The value increased by 1 every 62 elements. 
 

Craypat HPMCounter results: 
USER / redistribute_c_redist_32_inv_ 

--------------------------------------------------------------------- 

  Time%                                              8.1% 

  Time                                         155.955182 secs 

  Imb.Time                                      20.772738 secs 

  Imb.Time%                                         11.9% 

  Calls                           25.5 /sec        3971.0 calls 

  PAPI_L1_DCM                   16.569M/sec    2584551474 misses 

  PAPI_TLB_DM                    0.245M/sec      38201135 misses 

  PAPI_L1_DCA                  534.748M/sec   83413102383 refs 

  PAPI_FP_OPS                                           0 ops 

  User time (approx)           155.986 secs  358767225730 cycles  

100.0%Time 

  Average Time per Call                          0.039274 sec 

  CrayPat Overhead : Time         0.0% 

  HW FP Ops / User time                                 0 ops   

0.0%peak(DP) 

  HW FP Ops / WCT 

  Computational intensity         0.00 ops/cycle     0.00 ops/ref 

  MFLOPS (aggregate)              0.00M/sec 

  TLB utilization              2183.52 refs/miss    4.265 avg uses 

  D1 cache hit,miss ratios       96.9% hits          3.1% misses 

  D1 cache utilization (misses)  32.27 refs/miss    4.034 avg hits 

 

A.4 Routine c_redist_32 

The copying loop in line 594: 
do i = 1, r%from(iproc)%nn  

   to_here(r%to(iproc)%k(i), & 

           r%to(iproc)%l(i)) & 

           = from_here(r%from(iproc)%k(i), & 

                       r%from(iproc)%l(i), & 

                       r%from(iproc)%m(i)) 

end do 

 

Datatypes in the loop: 

r is a redist_type structure. 

iproc is a integer pointer. iproc stores the related rank number for each process. 

to and from are two index_map structure pointer in r, the index_map structures 

contains the integer nn, integer array k, integer array l (and integer array m, structure 

from only).      

from_here and to_here are two complex 2D array.  
complex, dimension (r%from_low(1):, r%from_low(2):, & 

r%from_low(3):), intent (in) :: from_here 



 36 

complex, dimension (r%to_low(1):, r%to_low(2):), &  

intent (out) :: to_here 

where to_low and  from_low are two 1D array  in r.     

The from_here and to_here are just opposite to the structure in c_redist_32_inv. 

 

From Totalview results: 

� r%from(iproc)%nn = 62496 

 The total loops iteration number is 62496. 
 

� r%from(iproc)%k = (1:31)-15:15, (32:62)-15:15… 

 The first index of from_here repeated from -15 to 15. 

 

� r%from(iproc)%l = (1:31)1, (32:62)2, (63:93)1, (94:124)2,  

   …  

 The second index of from_here is either 1 or 2, changing every 31 iterations. 

 

� r%from(iproc)%m = (1:62) value1, (63:124)value1+1…  

 The third index of from_here increased 1 every 62 iterations. 

 

� r%to(iproc)%k = (1:31) 1, (32:62) 33, 35,…63, …33,  

 (63:94)1, (94:124)33, 35, … 63, …, 33, 

 Value was either as 1 or in a “wave”. 
 

� r%to(iproc)%l =  

 The value in array l continuously increased for several iterations then re-start again. 

The rules for the value changes are not clear at present. 
 

The loop over the from_here, index changing in the first dimension first, then the second, 

then the third. 

 

Craypat HPMCounter results:  
USER / redistribute_c_redist_32_ 

------------------------------------------------------------------------ 

  Time%                                              5.0% 

  Time                                          96.416044 secs 

  Imb.Time                                       1.968193 secs 

  Imb.Time%                                          2.0% 

  Calls                           41.2 /sec        3971.0 calls 

  PAPI_L1_DCM                   21.433M/sec    2066047587 misses 

  PAPI_TLB_DM                    0.402M/sec      38740040 misses 

  PAPI_L1_DCA                  865.318M/sec   83412868652 refs 

  PAPI_FP_OPS                                           0 ops 

  User time (approx)            96.396 secs  221709946612 cycles  

100.0%Time 

  Average Time per Call                          0.024280 sec 

  CrayPat Overhead : Time         0.0% 

  HW FP Ops / User time                                 0 ops   

0.0%peak(DP) 

  HW FP Ops / WCT 

  Computational intensity         0.00 ops/cycle     0.00 ops/ref 

  MFLOPS (aggregate)              0.00M/sec 

  TLB utilization              2153.14 refs/miss    4.205 avg uses 

  D1 cache hit,miss ratios       97.5% hits          2.5% misses 

  D1 cache utilization (misses)  40.37 refs/miss    5.047 avg hits 

 


