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Abstract 
GROMACS (GROningen MAchine for Chemical Simulations) is a molecular 

dynamics package primarily designed for simulations of proteins, lipids and nucleic 

acids. It was originally developed in the Biophysical Chemistry department of 

University of Groningen, and is now maintained by contributors in universities and 

research centres across the world. GROMACS is one of the fastest and most popular 

software packages available, and can run on CPUs as well as GPUs. It is free, open 

source released under the GNU General Public License. 

GROMACS has been parallelised using a hybrid MPI + OpenMP model, which is 

able to scale to several thousand nodes. There are at least three different 

parallelisation methods used in the code that can be selected at runtime.  

This project worked to improve the performance of the different parallelisation 

methods used on the HECToR system by implementing some internal communication 

routines with single-sided equivalents, using the SHMEM communication library. 

Results show that the replacement of MPI routines by one-sided equivalents does not 

affect performance, although current limitations in the programming model and the 

implementation limits performance benefit. 
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1 Introduction 
This report documents the work performed during the dCSE project titled 

“Improving the scaling and performance of GROMACS on HECToR using 

single-sided communications”. The project has been undertaken at EPCC, The 

University of Edinburgh, in conjunction with Professor Berk Hess, from the KTH 

Royal Institute of Technology, Stockholm, and Dr Andrew Turner and Dr Ruyman 

Reyes from EPCC, University of Edinburgh. 

The project attempted to reduce the computational resources required to undertake 

scientific simulations, enabling more efficient use of the resources provided by the 

HECToR service (and other HPC systems), and reducing the runtime required to 

undertake simulations for large scale problems. 

1.1 GROMACS 

GROMACS[1] is a versatile package to perform molecular dynamics, i.e. simulate the 

Newtonian equations of motion for systems with hundreds to millions of particles. 

It is primarily designed for biochemical molecules like proteins, lipids and nucleic 

acids that have a lot of complicated bonded interactions, but since GROMACS is 

extremely fast at calculating the non-bonded interactions (that usually dominate 

simulations) many groups are also using it for research on non-biological systems, 

e.g. polymers. 

GROMACS supports all the usual algorithms a user would expect from a modern 

molecular dynamics implementation. 

It also features high performance compared to all other programs. Since in 

GROMACS 4.6, the innermost loops are written in C using intrinsic functions that the 

compiler transforms to SIMD machine instructions, to utilize the available 

instruction-level parallelism. These kernels are available in both single and double 

precision, and are supported by all the different kinds of SIMD support found in x86-

family processors available in January 2013. 

GROMACS also supports CUDA-based GPU acceleration using NVIDIA devices. 

The parallel implementation uses MPI and OpenMP to scale up to thousands of cores. 

  

1.2 HECToR 

HECToR[2] (HECToR), a Cray XE6 computer, is the UK National Supercomputing 

Service.  This project utilised the Phase 3 incarnation of the system.   Phase 3 of 

HECToR consists of 2816 nodes, each containing two 16-core 2.3 GHz ’Interlagos’ 

AMD Opteron processors per node, giving a total of 32 cores per node, with 1 GB of 

memory per core. This configuration provides a machine with 90,112 cores in total, 

90TB of main memory, and a peak performance of over 800 TFlop/s. 

1.3 Test Cases 

Two different test cases have been used for benchmarking the GROMACS simulation 

package.  

1.3.1 NADP-DEPENDENT ALCOHOL DEHYDROGENASE in water  

The first test case used in this study is solvated alcohol dehydrogenase (ADH) in a 

cubic unit cell (134,000 atoms in total). This system has issues with load balancing. 
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1.3.2 Grappa test case 

The second test case used in this study is a water/ethanol mixture (Grappa). This test 

case is available in three sizes and shows good load balancing, as the system is very 

homogeneous. 

1.3.3 Regression tests 

 

In addition to the performance benchmarks mentioned, we have made extensive use 

of the GROMACS test suite, with various combinations of threads and ranks, to 

ensure correctness of the code at every stage. 

1.4 Objective 

 

We aim to improve the performance of the inter-task communications of GROMACS 

by replacing the calls to standard MPI two-sided communication routines with a 

single-sided communication interface which can be implemented using different 

single-sided communication libraries (for example, SHMEM, Fujitsu Tofu 

interconnect, Infiniband verbs). On HECToR we will implement the interface using 

calls to the single-sided, Cray SHMEM communication routines. SHMEM has been 

selected as it is currently available in a form that can give excellent performance on 

Cray MPP machines (such as HECToR) and is also currently an area of active 

development through the OpenSHMEM[3] initiative. OpenSHMEM currently have a 

number of reference implementations but no high-performance versions of their 

libraries.  

 

For the remainder of this report we will first provide an initial performance analysis 

and benchmarking of GROMACS and SHMEM in Section 2. We will provide 

implementation details in Section 3, with a description of each one of the 

implemented changes. Then, in Section 4 we analyse the performance of the 

implementation, showing profiling results and final benchmarking results for the 

provided test cases. 

To conclude, conclusions and final remarks are provided in Section 5. 

2 Initial Performance 

3.1 Initial GROMACS Benchmarking 
Our initial benchmarking is based on the ADH Cubic test case supplied by the 

GROMACS developers using both pure MPI and hybrid MPI+OpenMP (with 

multiple OpenMP threads per MPI task). The performance as a function of number of 

HECToR nodes is shown in Figure 1. 
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Figure 1: Performance of GROMACS on HECToR Phase 3 for ADH Cubic test case using 

automatic PME load balancing. 

 
The data shows that the pure MPI version of GROMACS scales well up to 24 nodes 

(768 tasks) for this benchmark. The hybrid version with two OpenMP threads per 

MPI task generally shows lower absolute performance but is able to exploit more 

cores (up to 32 nodes, 1024 tasks). Using higher numbers of MPI tasks for this 

benchmark is problematic due to issues matching the parallel domain decomposition 

to the larger task count. 

3.2 Initial GROMACS Profiling 
The current GROMACS code has been profiled using CrayPAT[4] while running the 

ADH Cubic benchmark for a variety of core counts. We have used tracing 

experiments to profile the code and gather MPI message statistics. 

Table 1 provides an overview of where time in the code is spent when using both 64 

and 512 MPI tasks. We can see that, as expected, when we increase the number of 

tasks, the MPI communications become a significant portion of the calculation. In 

particular, the MPI point-to-point routines (MPI_Sendrecv and MPI_Recv) take up 

the majority of the communication time. 
Table 1: Sampling results for GROMACS 4.6.0 on HECToR Phase 3 running the ADH Cubic 

test case. % values indicate average amount of time spent in named routine. 

Function 64 MPI Tasks 512 MPI Tasks 

USER 76.7% 49.1% 

 Main 76.7% 49.1% 

MPI 22.5% 47.4% 

 MPI_Recv 4.6% 27.1% 

 MPI_Sendrecv 6.7% 11.3% 

 MPI_Alltoall 1.2% 5.0% 

 MPI_Waitall 9.6% 2.9% 

MPI SYNC 0.8% 3.5% 

 MPI_Alltoall - 1.5% 

 MPI_Bcast - 1.5% 

SYSTEM ROUTINES 0.0% 0.0% 
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Figure 2 shows how the message size distribution changes for the MPI_Sendrecv 

routine as a function of number of MPI tasks. At 512 MPI tasks 70% of the messages 

are small (<4KB) and at 768 tasks this share has increased to over 80%.  
Figure 2: Distribution of MPI_Sendrecv message sizes as a function of number of MPI tasks for 

the ADH Cubic benchmark in a pure MPI calculation. 

 
 

3 SHMEM Implementation 
This work focused on improving the performance of the inter-process communication 

using SHMEM. The implementation details are described in the following 

subsections. The majority of the effort invested in the implementation has been 

devoted to circumvent the considerations listed below without breaking the overall 

GROMACS modularity. 

3.1 SHMEM considerations 

To integrate the SHMEM implementation with the ongoing GROMACS 

development, we forked the 4.6.3 release of the package repository and created a new 

public development branch with the integrated SHMEM improvements.  

A build-time option has been added to the GROMACS CMake which enables the 

experimental SHMEM support (GMX_SHMEM). This option tests for the existence 

of either Cray or OpenSHMEM support in the platform, and enables the appropriate 

macro definitions if it is found. Although the performance figures shown in this report 

are based on the Cray SHMEM implementation, the code can be built in platforms 

using the OpenSHMEM implementation. 

3.1.1 Programming model limitations 

The logically shared, distributed memory access (SHMEM) routines provide low-

latency, high-bandwidth communication for massively parallel programs.  

Applications implemented in SHMEM follow the Single Program Multiple Data 

(SPMD) model, hence, no process can be added or removed from the group, and all 

processes execute the same application. 

This contrasts with the GROMACS approach of using MPMD to solve the Particle-

Mesh-Ewald method (PME) on a predetermined subset of nodes. To facilitate the 

work, we have disabled this feature in the command line and we assume that all nodes 

perform the PME (-npme 0).  
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This may hinder performance at larger node counts, limiting the scaling to the 

performance of the AlltoAll routine.  

Although it would be possible to modify GROMACS so that all nodes compute PP 

but only a subset of them will compute the PME, the development effort required 

would exceed the time allocated for this project.  Some ideas on how to modify the 

GROMACS source to allow the usage of PP and a subset of PME are provided in the 

Appendix A. 

3.1.2 Memory allocation 

Another consideration for using SHMEM is the requirement of using symmetric 

memory for all the inter-process communication routines. Symmetric memory is 

allocated using special routines (shmalloc, shrealloc and shfree). This requires 

identifying all the possible allocations of the variables involved in communications 

and replacing them with their symmetric counterparts. 

In addition, the symmetric memory routines contain an implicit global barrier, thus we 

had to ensure that these allocations were performed simultaneously (and with the 

same size) across all ranks. 

 
Figure 3 Memory layout of a SHMEM program. Notice that the Symmetric Heap (SHMEM in the 

figure) has the same starting base address in all ranks. When a symmetric allocation routine is called in 

all PEs, the heap grows symmetrically. Since the pointer to buff is the same, put/get routines can put 

data using the same address in all ranks. 

 

To allocate symmetric memory within GROMACS, we have added symmetric 

variants of the already existing routines (snew, srenew, smalloc, srealloc, sfree). The 

equivalents of these routines have an extra sh_ before the name (sh_snew, sh_srenew, 
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sh_smalloc, sh_sfree). Note that allocation routines do not check if the allocated size 

across all ranks is the same. 

 

The macro shrenew has been created for convenience, and uses the 

shmem_get_max_alloc routine to compute the maximum amount of memory 

requested across all ranks. The shmem_get_max_alloc routine swaps two 

synchronization arrays (one for odd, other for even calls) to allow consecutive calls to 

the maximum routine without extra synchronization costs. 

 
void * sh_renew_buf(gmx_domdec_shmem_buf_t * shmem, void * buf, int * 

alloc, const int new_size, const int elem_size) 

{ 

 void * p; 

 int global_max; 

 global_max = shmem_get_max_alloc(shmem, new_size); 

 if (global_max > (*alloc)) 

 { 

  (*alloc) = over_alloc_shmem(global_max); 

  sh_srenew(buf, (*alloc) * elem_size); 

 } 

 p = buf; 

    return p; 

} 

3.1.3 Using put or get 

SHMEM offers support for both Put and Get one-sided operations. Put is typically 

much faster than Get, and we have made our best effort to use Put as much as 

possible. However, it is important to note that Put and Get require different arguments 

on the symmetric heap. Put requires the pointer to where the data have to be written to 

be in the symmetric heap, whereas Get is the pointer to where the data has to be read 

the one that have to reside in the symmetric heap. 

In some parts of the SHMEM implementation, we have opted to use Get over Put to 

reduce the number of symmetric memory allocations and facilitate synchronization. A 

good example of this is the implementation of the PME part of the code. 

The Get version of relevant Send Receive routines can be selected using the 

GMX_SHMEM_USE_GET macro. 

3.1.4 Supporting tools available 

Cray environment provides several tools for performance analysis, which include 

support for SHMEM.  

However, debugging SHMEM codes is not an easy task. Despite having access to the 

Cray comparative debugger, sometimes tracking dangling pointers has been an 

exhausting task.  Porting a code to SHMEM, in particular one as large as GROMACS, 

moving incrementally memory allocations to the symmetric heap is not an easy task, 

and prone to errors. When a symmetric memory pointer is de-allocated with a non-

symmetric routine, there is no immediate error in the free: The symmetric heap just 

become inconsistent and may (or may not) produce errors in future allocations. This 

complicates debugging, as errors may appear far from the point where the real 

problem is. 

We have made extensive use of the GROMACS regression tests with various 

configurations to ensure the application returns correct results. 



11 

 

3.2 SHMEM Control structure 

A data structure holding all the control information required to the SHMEM 

communications has been created. It is detailed below. 

 
typedef struct { 

 /* These buffers are used as temporary  

     interchange space for SHMEM routines */ 

    int  * int_buf; 

    int    int_alloc; 

    real * real_buf; 

    int    real_alloc; 

    real * rvec_buf; 

    int    rvec_alloc; 

    void * byte_buf;    

    int    byte_alloc; 

    /* An event array to synchronize shmem operations */ 

    shmem_flag_t * post_events; 

    shmem_flag_t * done_events; 

    /* Array of locks (i-th is the lock for the i-th pe) */ 

    shmem_flag_t * lock; 

    /* wkr and sync arrays for max_alloc routine */ 

    long * max_alloc_pSync1, * max_alloc_pSync2; 

    int  * max_alloc_pWrk1,  * max_alloc_pWrk2; 

} gmx_domdec_shmem_buf_t; 

 

This structure is initialised the init_shmem routine, and can be freed with the 

done_shmem routine, following the example of other data structures inside the code. 

The intermediate buffers are not used in the final implementation, although we keep 

them in the data structure to facilitate possible future work.  

The max_alloc_{pSync1, pSync2, pWkr1, pWrk2} arrays are used to synchronize the 

shmem_int_max_to_all routine used to synchronize the buffer size for the 

reallocation. 

The data structure is created when the simulation starts, and it is associated with the 

communication data structure. It is later associated with specific DD, PD or PME 

control data structures to facilitate access to intermediate pointers. 

 

3.3 Replacement of SendRecv operations in the Domain 
Decomposition part of the code 

The first task undergone in this work was to implement the Send Receive operations 

used in the Domain Decomposition part of the code with SHMEM equivalents. 

The DD part uses pulsed communication, which makes the code a bit simpler and 

reduces the number of communication calls. 

The Domain Decomposition data structure was extended with a pointer to a SHMEM 

control data structure, which contains pointers to synchronization arrays, temporary 

buffers, locks, and other control structures used through the program. The structure is 

initialised when creating the domain decomposition structure.  

The routine dd_sendrecv_{int,real,rvec} were modified so that they use SHMEM 

routines instead of MPI when the build-time option is enabled.  

Although integer interchange routines are implemented in SHMEM they do not 

represent a major advantage on the performance and they are disabled by default. 

This first approach used a temporary symmetric buffer per-data type, to avoid 

replacing all the allocations of the code, as shown in the following listing: 
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void shmem_void_sendrecv(gmx_domdec_shmem_buf_t* shmem,  

                          void* buf_s, int n_s, int rank_s,  

                          void* buf_r, int n_r, int rank_r) 

{ 

 shrenew(shmem, shmem->{type}_buf, &(shmem->byte_alloc), n_s); 

 shmem_lock(shmem, rank_s); 

 if (n_s) { 

  shmem_{type}_put(shmem->{type}_buf, buf_s, n_s, rank_s); 

 } 

 shmem_set_post(shmem, rank_s); 

 shmem_wait_post(shmem, _my_pe()); 

 if (n_r) { 

  memcpy(buf_r, shmem->{type}_buf, n_r * sizeof(real)); 

 } 

 shmem_set_done(shmem, rank_r); 

 shmem_clear_post(shmem, _my_pe()); 

 shmem_wait_done(shmem, _my_pe()); 

 shmem_clear_done(shmem, _my_pe()); 

 shmem_unlock(shmem, rank_s); 

} 

 

To ensure there is enough space to store the communication buffer we call our own 

shrenew routine, which computes the maximum allocation required across all ranks 

and reallocates memory if required. 

The sender PE acquires the lock to gain access to the buffer and put the data on the 

destination PE. The receiver PE will wait (shmem_wait_post) until the sender sets a 

particular flag (shmem_set_post). Then, the data in the symmetric buffer is copied to 

the reception buffer. Both PE can now set an additional flag to ensure reception 

(set_done, wait_done), and, finally, unlock the buffer.  

Using the initial global barrier ensures synchronization. 

The Figure below depicts the communication pattern for this implementation when 

interchanging data in the forward direction. 
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Figure 4 Communication diagram of a forward pulse. After all PE reach the global barrier, each PE 

puts data on the forward node, and then waits to receive data from the backward node. 

 

This approach poses several performance problems. The obvious one is the 

requirement of a global barrier to ensure synchronization. This forces each PE to wait 

for the rest, hindering performance on unbalanced systems such as the ADH test case. 

Also, the requirement for the receiver to copy data from the symmetric buffer to the 

real destination buffer introduces additional overhead, proportional to the amount of 

data transmitted. 

Due to these restrictions, we moved to Send/Recv routines without intermediate 

buffers, therefore modifying the original GROMACS code to use symmetric 

allocation routines (see Section 3.3.1). 

 

3.3.1 Memory allocations 

Our first step to improve the performance of this approach was to move the memory 

allocations of those buffers used in the DD communication to the symmetric heap. 

This required, among others, the creation of new init_state and done_state routines 

implemented the aforementioned symmetric allocation.  

The coordinates and velocities (x and v vectors) of the state have been ported to 

symmetric memory, as they are communicated within dd_move_f and dd_move_x 

routines
1
.  

Most of the data structures used in communications are allocated as follows: 

 
 if (local_buffer_size < number_of_elements * size) 

{ 

    local_buffer_size = number_of_elements * size; 

    buffer = realloc(buffer, local_buffer_size); 

} 

Since the number of elements across all ranks is not constant, the size of the local 

buffer in the MPI version is reallocated only on those ranks requiring it. This is not 

possible on the SHMEM, as it will produce (a) deadlocks if not all processors need to 

reallocate and (b) incorrect symmetric addresses if the size is not the same in all 

ranks. 

To avoid these problems, we re-implement the reallocation computing the global 

maximum of the buffer required and reallocating the same amount in all ranks. 

 
int max = shmem_get_max_alloc(dd->shmem, local_buffer_size); 

shrealloc(buffer, max); 

Note that the reallocation routine contains a global barrier.  

To avoid the constant reallocation of buffers in the domain decomposition, we try to 

move buffer reallocations outside loops when possible, and work with temporary 

buffers in the heap if not.  

For those buffers whose size depends either on the total number of charges or the total 

number of atoms, we pre-compute the maximum number of charges and atoms per 

rank and reuse this value whenever possible, reducing the total calls to the maximum 

collective. 

                                                 
1
 However, the random part of the X update and the P vector for CG minimization still reside on the 

heap, reducing the symmetric memory footprint. 
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The DD control data structure has been extended with a variable that keeps track of 

the maximum number of atoms in a node. This variable is updated when nat_home 

changes, and its value reused in many places to reduce the calls to the max_to_all 

collective. 

3.3.2 Offset swap 

Some of the Send Receive operations used within the domain decomposition involved 

sending data from a buffer and receiving there on a different one. This can be a 

problem when using one-sided communications. Let’s take the following simple MPI 

example. First, we communicate the size of the buffer. Then we do the same with the 

buffer, according from the data received before.  

Note that the position in the receiver changes depending on the received information, 

and that the sender does not now where the data is going to be written in the receiver. 

 
for (int i = 0; i < nelems; i++) 

{ 

  MPI_SendRecv(to_send, 1, MPI_INT, destination[i], 0, 

               to_recv, 1, MPI_INT, source[i], 0,  

               MPI_COMM_WORLD, &stat); 

  MPI_SendRecv(buf[i], to_send, MPI_INT, destination[i], 0, 

               rec[pos], to_recv, MPI_INT, source[i], 0,  

               MPI_COMM_WORLD, &stat); 

  pos += to_recv; 

 } 

 

If we port these Send Receive operations by simply writing the information from the 

sender to the receiver (using a put operation with no intermediate buffer) we will end 

up with incorrect results, as the position where the sender is writing does not 

necessarily match the position the receiver is expecting.  

To overcome this problem, the Sender needs to know where the offset in the receiver 

to put the data. In our implementation, the receiver puts the offset on the sender, and 

then waits for the data to be sent. 

However, it is required to change the signature of the dd_sendrecv_{rvec,real,int} 

functions, so that the offset to the symmetric buffer can be differentiated from the 

pointer address itself. New dd_sendrecv_{rvec,real,int}_off have been created for that 

purpose. The code shown below illustrates the interchange of sizes and offset that 

happens before sending the data. 

 
if ( recv_size > 0 ) 

{ 

 /* Receiver: Put offset on sender */ 

 shmem_int_p(&rem_off, off_r, recv_nodeid); 

 /* Receiver: Put size on sender */ 

 shmem_int_p(&rem_size, recv_bufsize, recv_nodeid); 

 /* Receiver: Ensure delivery (but not reception!) */ 

      shmem_fence(); 

}  

if ( send_size > 0 ) 

{ 

      /* Sender: Wait for offset from receiver */ 

      shmem_int_wait(&rem_size, -1); 

} 
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Another implementation problem related with the offset interchange is that sometimes 

the base pointer where the routine has to put to or get the data from is not symmetric 

across all ranks. For example, in some situations, some ranks will receive the data in 

place while others need to receive the data on a temporary buffer. 

This problem notably appears in some routines used in the domain decomposition. 

Depending if the implementation uses put or get, which buffer we are writing to needs 

to be communicated. The appropriate code can be enabled with pre-processor 

directives (USE_GETMEM or USE_PUTMEM macros). 

The implementation for the interchange of the x buffer in the dd_move_x routine is 

outlined below: 
static int rparams[2] = { -1,-1 }; 

static int call = 0; 

int tmp[2]; 

shmem_wait_for_previous_call(dd->shmem, &call, dd->neighbor[d][0]); 

tmp[0] = cd->bInPlace; 

tmp[1] = nat_tot; 

// First stage: Communicate in place and offset 

dd_sendrecv_int_nobuf(dd, d, dddirForward, tmp, 2, rparams, 2); 

{ 

 rvec * rem_rbuf = rparams[0]?x:comm->vbuf2.v; 

// Second stage: Communicate the data 

      dd_sendrecv_rvec_off(dd, d, dddirBackward,  

                              buf, 0, ind->nsend[nzone+1], 

              rem_rbuf, 

                              rparams[0]?rparams[1]:0, 

                              ind->nrecv[nzone+1]); 

} 

call++; 

After ensuring that both receiver and sender are on the same iteration, we 

communicate the value of the inPlace variable and the offset to the Forward direction, 

so that the senders have the positions where they have to write data in the next Send 

Receive operation. Notice that the sender will use either x or the temporary buffer to 

put the data depending on the value received from the receiver in the previous stage. 

3.3.3 Synchronization 

Our next step was to eliminate the global barrier before the each call to the Send 

Receive operation.  

Since in the domain decomposition all PEs call the Send Receive operations at the 

same point in the code – but not at the same point in time – we can replace the global 

barrier with a call counter. Whenever a rank calls a Send Recv operation, it checks the 

sender and destination values for this routine counter, and waits until the value match 

its own. When the Send Recv operation finishes, it increases the counter. 

This mechanism enables two ranks to synchronize without affecting the rest, thus 

reducing the overhead on poorly balanced codes. We have implemented this 

mechanism as a subroutine (shmem_wait_for_previous_call) and use it thorough the 

SHMEM parts of the code as a replacement for barriers whenever possible.  
void shmem_wait_for_previous_call (gmx_domdec_shmem_buf_t * shmem,         

                                    int * call, int rank) 

{ 

   while ( (shmem_int_g(call, rank)) != (*call) )  

   {  

           sched_yield(); 

   } 

} 



16 

 

Using sched_yield forces the current process to go back to the end of the pending 

queue. This may help the Cray MPI progress thread to continue process messages, or 

other threads to access to the CPU while waiting – which is particularly interesting for 

OpenSHMEM implementations. 

3.3.4  Final Send/Receive implementation 

 
Figure 5 Call diagram of the optimized Send Receive operation implemented in SHMEM. 

For illustrative purposes, Figure above illustrates the call diagram of the Send Receive 

operation using N ranks, where the i-th  rank sends data to the i+1%N rank, and 

receives from the i-1%N rank. Where possible, the sending/receiver part of the routine 

is only executed if there is data to send/receive. 

3.3.5 Send Receive in two directions simultaneously 

In some situations inside the DD part, it is necessary to send information in both 

forward and backward direction. If performed simultaneously, it provides an 

important performance benefit. The dd_sendrecv2_rvec routine implements this 

operation in MPI making use of non-blocking Send / Receive operations. 

We have implemented similar functionality in the new SHMEM implementation 

using non-blocking SHMEM put operations to transfer the information, producing a 

specific dd_sendrecv2_rvec_off routine that puts data in both directions 

simultaneously. 

3.3.6 Reducing the impact of memory re-allocation 

To reduce the impact of the implicit barrier during the memory re-allocation, we took 

advantage of the fact that the size of the communication buffers grows during the 
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initial steps of the simulation, but later it stabilises around a number.  This enabled us 

to implement a simple heuristic that detects the number of times the size of a 

particular buffer has been changed. If in a certain number of iterations this size has 

not changed, we disable the reallocation (and the call to the global max collective). 

In case that at some point after disabling the re-allocation, the size of the buffer is 

increased over the last time it was re-allocated, the code stops the simulation with a 

descriptive message.  

Developers can modify the value of the MAX_SAME macro to set the number of 

times the reallocation is called with the same size before disabling it. The listing 

below shows an example of the implementation of this simple heuristic when 

reallocating the sate data structures. 
{ 

static int nsame_natoms = 0; 

if (nsame_natoms < MAX_SAME) 

{ 

 int max =  shmem_get_max_alloc(dd->shmem, state_local->natoms); 

 if (max > state_local->nalloc) 

 { 

    dd_realloc_state_shmem(state_local, f, max); 

    nsame_natoms = 0; 

} 

 else 

 { 

    nsame_natoms++; 

 } 

} 

else 

{ 

  if (state_local->natoms > state_local->nalloc) 

  { 

   gmx_fatal(FARGS, " New natoms value greater  

                      than old_natoms, increase MAX_SAME \n"); 

  } 

 } 

} 

 

3.4 Replacement of SendRecv operations in the Particle 
Decomposition part of the code 

The particle decomposition (PD) part of the code is relatively simpler than the DD 

part, with less number of lines and a simpler communication pattern. However, since 

this part of the code may be deprecated in the near future, we have only focused on 

correctness and not performance. 

3.4.1 Replacement of memory allocations 

In addition to those memory allocations already moved for the DD part of the code 

the PD part of the code makes use of temporary buffers for some communications. 

These buffers have been moved now to the symmetric heap. Some refactoring work 

was required to move the buffer allocations to ensure all ranks execute the allocation 

instructions. 

For example, in the setup_parallel_vsites routine, there are several calls to the 

add_to_vsite_list routine, which in turns reallocates either the left_import_construct 
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or the right_import_construct.  These reallocations will deadlock if not performed 

symmetrically. 

The SHMEM implementation creates the symmetric buffers after the aforementioned 

loop and copies the initial data to this symmetric buffer. 

In addition, send and receive buffers - which in the MPI implementation were 

allocated to the local size in each rank – are allocated to the maximum size of the 

buffer across all ranks. 

Since the PD part of the code only uses the state_global variable, instead of than 

replicating the global state on local states as the DD part of the code does, the 

allocation of this global state buffer had to be moved to the symmetric heap as well. 

However, the state_global structure is used to load data from the input files, a task 

performed only by the master node. This implies that the symmetric memory cannot 

be allocated at this point. 

Although the logically sound point to do this reallocation would be the 

set_state_entries routine, which fixes the state data structure after the file has been 

initialised and it is called by all ranks, this breaks the modularity of the code, due to 

the fact that all variants of the code (DD, PD, non-pararallel) go through this routine. 

In order to keep the modularity we have modified the partdec_init_local_state 

routine, which initialises the state when using PD, so that the existing coordinates and 

velocities are moved to the symmetric heap at this point, copying the data from the 

global to the local state, rather than reassigning de pointers as the MPI version does. 

Since this is in the initialisation phase, we do not expect to cause major performance 

problems. 
int i; 

int max_atoms =  

        shmem_get_max_alloc(cr->pd->shmem, state_global->natoms); 

sh_snew(state_local->x, max_atoms); 

sh_snew(state_local->v, max_atoms); 

cr->pd->max_atoms = max_atoms; 

if (state_global->natoms) 

{ 

  if (state_global->x) 

  { 

    for (i = 0; i < state_global->natoms; i++) 

 { 

      copy_rvec(state_global->x[i], state_local->x[i]); 

     } 

     sfree(state_global->x); 

     state_global->x = state_local->x; 

  } 

 …    

 

3.4.2 Replacement of the Send Receive routines  

Majority of the Send Receive operations use the gmx_tx_rx routine. We have created 

a set of type-specific versions of these routines and implemented them using our 

previously developed Send Receive routines. 

Those situations where offset were involved have been solved using the same 

mechanism as in the DD part (_off variants of the routines). 

To optimise the MPI implementation, some movement routines implemented a 

deferred send and wait using non-blocking communication, as shown below, in an 

attempt to send and receive from both directions at the same time. 
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start = cgindex[cur]; 

nr    = cgindex[cur+1] - start; 

gmx_tx(cr, GMX_LEFT, cg_cm[start], nr*sizeof(cg_cm[0])); 

start = cgindex[next]; 

nr    = cgindex[next+1] - start; 

gmx_rx(cr, GMX_RIGHT, cg_cm[start], nr*sizeof(cg_cm[0])); 

gmx_tx_wait(cr, GMX_LEFT); 

gmx_rx_wait(cr, GMX_RIGHT); 

 

This is not required in the SHMEM implementation, as there is no need for a receive 

statement. The SHMEM implementation only calls the offset version of the 

gmx_tx_rx routine, as shown below 

 
int start_s = cgindex[cur]; 

int nr_s = cgindex[cur+1] - start_s; 

int start_r = cgindex[next]; 

int nr_r = cgindex[next+1] - start_r; 

gmx_tx_rx_real_off(cr, GMX_LEFT, *cg_cm, start_s * DIM, nr_s * DIM, 

                   GMX_RIGHT, *cg_cm, start_r * DIM, nr_r * DIM); 

  

It is worth noting, from the above code snippet, that pointer arithmetic should be 

taken into account when using offset routines. The offset of the memory is based on 

the size of the datatype. In the snippet, since the communication routine is of type real 

and the cg_cm vector is of type rvec (which is, in turn, a real[NDIM] vector), the 

offset have to be adjusted accordingly. This happens also in the move_rvecs routine, 

where the original code simply used vecs[index[cur ]]  but the code using offset 

interchange requires a not-so-readable offset of index[cur] * DIM. 
gmx_tx_rx_real_off(cr, GMX_RIGHT, *(vecs),  

                   index[cur ] * DIM, HOMENRI(index, cur )*DIM, 

                   GMX_LEFT, *(buf), index[prev] * DIM,  

                   HOMENRI(index, prev)*DIM); 

3.5 Replacement of Send/Receive operations in the Particle 
Mesh Ewald part of the code 

The final part of this project was focused on the implementation of the PME part of 

the code using the SHMEM routines. Due to time constraints, we focused only on 

those routines strictly appearing on the profiling results containing Send/Receive 

operations. 

3.5.1 MPI communicators 

All communications used in the PME part of the code use a separate communicator, 

with routines using this indexing rather than the global one. 

Since there are no subgroup capabilities on SHMEM, we had to convert the 

communicator IDs to global IDs, usable by SHMEM routines. 

The pme_get_global_id routine implements that conversion using the 

MPI_Group_translate_ranks routine, as shown below. 

 
    int pme_get_global_id(pme_atomcomm_t *atc, int nodeid) 

    { 

     int global, ret; 

     int group, wgroup; 
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     ret = MPI_Comm_group(atc->mpi_comm, &group); 

     if (ret != MPI_SUCCESS) 

     … error check … 

     ret = MPI_Comm_group(MPI_COMM_WORLD, &wgroup); 

     … error check … 

     ret = MPI_Group_translate_ranks(group, 1, &nodeid,  

                                           wgroup, &global); 

     … error check … 

     return global; 

    } 

The routine first gets a pointer to both the PME group and the world group, and then 

translates the nodeid rank number to the global rank number. 

We have experienced some difficulties with these MPI routines, producing random 

crashes when called many times, thus, we try to minimise its use as much as possible. 

3.5.2 Send/Receive operations 

Send/Receive operations in the PME part of the code are encapsulated on calls to the 

pme_dd_sendrecv routine. The destination and source nodes for each of these calls are 

determined by the shift of the communication, using the node_dest and node_src 

arrays. These values are converted to global ranks with the pme_get_global_id 

routine. 

We have reused the SHMEM Send/Receive routines from previous sections to 

implement the PME communications. 

However, in this case Send/Receive operations are not necessarily called by all ranks 

at the same point in the code, since some ranks may not communicate at a particular 

shift. Since the shmem_wait_for_previous_call is useless in this situation, other 

mechanism has been used. 

In addition, Send/Receive operations in the MPI implementation rely on separate tags 

for each shift to differentiate messages, which is not possible in the SHMEM 

implementation. 

3.5.3 Redistribution of coordinates and charges  

The redistribution of coordinates and charges in the PME part is performed by the 

dd_pme_redist_x_q routine. This routine put the charges and forces on to a buffer and 

then sends/receive them across all nodes involved in the PME, as shown below. 

 
// Reallocate buffers 

… 

// Communicate the count 

… 

for (i = 0; i < nnodes_comm; i++) 

{ 

 int scount = atc->count[commnode[i]]; 

 pme_dd_sendrecv(atc, FALSE, i, 

                      &scount, sizeof(int), 

                      &atc->rcount[i], sizeof(int)); 

 atc->n += atc->rcount[i]; 

}  

// Copy data to send buffer 

… 

buf_pos = 0; 

// Communicate charges and coordinates 

for (i = 0; i < nnodes_comm; i++) 
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{ 

 scount = atc->count[commnode[i]]; 

 rcount = atc->rcount[i]; 

 if (scount > 0 || rcount > 0) 

 { 

   if (bX) 

   { 

        /* Communicate the coordinates */ 

        pme_dd_sendrecv(atc, FALSE, i, 

                           &pme->bufv[buf_pos], 

scount*sizeof(rvec), 

                           &atc->x[local_pos], 

rcount*sizeof(rvec)); 

   } 

   /* Communicate the charges */ 

   pme_dd_sendrecv(atc, FALSE, i, 

                       pme->bufr + buf_pos, 

scount*sizeof(real), 

                       atc->q + local_pos, 

rcount*sizeof(real)); 

   buf_pos   += scount; 

   local_pos += atc->rcount[i]; 

 } 

} 

 

Since not all nodes had to communicate in all shifts, and not all nodes have the same 

destination and source in all shifts, it is possible that a node that does not 

communicate in the first shift, has to do it on the second shift. Since there are no tags 

in the SHMEM implementation, this processor may write on the buffer while a node 

from the previous shift is still reading data, potentially causing corruption or even 

deadlocks if the offset or done flags are incorrectly modified. 

To avoid this problem, instead of using the traditional Send/Receive replacement, we 

decided to follow a slightly different approach this time, and modify the redistribution 

routine itself rather than the low-level one. 

The SHMEM implementation is depicted below. The main idea is that, since we are 

using one-sided communications, we do not need to communicate the buffer sizes, we 

only need to put the data in the proper place.  

In this case we had two options: Either the sender ranks putting data on the 

appropriate position of the receiver or the receiver getting data from the correct 

positions in the sender.  

Since using get in this case required only the PME buffers to be allocated in the 

symmetric memory we opted in this case to implement the routine using get instead of 

put. 

Instead of using Send/Receive to get the value of rcount, we moved the count array to 

the symmetric heap so the receiver can get it directly from the sender. 

The values of count are computed in the routine pme_calc_pidx_wrapper. We added a 

recount_call field to the atc structure, so we can ensure that we are getting data from 

the correct iteration. We also added an acum_rcount field to the atc structure, which is 

initialised with the accumulated values of the count value (i. e a[i] = a[i – 1] + 

count[i], i > 0 ).  

In this alternative implementation of the redistribution, where the active role is in the 

receiver side, the sender needs to wait until the receivers had retrieved the data. The 

more we can defer this wait, the better we can hide the cost of the PME 
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communication. Currently we have implemented this wait at the end of the 

redistribution routine, but a detailed study of the code may reveal other approaches. 

The wait is implemented using a counter. The static variable used is initialised with 

the total count of data that will be retrieved from the node. 

Each receiver uses an atomic operation to decrease this value in the sender. 

The sender will wait until the value of used is zero again before invalidating the 

buffer. The ready flag tells acts as a barrier, ensuring that the receiver can read the 

used variable, and the data from the count is array is valid. 

This approach allows the receiver to get the data from the sender completely 

independent from the sender, once the ready flag is set. 

 
// Reallocate buffers 

… 

/* Get the num of elements to receive by this PE */ 

for (i = 0; i < nnodes_comm; i++) 

{ 

 int src  = pme_get_global_id(atc,atc->node_src[i]); 

 int rcount; 

 shmem_wait_for_previous_call(atc->shmem, atc->recount_call, 

                                     src); 

 rcount = shmem_int_g(&atc->count[atc->nodeid], src); 

 atc->rcount[i] = rcount; 

 atc->n += rcount; 

} 

// Copy data to send buffer 

…  
buf_pos = 0; 

// Communicate charges and coordinates 

for (i = 0; i < nnodes_comm; i++) 

{ 

  int src  = pme_get_global_id(atc,atc->node_src[i]); 

  while ( shmem_int_g(atc->recount_call, src)  

              != *(atc->recount_call) )  

  {  

    sched_yield();  

  } 

  used += atc->count[commnode[i]]; 

} 

shmem_int_p(&ready, 1, _my_pe()); 

shmem_quiet(); 

for (i = 0; i < nnodes_comm; i++) 

{ 

 int scount = pme_get_global_id(atc, atc->count[commnode[i]]); 

 int rcount = pme_get_global_id(atc, atc->rcount[i]); 

 if (rcount > 0) 

 { 

   { 

    shmem_fence(); 

    while (!shmem_int_g(&ready, src)) 

    { 

  sched_yield(); 

    } 

   } 

   int rem_buf_pos = shmem_int_g(&atc->acum_count[i], src); 

   if (bX) 

   { 

     shmem_getmem(&atc->x[local_pos][0],  

                  &pme->bufv[rem_buf_pos][0],  
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            rcount * sizeof(rvec), src); 

   } 

   shmem_float_get(&atc->q[local_pos],  

                   &pme->bufr[rem_buf_pos], rcount, src); 

   local_pos += atc->rcount[i]; 

   shmem_int_add(&used, (-1) * rcount, src); 

  } 

  { 

     shmem_fence(); 

     // Wait until all processes have retrieved the data 

      while ( (volatile) used ) 

     { 

      sched_yield(); 

      } 

    // Invalidate the buffer data 

    shmem_int_p(&ready, 0, _my_pe()); 

    shmem_quiet(); 

} 

To reduce the amount of time spent waiting for other ranks to finish, we slightly 

modified the part where the rcount is computed, so that several ranks could be 

checked simultaneously, instead of waiting for a particular one to finish, which allow 

us to hide the imbalance in the PME part of the code. 
int remaining[nnodes_comm]; 

int src[nnodes_comm]; 

int rem_count = nnodes_comm; 

int i = 0; 

for (i = 0; i < nnodes_comm; i++) 

{ 

 remaining[i] = 1; 

 src[i] = pme_get_global_id(atc,atc->node_src[i]); 

} 

do 

{ 

 for (i = 0; i < nnodes_comm; i++ ) 

 { 

 if (remaining[i] == 1) 

  { 

   /* Get the num of elements to receive by this PE */ 

   int rcount; 

   if(shmem_int_g(atc->recount_call, src[i])== *(atc->recount_call) ) 

   { 

    remaining[i] = 0; 

    rem_count--; 

    rcount = shmem_int_g(&atc->count[atc->nodeid], src[i]); 

    atc->rcount[i] = rcount; 

    atc->n += rcount; 

   } 

  } 

 } 

} while (rem_count > 0); 

4 Performance analysis of the implementation 
 

4.1 Profiling 
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We have made profuse use of the Cray profiler while working on the implementation 

in order to focus our development effort in those areas where its effect would be 

beneficial. Some partial analysis and outputs are shown below to illustrate the 

evolution of the development process. 

4.1.1 Initial implementation 

Our initial implementation of the Send/Recv routines in the Domain Decomposition 

part of the code revealed the unfeasibility of using buffers locals for the Send Receive 

operations, due to the excessive overhead of the buffer reallocation and the global 

barrier.  

Group % Time Imb. Time % Name 

USER 87.8%   

    

SHMEM 6.1%   

 4.5% 56.5% shmem_int_max_all 

 1.2% 8.08% shmem_barrier_all 

 0.3% 2.0% shmem_put 

MPI 5.8%   

 5.0% 47.5% MPI_Sendrecv 

 

The profiler results above, using 8 cores of a HECToR node with only 10000 

iterations of the ADH test code, revealed the limitations of this approach. Notice that, 

despite only porting part of the domain decomposition send receive routines, the 

barrier and maximum are already 5.7% of the total 6.1% of the time spent in SHMEM 

routines. Also, we are only using intra-node communications, where we expect a 

similar behaviour between SHMEM and MPI. 

4.1.2 Improved Send Recv in domain decomposition 

After replacing the buffered Send Recv routines by non-buffered ones, and reducing 

the number of calls to the maximum collective, the profiler output looked as follows 

(obtained with the same conditions than the previous case) 

Group % Time Imb. Time % Name 

USER 88.1%   

    

SHMEM 5.9%   

 3.1% 64.0% shmem_wait_event 

 1.4% 58.2% shmem_int_wait 

 0.7% 81.3% shmem_int_wait_until 

 0.4% 48.9% shmem_int_max_to_all 

MPI 5.8%   

 5.0% 47.5% MPI_Sendrecv 

 

Notice that the maximum collective has nearly disappeared, and the SHMEM time is 

spent in the wait_event routine. The calltree (shown below) reveals that most of the 

time was spent in the two-way send receive operations, which at this point were 

implemented using first a pulse forward and then a pulse backwards. We expect that 

when using more than one node, the maximum collective would be again the 

bottleneck due to its increased cost. 
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4.1.3 Final profiling analysis 

Group 1 node, 32 cores 16 node,  512 cores 

 MPI (s) SHMEM (s) MPI (s) SHMEM (s) 

Total 2231.71 2189  480.01 530.52 

USER: 1775.49 (79.6%) 1979 (90.4%) 144.00 (30.0%) 195.54 (37%) 

     

MPI 411.31 (18.4%) 31.90 (1.5%) 257.38 (53.6%) 54.46 (10.3%) 

MPI_SendRecv 310.99 (13.9%) 31.76 (35.5%) 109.46 (22.8%) 49.83 (9.4%) 

MPI_AlltoAll   43.90   (2.0%)  126.25 (26.3%)  

MPI_Sync   44.90   (2.0%)   1.83 (0.1%)  78.62  (16.4%)   1.68  ( 0.3%) 

SHMEM  61.53 (2.8%)  65.69 (12.4%) 

shmem_wait  27.87 (1.3%)  11.16  (2.1%) 

shmem_int_g  11.82 (0.5%)  22.71   (4.3%) 

Total comm. 411.31 (18.4%) 93.43  (4.2%) 336      (70%) 121.83 (23%) 

 

 

The table above shows the time spent in the different groups of profiling analysis 

according to Craypat when using 1 and 16 nodes with 100000 iterations of the ADH 

test case. The last row of the table, Total comm, shows the sum of the time spent in 

MPI and the time spent in SHMEM.  Notice the drastic reduction in the time spent in 

communication when using SHMEM. However, it is worth noting that the USER time 

has increased. This is because of the active waiting of the 

shmem_wait_for_previous_iteration. This time comes from the imbalance of the 

application and the problem being executed. The imbalance time in the MPI 
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implementation is shown as time spent in SendRecv or Recv, but this comes to user 

code in our implementation. Notice however that the shmem_wait routines, which 

also are affected by imbalance, are included on the SHMEM time.  

It is worth noting also that the maximum collective does not show up in the profiling 

report. The heuristics added to reduce the number of overall synchronisation improve 

the performance of the SHMEM implementation. Disabling these heuristics increases 

the walltime of the SHMEM implementation up to a 20%. 

This experimental data make us believe that the fine-tuning of these heuristics may 

improve the performance. In particular, tuning these heuristics for the particular 

conditions of each execution (maybe by the means of a user variable or configuration) 

could enhance the performance of the different executions. 

4.2 Performance Benchmarks 

The following subsections illustrate the performance obtained with the benchmark 

codes. This performance figures are extracted from the timing table provided by 

GROMACS. Performance (ns/day) is the overall performance of the execution, DD is 

the time spent in Domain Decomposition and PME is the time spent computing the 

PME. 

Since we are using these internal counters, the imbalance of the application will affect 

time measurement, thus, even the lower time spent in communication will be hidden 

by its effects.  

4.2.1 ADH test case 
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4.2.2 Grappa test case 

45k molecules 
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5 Summary 
In this project we have explored the different possibilities of implementing a one-

sided programming model in a large code base, such as GROMACS. Although 

initially the idea sounded promising, various implementation details affected the final 

performance results. 

We have presented a paper, titled “Introducing SHMEM into the GROMACS 

molecular dynamics application: experience and results”, in the PGAS 2013 

conference (held in Edinburgh) where we present the results and the 

recommendations for other PGAS developers.  

Many decisions in the existing code, aimed to improve the performance of the MPI 

implementation, limited the applicability of SHMEM. 

For example, some routines compressed data into a buffer in order to produce a single 

MPI Send Receive call.  

This is not required in SHMEM, where it would be possible to directly send the data 

to other ranks in separated put calls with lower overhead. 

Ideally, in SHMEM programs the memory is allocated at the very beginning of the 

program, thus the implicit barriers are not a problem. However this is not possible in 

GROMACS, where the data that is communicated is reallocated during the execution. 

In addition, the SPMD model of SHMEM contrasts with the MPMD approach of 

GROMACS. Although it would be possible to replicate the allocations of the PME 

nodes into non-PME nodes and vice versa, the development cost would excess the 

time allocated for the project. 

An alternative implementation using MPI one-sided communications, recently 

adopted in the MPI 3.0 standard, may be seen as better suited given the 

circumstances. The development effort and analysis performed during this project will 

leverage the implementation costs a future MPI one-sided approach, as the major 

areas of improvement and the refactoring has been already performed. 
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Appendix A: PME-only nodes implemented in SHMEM 
 

Discussions with the development team have raised some ideas to overcome the 

limitation of using the same number of PME and PP nodes in the SHMEM 

implementation. Some of these ideas are described below as future reference 

6.1 Using MPMD execution 

Building separate PP and PME binaries and using the aprun MPMD capabilities to 

launch two separate executables on the same MPI_COMM_WORLD communicator 

may overcome the limitations of the memory allocation. Changes in GROMACS 

would be simple. 

However, current Cray SHMEM implementation does not support multiple binaries, 

thus, this is not viable on HECToR. 

6.2 SHMEM subgroups 

Discussions on the OpenSHMEM mailing lists are being held on adding support for 

subgroups of processors in SHMEM. Whether this will include in future releases or 

not is yet to be officially communicated. 

If the SHMEM standard adopts this functionality, the GROMACS SHMEM 

implementation could be easily modified to support this feature. 

6.3 PME in a subset of nodes but PP on all nodes  

Since the PME part of the code only requires an intermediate communication buffer 

allocated in symmetric memory, and it is currently allocated at the beginning of the 

program, it would be possible to use the PME part only on a subset of the nodes. 

However, it is not possible to not execute the PP part, as it contains many memory 

reallocations that cannot be easily replicated on the PME-only nodes. 

The current implementation decides before starting the molecular dynamics 

simulation if a particular node is a PP or PME only. If the number of PME-only nodes 

is set to zero, the current implementation forces that all nodes are PP and PME. 

A detailed analysis of the code reveals that it would be possible to modify the code 

enabling a new alternative where PP nodes can be PP-only or PP and PME. 

Rather than using a Split Communicator operation when splitting the ranks in the 

domain decomposition, the PP communicator would continue to be the whole rank, 

and the PME rank would be the subset. The communication between PME and PP 

nodes would need to be adjusted to ensure the proper redistribution of data. Currently, 

The PP nodes check whether if they are PME also and, if not, they communicate the 

forces to the PME nodes. This check, both in sender (dd_partition_system) and 

receiver (dd_forces_lowlevel), would need to be modified to acknowledge the 

possibility of PP+PME nodes or PP-only nodes. 

However, the most complex part of this modification is adding the code required to 

perform the PME in a subset of nodes without using the PP part of the code. 

Since the current PME-only or PP-PME decision is held before the PP part, it would 

be necessary completely refactor the PP part to (1) disable the current PME 

implementation which does not communicate the forces but assumes local memory 

and (2) create a call to the PME-only part of the code after the force computation and 

before the receive of the forces from the PME-only nodes. 
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These changes require a noticeable effort and a deep collaboration with the 

GROMACS team, as it affects the development of future versions of the software. 

Since the GROMACS package is currently suffering a major re-factoring, this feature 

would need to be discussed in the future. 


