
DL_POLY_4 Algorithmic Improvements

Asimina Maniopoulou and Ian Bush (NAG Ltd.)

Ilian Todorov (STFC Daresbury Laboratory)

Table of Contents
1 Introduction...1
2 Work Package 1: Implementing an Extended VNL scheme...2

2.1Introduction..2
2.2Implementation..2
2.3Results..5
2.4Current Status...11
2.5Conclusions..11

3 Work Package 2: Multiple Time Stepping..11
3.1Introduction..11
3.2Implementation..13
3.3Results..15
3.4Current Status...25
3.5Conclusions..26

4 Overall Conclusions..26
5 Acknowledgements...26

1 Introduction

DL_POLY_4i is a general purpose classical Molecular Dynamics (MD) simulation software
package which has been developed at STFC Daresbury Laboratory ii by I.T. Todorov. The
package is used to model the atomistic evolution of the full spectrum of models commonly
employed in the materials science, solid state chemistry, biological simulation and soft
condensed-matter communities. It has been developed under the auspices of CCP5 iii and
is widely used throughout the UK as well as world-wide. It is a fully data distributed code,
employing methodologies such as spatial domain decomposition, link-cells, Verlet
neighbour listiv and the 3D Daresbury Fourier Transform (DaFT)v. The code demonstrates
excellent performance and has been shown to scale to large numbers of processors.

This proposal comprised two work packages which will improve the effectiveness of
DL_POLY_4. The first work package concerns the redesign of the Verlet neighbour list
(VNL) calculation within the linked cells (LC) scheme. It targets the implementation and
modified utilisation of an extended VNL which will be conditionally updated at every few
timesteps rather than at every timestep. This is described in section 2. The second
improvement, multiple time stepping, regards the implementation of a symplectic scheme
using the Reversible Reference System Propagator Algorithm (RESPA) for less frequent
calculations of expensive operations such as long-ranged Ewald and short-ranged
inter-molecular evaluations. The speed up of this feature will be conditional upon user
specifications.

In all results presented below the runs have been either on HECToR itself or the the
HECToR test and development system (TDS). Also for all results version 4.6 or later of the

GNU compiler suite has been used. However it should be stressed that the code has been
tested on a number of other clusters and workstations, and with other compilers especially
through the development stage.

2 Work Package 1: Implementing an Extended VNL scheme

2.1 Introduction

The linked cells (LC) algorithmvi is an excellent method to parallelise a molecular dynamics
calculation by using equispatial domain decomposition (DD). The simulation cell is divided
into a number of equal volume domains, and each domain is assigned to an MPI process.
As atoms only interact with each other over a finite distance, the “cutoff”, only position data
for atoms near the edges of each domain need communicating for the atomic interactions
to be calculated, provided the cutoff is much smaller than the length of the edge of the
domains. The LC method thus has much in common with the halo exchange methods
used in solving differential equations on grids, except that it is generalised to allow for the
“grid points”, i.e. the atoms, to be disordered in space, and for them to move from time
step to time step. Every timestep the LC algorithm is used to construct a domain specific
list of all unique pairs of atoms. This list is then used in all pair force evaluations such as
Van der Waals, metal, short-ranged Ewald and its estimates as well as for RDF
calculations.

The list evaluation is costly and can takes as much as 40% or 90% of the compute time
per timestep for systems with or correspondingly without Ewald summation requirement for
their electrostatics evaluation. This can be algorithmically reduced without much expense
on memory by enlarging the DD cutoff by a small distance (referred here as shell or
padding) and keeping track on how far particles travel form there position at an update
point. At each timestep after the VNL update it is tested if any particle has travelled more
than half the shell distance in any direction. Only when is this the case the list is updated.
Despite the simplicity of the procedure there will be a number of important implications for
the rest of the code. The most serious of which is that the DD neighbours'
communications of domain crossing particles and associated intra-molecular entities must
be held off during steps when no VNL update is necessary whilst all other communications
function as usual. Furthermore, despite no halo exchange and no local reordering are
needed, a full positional halo refresh must occur. Finally the implementation of periodic
boundary conditions needs careful consideration throughout the whole programme.

2.2 Implementation

The basic idea behind the method is, in essence, to decouple the length of the side of a
link cell as used by the simulation with the length of the potential cut off. Instead the new
link cell side will be at least the cut off plus the shell width specified the user. The nett
result therefore of the method will be a code that uses slightly larger link cells. This has
implications not only for the implementation but also for the performance of the method.

The implementation requires the following steps

1. Implement reading the shell width from the CONTROL file

2. DL_POLY_4 used the variable rcut throughout to indicate both the side of a link
cell and the potential cut off. The first step in decoupling the link cell size and the
potential cut off is therefore to introduce rlnk which will be the new side of a link

cell. This required special care in the routines where the cut off and the link cell size
are being made commensurate with the size of the simulation cell

3. Work through the 30+ routines that used rcut determining whether it should be
replaced by rlnk. This again required care as some routines use rcut in both
senses, and also did require changes to argument lists in a number of places to
pass rlnk as appropriate.

4. Implement generating the VNL for the new larger link cell size

5. Regression testing that the code still works, i.e. check that the decoupling is correct
and works for the case where the modified VNL update is invoked every time step

6. Implement data structures to track the motions of the particles. This was made
general as it has other potential uses in the code, mean square displacements of
atoms being an obvious one. Note that as DL_POLY_4 is a totally data distributed
code this requires a small amount of extra communication when an atom moves
from one domain to another, as the tracking data associated with it needs to be
communicated to the process holding the new domain as well as the atom itself.

7. Implement detecting when any particle in the simulation has moved sufficiently far
to trigger the need for a VNL update

8. If a VNL update is not required:

a) (Optional: Compress the VNL)

b) Avoid calling the routines that export atoms to the appropriate neighbouring
domain

c) Modify the routines that update the halo of a domain appropriately

9. Check that periodic boundary conditions are still being correctly implemented

10.Regression testing of the new code for a variety of shell widths

Steps 8 and 9 require some expansion, while point 10 ultimately also provided the
numbers reported in the results section.

For step 8 we will address the second and third sub-points before returning to the first.
Avoiding a VNL update means that the particle should remain on the process that originally
calculated what neighbours that particle has, as that is the only process with this
information, DL_POLY_4 being a fully distributed memory code. (It is best to avoid
communicating the neighbour list as it is a large object and so would incur significant
overhead). Now as the particle has travelled this can result in a sort of “blurring” of the
domains as the particle may now be outside the spatial domain strictly owned by its
process. In the old code this would mean the particle is communicated to the process
holding the appropriate neighbouring domain. However now we must avoid this
communication because that process will not possess the appropriate neighbour list. Thus
VNL shelling will also involve a small but important reduction in the amount of
communication required. It is small because only a relatively small number of particles
cross a domain boundary at each time step, important because this means the messages
are short, and therefore latency bound.

However, while the export stage may be avoided the resetting of the halos can not. The
halos consist of particles which are owned by neighbouring process, and after a positional
update these particles need re-communicating as the values in the reference process will
no longer be up to date. This caused a problem in that a process in DL_POLY_4 may

completely re-order its particles at each timestep. This is for a number of efficiency
reasons which are not really relevant here. Thus process A could re-order its particles and
then send the appropriate ones to process B to update the halo of the later. Now if the
VNL is being updated each step this is not a problem. However, if this is not the case the
situation can arise where the VNL has been calculated according to the original ordering of
the particles owned by process A, but this is no longer appropriate. Thus to avoid this new
routines had to be added which “deported” the halos with the appropriate ordering (i.e. that
when the last VNL update occurred) to ensure that the interpretation of which particle is
which within the halo is correct on the remote process. It is worth mentioning that this halo
refresh update of positions is crucial for the correct charge density when transitioning from
particles charges to a charge grid as otherwise blurring will lead to wrong density and thus
wrong electrostatics evaluation.

We now return to the first point in step 8 above, VNL compression. This was an attempt at
optimising the use of the VNL. Let us assume that the simulation of interest uses a fairly
complex force field. In such a case the VNL may be employed in evaluating quite a range
of terms, an incomplete list being Van der Waals, short range Ewald and other electrostatic
terms, radial distribution functions, and various metal potentials. In each of these the loops
will be over the whole neighbour list. However, due to the shell a number of the pairs will
correspond to atoms that are separated by more than the cut off, and so the interaction will
be zero. Thus in certain cases it may be beneficial to produce a “compressed” VNL which
is appropriate for just this time step from the full VNL which omits all pairs which are further
apart from the cut off. This compressed list can then be used in the evaluation of the terms
noted above, which one would hope would be somewhat more efficient. In practice we
found the benefit to be small. This is probably due to a number of reasons, the main being

1. Each term can have its own cut off. The compression must work off the largest, and
thus for some terms there may well be many remaining interactions which are still
zero. It also means that we can't avoid the conditional on the distance in the inner
loop of the force evaluation

2. For compression to work well the VNL must be used by many terms, as it will avoid
the evaluation of many zeros in the inner loops. In practical calculations the force
fields are such that it is rare that more than 3 will be used, and indeed some of the
interactions in the above list are incompatible on basic physical terms (for instance
any form of electrostatics and metals). 3 is probably not enough to make
compression a large optimisation.

Thus while the final code does include list compression it will not be covered further as the
nett effect in practical calculations was found to be small.

Step 9 results from the “blurring” of the domains mentioned above, as now a particle may
be positioned such that it is not strictly in the spatial domain of the owning process.
Originally DL_POLY_4 assumed a strict mapping of the particles to the area of space
mapped to the process. The breakdown of this assumption caused a number of subtle
effects in the code, the most important being how periodic boundary conditions are
handled, and the related issue of calculating pair separations. For instance problems could
arise if a particle moved outside the right edge of the simulation cell, but due to the
extended VNL scheme was still owned by a process on the right edge of the box. The
original code would assume it was now held by a process on the left edge of the box and
shift the position by the appropriate lattice vector. This could now cause the interatomic
separations to be incorrectly calculated as the process actually updating the atom
effectively “sees” the atom at the position before the shift, not after. This all required careful

consideration (and a period of frantic picture drawing and confused telephone calls
between Drs Bush and Todorov!). Again, this halo refresh update of positions is crucial for
the correct charge density when transitioning from particles charges to a charge grid as
otherwise blurring will lead to wrong density and thus wrong electrostatics evaluation.

Thus the implementation was reasonably straightforward apart from a couple of fiddly
places. The nett performance effect of all these changes is quite complex. In the next
section we will present some performance results, but just to summarise the effects that
may be expected

1. If the shell is sufficiently wide and the particles are moving sufficiently slowly the
VNL will be only occasionally updated. Thus this should result in a performance
gain.

2. Occasional VNL updating means atoms need to transferred between domain more
rarely and possibly in larger quantities due to the domain blurring. This will result in
less frequent communication with possibly slightly larger message sizes, leading to
less and more effective communications and thus small performance gains.

3. The use of a shell will make the VNL itself a little larger. As evaluation of the forces
requires looping over all the VNL this may lead to a small performance loss.

4. The use of the shell makes the link cells bigger. Thus

a) Where all particles in the extended domain (including the halo) need be looped
over this will be more expensive. This affects evaluation of the VNL itself and
also 3 and 4 body terms.

b) The larger link cells mean a thicker halo, and hence more communication when
resetting the halos.

Thus provided effects 1 and 2 are dominant, which we expect to be the case, we should
see a performance gain.

2.3 Results

We first consider a very simple simulation, that of 256,000 atoms of Argon at 4.2K. The
force field consists solely of Van der Waals terms (as a Lennard-Jones potential), and thus
construction of the neighbour list is a comparatively expensive operation for this
simulation. This is both (i) because the force field is so simple and therefore quick to
calculate, and (ii) because there is only one term in the force field and therefore there is no
reuse of the neighbour list in multiple terms. Thus avoiding calculation of the neighbour list
should be very beneficial, and this is further helped by the temperature being very low
meaning the atoms are barely moving at all. This last point should mean that the
neighbour list only needs recalculation very infrequently. All in all this should be close to a
“best case scenario” for the method!

It can be seen that the expectations are largely borne out. A shell of 0.5 Å results in a
approximate doubling of the performance of the code, which is as expected as the
construction of the VNL is significantly more expensive than the actual evaluation of the
forces. This also suggests that the VNL is only being very rarely recalculated, which is
indeed the case. For a 0.5 Å shell the calculation of the VNL is being skipped over 90% of
the time.

It can also be seen that the larger 1.0 Å degrades the performance. This is due to a
number of reasons (as discussed above), the most important being that

1. The larger shell implies a larger VNL which contains extra interactions which
correspond to pairs of atoms further apart that the cut off of the potential. Thus
some loops needed at each timestep, either in the evaluation of the potential or in
the compression stage, will be over this longer list even if most terms are rejected,
and therefore will increase in expense as the shell is made larger.

2. Larger link cells, as implied by the larger cell, also imply thicker halos and so mean
more atoms must be communicated when the halo update or refresh occurs at the
end of each timestep. Thus again a larger cell can result in more computational
expense.

Thus this simple example both behaves as we expect, which is satisfying, and illustrates
the point that for each simulation case there will be an optimum width of the shell. To get
the best out of the method will, therefore, require some experimentation by the user. This
will typically consist of a few short runs with a limited number of timesteps, and measuring
the performance as a function of the width of the shell. However, we will make some
general recommendations for suitable “first guesses” later in this report.

Graph 1: Efficiency for 256,000 atoms of Argon

0 200 400 600 800 1000 1200
0

50

100

150

200

250

300

Rshell=0.0

Rshell=0.1

Rshell=0.2

Rshell=0.5

Rshell=1.0

Processes

T
im

e
st

e
p

s/
s

Graph 2 illustrates this point by showing how much faster the simulation runs as a function
of both the shell thickness and the number of MPI processes. It can be seen that there is a
clear maximum in the performance for a shell of 0.5 Å

It can also be seen that at up to ~256 cores the improvement increases, implying better
scaling than the original code, while after that there is a slight degradation in scaling. It is
difficult to pin down exactly the reason for this, but it is likely that at low MPI process
counts the reduced communication due to not needing to communicate domain crossing
particles when a VNL update is not performed is dominant, while at higher process counts
the extra communication the overhead of the thicker halo becomes more significant.

Despite its simplicity the Argon case is representative of the behaviour seen for other
cases – a small shell can result in an appreciable improvement (though rarely as large as
above) and up to a certain point scalability can improve, but a thicker shell degrades
performance. It is not always as easy to diagnose each case, for after all the best
thickness of the shell depends upon the detailed dynamics of the material and it is to solve
that problem that we are performing the simulation in the first case, but we shall illustrate
the behaviour with two more cases.

The first is 216,000 ions of common salt simulated at 500 K. Compared to the previous
case this simulation requires more complex force field which now contains the expensive
electrostatic terms and so means the the VNL update is relatively less expensive. Further
the higher temperature implies greater atomic motion, and hence one would expect that
the VNL update can be skipped less often. We therefore expect a less dramatic
improvement, and the results are shown in graph 3

Graph 2: The improvement due to shelling for 256,000 atoms of Argon

0 0.2 0.4 0.6 0.8 1 1.2
0

0.5

1

1.5

2

2.5

8

16

32

64

128

256

512

1024

Rshell

Im
p

ro
ve

m
e

n
t

It can be seen that for this case a thin shell of 0.1−0.2 Å results in a much more modest
improvement of approximately 20%. It can also be seen that the lines for the thicker shells
finish at 512 cores. This is because the shell implies a larger link cell, and thus the
minimum size of a computational domain is also larger. Therefore, the maximum number
of domains that can fit in the computational box is reduced, and hence so is the maximum
number of MPI processes that can be used. In this case the increased link cell size has
resulted in it not being possible to run the simulation on 1024 cores.

The next case we shall consider is a the TIP4P model of water. The simulation contains
232,416 sites and has been run at 295K, and the water molecules are modelled with rigid
bodies. Graph 4 shows the results.

Graph 3: Efficiency for 216,000 atoms of NaCl

0 200 400 600 800 1000 1200
0

10

20

30

40

50

60

Rshell=0.0

Rshell=0.1

Rshell=0.2

Rshell=0.5

Rshell=1.0

Cores

T
im

e
st

e
p

s/
s

For this more complex simulation the best shell thickness is less clear and depends upon
the number of cores, but a pragmatic conclusion is that a 0.2 Å shell is a good choice
across much of the range and can give a roughly 30% or better improvement in
performance. However, it is now difficult to diagnose exactly what contributions are
causing the shape of the observed curve.

The modified VNL update code has been checked against all 46 of the standard DL_POLY
test cases for a shell thickness of 0.1, 0.2, 0.5 and 1.0 Å and also on a wide range of core
counts. In the vast majority of cases a marked improvement in performance was observed,
and across all cases an average improvement in run time of ∼ 20% was achieved. It is
probable that this figure could be improved with a more thorough search, but in the time
scales available this was not possible. Throughout these tests it was also observed that a
shell thickness of 0.2 Å, while not always ideal, was generally a good “first guess” at the
thickness.

The only cases where a marked degradation was observed was for simulations involving 3
or 4 body forces, and this can be traced back to the larger link cells implied by the method.
To see why this is it is best first to remember how the VNL for the two body terms is
actually constructed: The box is divided into link cells, and then the VNL is constructed
using the fact that the only atoms a given atom can interact with are in its link cell or
neighbouring ones. Thus it can be seen that larger link cells will result in the VNL being
more expensive to construct as more atoms must be considered, but this effect is
alleviated by the shelling allowing us to only construct the VNL occasionally. The VNL is
then used within the force evaluation inner loops to select which atoms interact. One could
follow a similar procedure for the three body terms, but the resulting three body neighbour
list would consume unacceptable amounts of memory. Thus instead DL_POLY uses the
link cell structure to determine neighbours while inside the main 3 body loops, effectively
generating the 3 body neighbour list on the fly. This save huge amounts of memory but
does mean that it suffers from the effects of increasing extended domains (including their
now thicker halos), and also it need be done every time step. Hence VNL shelling can

Graph 4: Efficiency for TIP4P water

0 100 200 300 400 500 600
0

1

2

3

4

5

6

7

8

9

ref

Rshell=0.1

Rshell=0.2

Rshell=0.5

Rshell=1.0

Cores

T
im

e
st

e
p

s/
s

have a marked negative effect on the time to solution for problems that use three body
terms, and four body forces are similar for the same reasons.

2.4 Current Status

The code has been merged with the main branch and should be released to users soon.

2.5 Conclusions

The extended VNL scheme described in the proposal has been completed. For the vast
majority of simulations a marked improvement of the order of 20% can be observed, and a
shell of 0.2 Å is often a good first guess, though one must experiment a little to find the
ideal choice. The one exception to this is for simulations involving 3 and 4 body forces,
where a marked decrease in performance may be observed. Due ultimately to memory
constraints they can not exploit the new scheme advantageously, and thus should avoid its
use.

3 Work Package 2: Multiple Time Stepping

3.1 Introduction

Multiple time stepping is a feature especially popular in, although not limited to, the
biochemical area of computational chemistry. The idea of symplectic multiple time
stepping, RESPA, was first suggested by Tuckerman, Berne and Martynavii and elegantly
researched by Humphrey, Freisner and Berneviii. The idea behind the methodology is to
exploit the fact that different terms in the force field evolve on different time scales. For
instance the long range contribution to the Ewald terms changes only very slowly when
compared to terms involving intra-molecular motion, such as vibrations. Now, as is usual
with the numerical integration of differential equations, the fastest motion determines what
the timestep must be to ensure numerical stability of the solution (c.f. The
Courant-Fredrichs-Lewyix condition). However, in standard molecular dynamics every term
in the force field is evaluated at every timestep. Thus if a very short timestep is required to
correctly integrate molecular vibrations, it will also force the evaluation of the long range
Ewald potential at every timestep, despite the later hardly varying at all on the time scale
being examined. This can be very expensive, and instead the RESPA method provides a
way to evaluate the slowly varying terms in the user specified force field only when
required, whilst both keeping the short timestep required for the more quickly varying
terms, and only causing a small degradation in the quality of the results. Thus as certain
terms are only evaluated infrequently rather than at every step one would hope for an
improvement in time to solution.

The mathematics of RESPA ultimately depend on the Trotter expansion of the Liouville
propagator. In terms of the software the nett result is fairly straightforward. The terms in
the MD force field are split into a number of classes and the fastest varying terms (class 1)
are evaluated every timestep. Every n1 timesteps the next most quickly varying (class 2)
are updated. Similarly every n2 times class 2 is evaluated (and hence at n1*n2 evaluations
of class 1) class 3 is updated, and so on to the very slowest varying class. When
combined with a velocity Verlet type integrator within an NVE ensemble the (ancient)
Fortran-like pseudocode for 4 classes is (taken from Humphreys et al.)

Figure 1: "Pseudocode" for a 4 class RESPA
implementation

It can be seen the class 4 forces are evaluated only once per large cycle, so if these are
comparatively expensive this scheme can markedly reduce the time for the whole
simulation. It can also be seen that the parameters required for RESPA that differentiate it
from a conventional MD run are simply n1, n2 etc. in the above. In our implementation we
follow the four class method, so in what follows a run may be characterised by these three
numbers. Thus we will denote a run with n1=1, n2=4 and n3=2 as “1:4:2”. We shall also use
1:1:1 as shorthand for a conventional, non-multiple time stepping, molecular dynamics run.

The multiple time stepping, and in particular these 3 numbers, are controlled by the user.
Larger values will lead to larger computational speed-ups as more evaluations of certain
terms in the force field are avoided. However it will also lead to worse energy
conservation, and it is up to the user to find suitable values for the specific cases they are
interested in.

3.2 Implementation

As noted above we follow the 4 class implementation of Humphrey et al. Thus the first job
is to classify the terms in the DL_POLY force field. We adopted the following break down
of the force terms:

Class 1 (i.e. fastest varying): Core-shell, tethered atoms, harmonic bonds

Class 2: Tersoff, three body, four body, angles, dihedral, inversions

Class 3: Metal, Van der Waals, “Short range” electrostatic terms (including Ewald)

Class 4: (i.e. slowest) “Long range” Ewald

It can be seen that physically classes 1 and 2 are intra-molecular terms, 1 corresponding
to (extremely!) approximate electronic effects and hard vibrational modes, class 2 to
essentially soft vibrational modes, while 3 and 4 deal with inter-molecular effects. Please
also note that each of the above short descriptions may cover more than one routine within
the code, as each type of term my be modelled in more than one way.

Thus in essence the implementation is fairly straightforward

1. Implement storage of the 3 integer parameters as required by the method

2. Implement methods for the user to set these parameters

3. Add code to analyse the force field being used by the simulation to identify which
classes are being used

4. Using that classification make sure that the routines implementing those terms are
only called if the appropriate class is active. Note that both this stage and the
previous are large jobs in themselves due to the complexity and generality of the
force field supported by DL_POLY_4

5. Adapt the integration schemes to the scheme roughly outlined in the introduction

While in principle this is straightforward as always with programming the devil is in the
detail. One such devil is that in a number of cases the factorisation into classes is not
complete. The most problematic of case of this for us was for the constant pressure
integration algorithms, something we shall return to later, but a simple example is the
removal of the motion of the centre of mass of the system. This is essential in molecular
systems to avoid the infamous “flying ice cube”, but is also a very good idea for periodic
systems. This does, however, require the total nett force on the system which, within the
RESPA framework, method may not always be possible to calculate because the

appropriate force terms may not be up to date.

However, the main daemon we encountered were the integrators. To cover all common
simulation cases integrators are required for the following cases

• NVE – i.e. a simulation with a constant number of particles (N), with a constant cell
volume (V) and a constant total energy

• NVT – i.e. constant number, constant volume, constant temperature

• NPT – i.e. constant number, constant pressure, constant temperature

◦ Note both isotropic and anisotropic pressure tensors are required

• Rigid bodies – typically each integrator comes in two forms, one dealing with rigid
bodies, one that deals with the simpler case where they are not present

Note that both NVT and NPT can be implemented by a number of ways, and each variant
has different strengths and weaknesses, and DL_POLY_4 supports a variety of these
methods in each case. We also note that the discussion so far has assumed a velocity
Verlet (VV) type integration method, while DL_POLY_4 supports note only VV but also
leap-frog Verlet (LFV). The nett result is that DL_POLY_4 supports 60 integrators, each of
which in principle needs to be changed to implement RESPA!

To simplify matters it was decided a priori not to support the LFV methods within RESPA.
This is ultimately because the mathematics for RESPA under the LFV method are only
approximate as it does not work with the Trotter expansion, while the VV method does not
have this difficulty. Still 30 integration schemes to implement and test fully is a large
amount of work, and it was in this point that we realised the original proposal was a little
too ambitious. This rapidly became clear once we reached this stage of the
implementation because it was not appreciated quite how much change would be required
in each of the integrators when the proposal was written. In practice while a simple NVE,
non-constrained integrator is straightforward (and that is what the scheme outlined in the
introduction addresses) in a real, general purpose molecular dynamics code the addition of
such features as constraints, thermostats, barostats and similar markedly complicates the
code. In fact the changes themselves are not that complex, at least for the NVE and NVT
ensembles, and mainly require the integrator to know which class it is dealing with to allow
it to make the correct updates of positions and velocities. This can be seen in the scheme
above where while at all class levels the velocities are updated it is only for the most
quickly varying class that the positions are updated, and this especially complicates the
implementation of constraints. These require an iterative update scheme that should only
be applied for the innermost class. Another change that is class dependent is the scaling
of the time scale in the velocity updates. A further small complication is that the most
quickly varying class is not necessarily class 1 as it depends on what terms are in the
force field used by the simulation. The current implementation carefully avoids overheads
due to calling routines that result in “no operation” due to the force field not containing
terms in the appropriate class.

So we found that a larger number of small but detailed changes were required than we
originally anticipated, and that that was in a large number of fairly complex routines. It was
found to be particular hard for NPT ensembles and rigid bodies, and as a result integrators
using either of these classes were not completed (though work has been started in both
cases). As this has now been addressed in a subsequent proposal we will only briefly
explain the issues encountered here, but the essence is as follows.

For a constant pressure simulation the size of the simulation box must change as required

to preserve the pressure. This may be a simple scaling of the lattice parameters in the
isotropic case, or it may be that the whole box shape can change in the anisotropic case.
These changes depend on the total virial for the system, and this immediately highlights
the problem, as within the RESPA scheme the total virial may not always be available, or
at least up to date. Coupled with this are the fact that changing the box shape will change
the coordinates of the particles in space, further complicating the integrator. In fact special
variants of the RESPA scheme have been developed to deal specifically with the constant
pressure scheme (e.g. XI-RESPA and XO-RESPAx), and it is these that the follow up
proposal will need to implement.

Rigid bodies complicate the scheme because they don't only have a velocity and position
that needs updating, they also possess angular momentum, something point particles
obviously lack. Outside of a RESPA scheme it is straightforward if a little complicated to
implement the integrator without reference to angular momentum or similar quantities and
this is how it is done in DL_POLY, where the required operations are expressed in terms of
quaternions. Whilst this is very efficient, in the mathematical expressions that result it is
not entirely obvious that the application of the forces from the for individual classes in turn
will be the same as applying the total force all at once (obviously this must be true within
the approximation of the RESPA shadow Hamiltonian). This opacity further complicates the
implementation of RESPA within an already complex set of routines, and as a result the
work in this are has also not been completed.

Thus in summary we have successfully implemented and fully tested the NVE integrator,
and also all 6 NVT integration schemes which do not use rigid bodies. Partially completed
schemes exist for some NPT and rigid body routines. In each of these cases they have
been shown to run correctly for n1=n2=n3=1 (a very important first step), but time was not
available for full testing and debugging and thus we feel we can not claim these integrators
are ready for release. However it must be stressed that those that have been completed
do allow a wide range of important and interesting work to be accomplished, and it will be
shown in the next section that they can result in a very appreciable improvement in
performance.

3.3 Results

RESPA

Parameter

Average Energy %Energy
Difference

RMS
fluctuations
in energy

RMS/Energy Time/s % Time
difference

Timesteps/
s

1:1:1 -9.6965*108 0.000 47.5600 0.0000000 42.5 0.00 12.06

1:1:2 -9.6965*108 0.000 50.8530 -0.0000001 34.0 -20.03 15.08

1:1:4 -9.6965*108 0.000 78.1280 -0.0000001 27.0 -36.40 18.96

1:1:8 -9.6965*108 0.000 266.9400 -0.0000003 27.0 -36.40 18.96

1:1:16 -9.6965*108 0.000 1072.0000 -0.0000011 26.3 -38.18 19.50

1:1:32 -9.6967*108 -0.00825 12504.0000 -0.0000129 26.0 -38.80 19.70

1:1:64 BREAKDOWN

Table 1: 27,000 atoms of NaCl on 128 Cores

The table above shows the results for a simulation of 27,000 particles of common salt
using an NVE ensemble on 128 cores, by DL_POLY_4 standards a small simulation. 2048
timesteps were used, and the simulation was carefully equilibrated before the
measurements reported above were taken. This simulation only has class 3 (Van der
Waals, Short range Ewald) and class 4 (Long range Ewald) terms, and so is a simple
example of the use of RESPA. The conservation of energy, the time to solution and the
quality of the integration is shown as a function of n3, the only RESPA parameter that can
be (meaningfully) varied. This has been systematically doubled until a value of 64 has
been reached, by which time the integration scheme breaks down totally.

It can be seen that the same average energy is reported for values of n3 up to 16, after
which it is clear the calculation becomes increasingly inaccurate. This is also reflected in
the steadily increasing RMS fluctuations in the energy; given this is an NVE ensemble the
energy should be constant, and these fluctuations reflect increasing inaccuracies in the
integration of the equations of motion. It can also be seen that the time to solution
decreases systematically with an increase in n3. Thus the system is behaving as expected
– for a small decrease in accuracy a substantial decrease in time to solution can be
achieved, and the more the requirement of accuracy is relaxed the faster the simulation
runs. It can also be seen that a choice of 1:1:4 for the RESPA parameters results in a very
modest decrease in the accuracy of the simulation but also a marked decrease in
simulation time.

Graph 5 shows the computational efficiency of the calculation as a function of both the
number of cores and the RESPA parameter in terms of the number of timesteps per
second that can be achieved. It is clear that use of RESPA can provide a very marked
improvement in the number of timesteps/s, and so also in time to solution, for all core
counts considered here.

Finally for Sodium Chloride graph 6 shows the speed up as a function of the number of

Graph 5: Timesteps/s for 27,000 atoms of NaCl

0 100 200 300 400 500 600
0

20

40

60

80

100

120

140

160

180

111

112

114

118

Cores

T
im

e
 S

te
p

s/
s

Graph 6: The Speed Up for 27,000 atoms of NaCl

0 100 200 300 400 500 600
0

50

100

150

200

250

111

112

114

118

Cores

S
p

e
e

d
 U

p

cores and the RESPA parameter. The figure assumes perfect speed up to 32 cores, and is
relative to the value measured for the particular RESPA parameter, i.e. the 1:1:2 curve is
speed up relative to a 1:1:2 run on 32 cores, while the 1:1:4 curve is relative to a 1:1:4 run
again on 32 cores. We show this graph to show that RESPA is capable of not only
increasing computational efficiency of the calculation, it can also increase the scalability
(graph 5 conflates these two issues, while graph 6 focuses purely on the parallel scaling).
It can be clearly seen that this is the case, and indeed it is a rare example of “having your
cake and eating it”! Here the reason is that an increases in n3 reduces the number of times
the class 4 terms, i.e. the long range Ewald terms, need be calculated, and so emphasises
the class 3 terms. The long range Ewald terms are expensive and also require a parallel,
distributed memory FFT. This last operation scales less well than many other parts of
DL_POLY_4, and in particular less well than the halo exchange based link cell algorithm
that is used for the class 3 terms. Hence the improvement in scalability.

The next test case we consider is one a simulation of 69,120 atoms of a
Sodium/Potassium Disilicate glass, again a fairly small simulation. Once more the system
was carefully equilibrated and then run for 1024 timesteps. As above we consider the
quality of the simulation first as a function of RESPA parameters, and then then its
computational efficiency and scalability as a function of the number of cores. The main
difference between this case and NaCl is that not only are class 3 and class 4 terms
involved (in fact exactly the same terms as before), class 2 (3 body terms) are also
involved.

The results pertaining to the quality of the simulation are in table 2

RESPA
paramet
er

Average
Energy

%Energy
Difference

RMS
fluctuations
in Energy

RMS/E Time/s % Time
difference

Timestep/
s

1:1:1 -2.0534*1010 0.00000 1991.1 -0.00000010 142.068 0.00 7.21

1:1:2 -2.0534*1010 0.00000 2020.7 -0.00000010 134.431 -5.38 7.62

1:1:4 -2.0534*1010 0.00000 2172.2 -0.00000011 132.506 -6.73 7.73

1:1:8 -2.0534*1010 0.00000 4260.1 -0.00000021 131.832 -7.21 7.77

1:1:16 -2.0534*1010 0.00000 59690.0 -0.00000291 132.319 -6.86 7.74

1:2:1 -2.0534*1010 0.00000 2406.0 -0.00000012 120.981 -14.84 8.46

1:2:2 -2.0534*1010 0.00000 2610.4 -0.00000013 118.981 -16.25 8.61

1:2:4 -2.0534*1010 0.00000 4650.9 -0.00000023 118.289 -16.74 8.66

1:2:8 -2.0533*1010 -0.00487 61678.0 -0.00000300 118.653 -16.48 8.63

1:4:1 -2.0534*1010 0.00000 6178.1 -0.00000030 112.206 -21.02 9.13

1:4:2 -2.0534*1010 0.00000 7754.9 -0.00000038 111.611 -21.44 9.17

1:4:4 -2.0533*1010 -0.00487 73402.0 -0.00000357 111.765 -21.33 9.16

1:8:1 -2.0534*1010 0.00000 43534.0 -0.00000212 108.165 -23.86 9.47

1:8:2 -2.0532*1010 -0.00974 184360.0 -0.00000898 108.372 -23.72 9.45

Table 2: 69,120 atoms of a Sodium/Potassium Disilicate glass on 256 cores

It can be seen that the situation is similar to the NaCl case above; increasing RESPA
parameters result almost always in decreasing computational cost at the expense of
reduce accuracy. The exceptions are within the observed reproducibility of the times on the
machine used (the TDS for HECToR). It can also be seen that in this case changing n2, the
parameter for class 2 and so in this case the 3 body forces, has a greater effect than n3 on
both the time to solution and the accuracy. This suggests that the Van der Waals and short
range Ewald Terms are more important in this simulation than the long range Ewald as it
is the former terms that are calculated less frequently when n2 is increased, while adjusting
n3 only affects the later. Looking at the output of the job supports this. In both this case and
NaCl the FFT grids are approximately the same size (the grid size is a complicated
function of a number of parameters, but the crucial point here is that the simulation box is
approximately the same volume for both systems). Thus the FFT time will be
approximately the same for this case as for NaCl, but due to there being ~2.5 times as
many particles and the O(N) scaling of DL_POLY other portions of the code will be
proportionally more expensive, thus emphasising the class 3 terms. It can also be seen
that again at the cost of a small decrease in accuracy a marked improvement in time to
solution can be achieved (e.g. 1:2:2 or 1:4:2, depending on the accuracy requirements of
the simulation).

Graph 7 shows the computational efficiency.

Again it can be seen that increasing RESPA parameters results in increasing efficiency at
all core counts.

Graph 8 shows the speed up

It can be seen that while increasing n3 again does result in a increases in scalability for the

Graph 7: Timesteps/s for 69,120 atoms of a Sodium/Potassium Disilicate glass

0 100 200 300 400 500 600
0

5

10

15

20

25

111

112

114

118

121

122

124

141

142

Cores

T
im

e
 S

te
p

s/
s

Graph 8: The Speed up for 69,120 atoms of a Sodium/Potassium Disilicate glass

0 100 200 300 400 500 600
0

20

40

60

80

100

120

140

160

111

112

114

118

121

122

124

141

142

Cores

S
p

e
e

d
 U

p

same reasons as before, the decreased importance of the FFT means this effect is small,
and is totally swamped by the effects of increasing n2. This, as noted above, decreases the
time taken for the class 3 terms which scale very well. Thus presumably, though more
work is required to absolutely tie this down, the decrease in scalability is simply due to the
reduction in the amount of work when compared to the remaining communications. These
remain essentially unchanged as they are still required for the class 2, that is 3 body,
terms.

The final case considered is a simulation of 1,2-dimyristoyl-sn-glycero-3-phosphocholine
(DMPC), a lipid, in water. This is a somewhat larger system at 413,896 atoms, and is more
representative of the biochemical systems that RESPA was initially designed for. 512
timesteps were used in the runs, and as before the system was carefully equilibrated. This
system has a large number of terms in the force field, and all four classes are represented:

Class 1: Harmonic bonds

Class 2: Angles, dihedrals

Class 3: Van der Waal's, short range Ewald

Class 4: Long range Ewald

Further some bonds are represented by constraints, and thus the SHAKE procedure is
used within the integrator. Again we consider the quality of the simulation before looking at
the efficiency and scalability.

Table 3 addresses the accuracy of the simulation on 128 cores

RESPA
paramet
ers

Average
Energy

%Energy
Difference

RMS
fluctuatio
ns in
energy

RMS/E Time % Time
difference

Timestep/
s

1:1:1 -5.362*105 0.00000 2.2869 -0.0000043 256.6 0.00 2.00

1:1:2 -5.362*105 -0.00187 2.2996 -0.0000043 234.7 -8.53 2.18

1:1:4 -5.362*105 -0.00187 2.5043 -0.0000047 223.6 -12.86 2.29

1:2:1 -5.362*105 -0.00187 3.3499 -0.0000062 164.6 -35.86 3.11

1:2:2 -5.362*105 -0.00373 3.5209 -0.0000066 153.2 -40.30 3.34

1:2:4 -5.361*105 -0.01492 7.8280 -0.0000146 148.2 -42.24 3.45

1:4:1 -5.360*105 -0.03917 35.9780 -0.0000671 118.2 -53.93 4.33

1:4:2 -5.359*105 -0.05595 35.8130 -0.0000668 117.7 -54.13 4.35

2:1:1 -5.361*105 -0.01306 11.6980 -0.0000218 157.6 -38.57 3.25

2:1:2 -5.361*105 -0.01306 11.5410 -0.0000215 146.8 -42.78 3.49

2:2:1 -5.359*105 -0.04663 28.8950 -0.0000539 111.5 -56.54 4.59

2:2:2 -5.358*105 -0.06528 32.7840 -0.0000611 105.9 -58.75 4.84

Table 3: DMPC in water on 128 cores

Again a similar story is seen, increasing RESPA parameters result in a decrease in
simulation time, which in this case is particularly marked – if accuracy constraints are not
very high it is possible to better than half the time required by the simulation.

Graphs 9 and 10 are again the efficiency and scalability of the calculation.

While it can be seen that increasing the RESPA parameter again decreases the time to
solution at all core counts the choice of these parameters now makes little difference to the
speed up. However given the complexity of the force field and the mapping of that force
field onto the implementation within the code it is difficult to interpret the data further.

3.4 Current Status

As noted above the code has been completed for the NVE ensembles and 6 NVT

Graph 9: Timesteps/s for DMPC in water

20 40 60 80 100 120 140
0

2

4

6

8

10

12

14

16

111

112

114

121

122

124

Cores

T
im

e
 S

te
p

s/
s

Graph 10: The Speed up for DMPC in water

20 40 60 80 100 120 140
0

20

40

60

80

100

120

111

112

114

121

122

124

Cores

S
p

e
e

d
 U

p

ensembles, and as shown can improve the performance of the code markedly. Thus the
intention is torrelease this code as soon as possible to the users as a large number of
interesting cases can be considered using the work already performed.

For the remaining integrators, those for NPT simulations and involving rigid bodies, a
follow up proposal has been submitted via the ARCHER eCSE mechanism. If successful
this will complete the work presented here.

3.5 Conclusions

RESPA has been implemented for NVE and NVT integrators, both with and without
constraints. It has been show that it can markedly increase the performance of the code
for cases where it is applicable. A speed up of 20% is typical for a negligible decrease in
accuracy, and cases where the code runs almost 2.5 times quicker whilst still generating
sensible results have been demonstrated.

It should also be noted that another possibility would be to slightly decrease the timestep
when using RESPA. Thus one would get some of the benefit of increased performance,
but also regain some of the accuracy lost due to the method. This is an interesting
possibility for practical calculations, but due to the size of the parameter space and time
constraints we have not had time to investigate this during the project.

4 Overall Conclusions

Two algorithmic improvements have been completed. In many ways they are similar in
spirit in that they both attempt to avoid operations and in some cases communications by a
“more intelligent” implementation of the of algorithms already used within DL_POLY_4.
The first work package tuned the link cell algorithm to avoid recalculation of the Verlet
neighbour list at every timestep. The second work package implemented the RESPA
integration methodology, which avoids the calculation of slowly varying force terms every
timestep. The first work package avoids some communications as particles need not be
transferred to the ownership of a different process at each timestep. RESPA avoids
communications where the force term does not fit exactly onto the domain decomposition
used by DL_POLY_4, and thus requires communication.

These similarities carry through to the observed performance benefits. Both typically
improve the performance of the code by 20-30%, but in ideal cases the increase can be a
factor of 2 or more. Even for the user the similarity continues; to use both requires only a
very small change to the input, but to get the best out of both methods will require a small
amount of experimentation to determine the best padding or RESPA parameters.

So all in all two apparently disparate algorithms have been implemented, and both have
been shown to provide similar, marked benefit to the efficiency of the code.

5 Acknowledgements

Ian Bush would like to thank Bill Smith for many useful and interesting conversations
about molecular dynamics in general, and DL_POLY in particular.

This project was funded under the HECToR Distributed Computational Science and
Engineering (CSE) Service operated by NAG Ltd. HECToR A Research Councils UK High
End Computing Service – is the UK’s national supercomputing service, managed by

EPSRC on behalf of the participating Research Councils. Its mission is to support
capability science and engineering in UK academia. The HECToR supercomputers are
managed by UoE HPCx Ltd and the CSE Support Service is provided by NAG Ltd.
http://www.hector.ac.uk.

i http://www.ccp5.ac.uk/DL_POLY/
ii http://www.sci-techdaresbury.com/properties/daresbury-laboratory/
iii http://www.ccp5.ac.uk/
iv I.T. Todorov, W. Smith, K. Trachenko & M.T.Dove, J. Mater. Chem., 16, 1911-1918

(2006)
v I.J. Bush, I.T. Todorov and W. Smith, Comp. Phys. Commun., 175, 323-329 (2006)
vi M.R.S. Pinches, D. Tildesley, W. Smith, 1991, Mol Simulation, 6, 51

vii Tuckerman, Berne and Martyna, J. Chem. Phys., 97 (3), 1990-2001 (1992)

viii Humphrey, Freisner and Berne, J. Phys. Chem., 98, 6885-6892 (1994)

ix Courant, R.; Friedrichs, K.; Lewy, H. (1928), "Über die partiellen Differenzengleichungen der
mathematischen Physik", Mathematische Annalen 100 (1): 32–74

x Martyna G. J., Tuckerman M. E., Tobias D. J., and Klein M. L., Mol. Phys. 87, 1117
(1996)

http://en.wikipedia.org/wiki/Mathematische_Annalen
http://resolver.sub.uni-goettingen.de/purl?GDZPPN002272636
http://resolver.sub.uni-goettingen.de/purl?GDZPPN002272636
http://en.wikipedia.org/wiki/Hans_Lewy
http://en.wikipedia.org/wiki/Kurt_Otto_Friedrichs
http://en.wikipedia.org/wiki/Richard_Courant
http://www.ccp5.ac.uk/
http://www.sci-techdaresbury.com/properties/daresbury-laboratory/
http://www.ccp5.ac.uk/DL_POLY/

	DL_POLY_4 Algorithmic Improvements
	Asimina Maniopoulou and Ian Bush (NAG Ltd.)
	Ilian Todorov (STFC Daresbury Laboratory)
	1 Introduction
	2 Work Package 1: Implementing an Extended VNL scheme
	2.1 Introduction
	2.2 Implementation
	2.3 Results
	2.4 Current Status
	2.5 Conclusions

	3 Work Package 2: Multiple Time Stepping
	3.1 Introduction
	3.2 Implementation
	3.3 Results
	3.4 Current Status
	3.5 Conclusions

	4 Overall Conclusions
	5 Acknowledgements

