
Preparing DL_POLY_4 for the Exascale

Asimina Maniopoulou and Ian Bush (NAG Ltd.)

Ilian Todorov (STFC Daresbury Laboratory)

Table of Contents
1 Introduction...1
2 Work Package 1: Implementing a Mixed Mode DL_POLY_4...2

2.1 Introduction...2
2.2 Implementation...2

 Assignment of Atoms to the Link Cells and Calculation of the Verlet Neighbour List........2
 The evaluation of the force terms..4

 Long Range Forces:..5
 Constraint Forces..6
 Communications...6

2.3 Results...7
2.4 Current status..12
2.5 Conclusions...12

3 Work Package 2: Enabling Billion Atom Simulations..12
3.1 Introduction...12
3.2 Testing the 64 bit Code..13
3.3 Current Status..15

4 Overall Conclusions..15
5 Acknowledgements...15

1 Introduction

DL_POLY_4i is a general purpose classical Molecular Dynamics (MD) simulation software
package which has been developed at STFC Daresbury Laboratoryii by I.T. Todorov and
W. Smith. The package is used to model the atomistic evolution of the full spectrum of
models commonly employed in the materials science, solid state chemistry, biological
simulation and soft condensed-matter communities. It has been developed under the
auspices of CCP5iii and is widely used throughout the UK as well as world-wide. It is a fully
data distributed code, employing methodologies such as spatial domain decomposition ,
link-cells, Verlet neighbourlistiv and the 3D Daresbury Fourier Transform (DaFT)v. The code
demonstrates excellent performance and has been shown to scale to large numbers of
processors.

The purpose of this dCSE project is to markedly increase not only the number of cores that
can be used efficiently by DL_POLY_4 but also the system sizes that it can be used to
study. The first of these aims has been achieved by the introduction of a second level of
parallelism using OpenMP, so circumventing a limitation of the link cell approach. This is
covered in section 2. The system size issues result from DL_POLY_4 using default 32 bit
integers throughout, and so the second part of the project has introduced 64 bit integers

into DL_POLY_4 where appropriate, thus making the maximum system size well beyond
that which can be currently studied on HPC architectures. This is described in section 3.

2 Work Package 1: Implementing a Mixed Mode DL_POLY_4

2.1 Introduction

As stated above the linked cells algorithmvi is the basis upon which DL_POLY_4 is
parallelised, which it achieves by using an equispatial domain decomposition. The
simulation cell is divided into a number of equal volume, isomorphic, parallelipiped
domains, and each domain is assigned to an MPI process. As most inter-atomic
interactions become negligible beyond a finite distance, the “cut off”, only position data for
atoms near the edges of each domain need communicating to neighbouring cores for the
atomic interactions to be calculated, provided the cut off is much smaller than the length of
the edge of the domains. The link cell method thus has much in common with the halo
exchange methods used in solving differential equations on grids, except that it is
generalised to allow for the “grid points”, i.e. the atoms, to be disordered in space, and for
them to move from time step to time step.

However, as the number of MPI processes is increased the link cell algorithm
begins to show its limitations. Many MPI processes result in small domains, and for the
algorithm to work at all the sides of the domains must be larger than the cut off.
In fact for some simulations, especially those with inter-atomic potentials that require
large cut offs, this breakdown of the link cell algorithm is ultimately the limit on the
number of cores that can be used, despite the simulation still scaling well at the point
the breakdown occurs. However, if this breakdown occurs at P processes were it
also possible to employ T threads, as it would be in a mixed mode code, it is clear that
T*P cores in total can now be exploited. Thus provided a second level of parallelism
based upon threads can be introduced and if it is efficient it will allow the scientist studying
such problems to immediately be able to exploit up to an order of magnitude more cores
(given current multicore architectures), a situation of particular benefit to those who wish to
study phenomena that have relatively short length but extremely long time scales. A
second point is that the cost of the calculation is roughly proportional to the size of the cut
off cubed, and so in the case of potentials with large cut offs it is again clear that the
ability to use a second level of parallelism to enable more cores to be used will be
extremely beneficial.

2.2 Implementation

The implementation of an extra level of parallelism into DL_POLY_4 is in principle quite
straightforward. The link cell algorithm provides the domain decomposition of the problem,
so at least to zeroth order one may ignore the MPI framework and the main issues to
address are

1. The assignment of the atoms to the link cells and the evaluation of the Verlet
neighbour list

2. The evaluation of the various different force terms

We shall describe the implementation in this order before returning to the issue of the MPI
framework and whether it can be improved by the use of threads.

 Assignment of Atoms to the Link Cells and Calculation of the Verlet Neighbour List

In the link cell algorithm the unit cell is broken down into a number of small parallelepipeds
with sides of length as close as possible to the cut off. Each of these parallelepipeds is
called a Link Cell. This means that an atom only interacts with atoms in its own link cell or
its neighbours. To run this model on many processes it is then a simple matter of assigning
an equal number of link cells to each process. To minimise the amount of communications
this is best done by assigning a volume of space to each process, and hence all the link
cells in that space, and the nett result is similar to that found for many parallel PDE
solvers: The work required to evaluate the forces is proportional to the volume of the
domain, since that is proportional to the number of atoms contained, while the
communications are proportional to surface area, and it is the ratio of the two quantities
that determine the parallel scaling.

Thus the link cell algorithm accelerates the evaluation of the inter-atomic forces by
massively reducing the space that must be searched for atoms when calculating
interactions. DL_POLY_4 takes this one step further by also calculating a Verlet Neighbour
Listvii. This is simply to list for each atom explicitly which other atoms it can interact with
due to them being within the cut off, a calculation that is massively accelerated by the use
of the the link cell method. That such a list can make a marked saving over and above the
link cell method may seem surprising, but if one considers the volume of a sphere
inscribed in a cube one sees that the ratio of volumes is approximately 1.9 so one can
hope for a saving of a factor of roughly 2 in each of the force terms by this method.

The use of link cells and Verlet neighbour lists is both highly efficient, reducing the scaling
of the calculation of the forces from in principle O(N2) to O(N), and also a victim of its own
success; the calculation of the forces is now so quick that the assignment of the atoms to
the link cells and the evaluation of the neighbour list becomes an appreciable proportion of
the run time! In some cases we have observed the routines involved taking up to 30% of
the run time. As such

1. If we propose to speed up the evaluation of the forces by the use of OpenMP
threads we must also address this portion of the code

2. A second dCSE project has been submitted and accepted to incorporate algorithmic
improvements in this portion of the code.

The parallelisation of the evaluation of the neighbour list is straightforward; each neighbour
list is independent of any of the others, and so each thread can evaluate the neighbour list
for a different set of atoms. The assignment of the atoms to link cells is, however, a little
more complicated. The serial method is

• For each atom in turn

◦ Evaluate which cell the atom is in

◦ Add the atom to the end of list for that cell

The last of these steps requires care if shared memory parallelism is being employed due
to the potential race condition that may occur when more than 1 thread is trying to add to
the end of a given list. A number of methods to work around this were tried, but by far the
most effective was found to be to let each thread built up its own list independently and
then merge the lists rather than to introduce synchronisation points directly into the serial
method. While fairly simple to solve it does point to one issue that occurred a number of
times through the project – while the link cell algorithm and subsequent decomposition by
domains results in a structure that does, in some ways, remind one of solving PDEs on a

regular grid, the fact that the atoms do move and that density fluctuations, however slight,
will occur means that unlike the regular grid case where the points are static one can
never know which atoms neighbour one another at a given point in time, or even simply
how many atoms are in a given region of space. This means that at a number of places in
the code similar lists must be built, thus introducing an overhead in the threaded code
when compared to the serial.

 The evaluation of the force terms

The general from of the force field supported by DL_POLY can be given as

where the potential energy of the system is written as a function of the coordinates of all
the species comprising the system. From this it can be seen that the main issue of
parallelising the evaluation of the force terms is simply the number of terms in the
expansion!

In fact the majority of the terms are simply loops over independent entities, often, but not
always, atoms, which can easily be parallelised provided one is careful to correctly state
that energy, forces, stresses and related quantities need to be reduced across the threads
at the end of the loops. Thus these terms are fairly straightforward, though in practice the
use of static variables by the code, OpenMP 2's non-existent mechanisms for error
handling in parallel regions and simply the sheer number of variables that needed scoping
in a parallel region meant the work required a large amount of care.

However a small number of routines do not fit this structure, and as such needed to be
handled differently. In particular these included

() () ()

() ()

() ()

() () ()i

N

1i
external

N

i
jishell-coreshell-core

N

i
0tttethertether

N

i
dcbainversinvers

N

i
dcbadiheddihed

N

i
cbaangleangle

N

i
babondbond

N'

ji,

N'

ji,
jiij

N

i
jipairmetal

N'

nk,j,i,
nkjibody4

N'

kj,i,
kjibody3

N'

kj,i,
kjiTersoff

N'

ji, ji

ji

0

N'

ji,
jipairN21

rΦ|rr|,iUr,r,iU

r,r,r,r,iUr,r,r,r,iU

r,r,r,iUr,r,iU

)|rr|(ρF|)rr(|Vε

r,r,r,rUr,r,rUr,r,rU

|rr|

qq

4π

1
|)rr(|U)r,.....,r,rV(

-shellcore

-shellcore

tether

tether

invers

invers

dihed

dihed

angle

angle

bond

bond

∑∑∑

∑∑

∑∑

∑ ∑∑

∑∑∑

∑∑

=
=

−−

+−+

++

++

+

−+−

+++

+
−

+−=
εε

• The long range component of the Ewald Forces

• And forces due to constraints on the atoms

It is also convenient here to consider the communication routines that reform the halo at
the end of each timestep.

 Long Range Forces:

DLPOLY_4 uses the SPMEviii variant of the Ewald method to evaluate the Coulomb forces
between atoms. As one component of these interactions is long ranged they do not fit into
the link cell method outlined above, and instead a Fourier space based method is used.
This requires the following main steps

1. Evaluate (a quantity related to) the charge density of the atoms on a regular grid in
real space

2. Fourier transform that grid to Fourier space

3. Convolve the result of step 2 with the Fourier space representation of the Ewald
potential

4. Inverse Fourier transform the result back to real space

5. Calculate the energy, stresses, and forces on the atoms using the result from step 4

Steps 3 and 5 require loops over independent quantities, grid points and atoms
respectively, and so fit into the recipe described above. However a number of different
methods were investigated for step 1, and the DaFTix routines used for the FFT by
DL_POLY_4 needed to be parallelised with OpenMP.

The evaluation of the charge density on the grid is simple in principle: Loop over all atoms
that can contribute to the charge density in the domain of interest and for each atom add
their contribution to the appropriate grid points. Thus to parallelise using OpenMP the
easiest method is to have each thread evaluate the charge density for a different subset of
the atoms being careful to synchronise appropriately to avoid race conditions when two
different atoms contribute to the same grid point. We considered 3 different methods for
this synchronisation, namely a reduction on the grid at the end of the loops, and using
either atomic or critical to protect the addition. We expected to find that the reduction was
the best performing. However as the grid is, in memory terms, a very expensive object we
wished to examine whether the other methods were viable as we expected using a
reduction would require each thread to have a private copy of the grid. In practice the
performance overheads for using either atomic or critical were found to be totally
unacceptable, and the final version uses a reduction despite the potential memory issues.

The FFT as implemented by DaFT has two main steps

1. A set of serial 1D FFTs on the local data

2. Combining the data held by two different MPI processes. This requires a
communication stage and also the application of a set of complex “twiddle factors”

The first step was parallelised by changing the 1D FFT routines used by the code from
GPFA, a commonly used set of FFT routines implemented by Clive Tempertonx, to the
routines in ACMLxi. These were chosen not only because they are threaded but also
because they offer high performance solutions on a wide variety of HPC architectures
without having a licence that would place undue restrictions on the use of DL_POLY_4.

Two methods were investigated for step 2. They are closely related in that the thread

parallelism is over the vectors in the x, y or z direction (depending on the stage of the 3D
transform) but in one synchronous communications were used, while in the other it was
attempted to overlap the communications stage with the computation by having 1 of the
threads performing the communication while the others worked. In practice no gain was
found for the second method, and for reasons of code simplicity the first method is the one
used in the final implementation.

 Constraint Forces

One way DL_POLY_4 supports species with chemical bonds is by the use of constraints:
Two atoms are constrained to always be separated by constant distance. This is
implemented by the SHAKExii (and where appropriate RATTLExiii) algorithms. In these the
atoms are initially moved without including the effect of the constraints, and then the non-
linear constraint equations are solved iteratively by a Gauss-Siedel method to move the
atoms back to the correct separation. Thus each constraint affects the position of two
atoms. Further it is easy to see that a given atom may have more than one constraint
acting upon it; for instance consider modelling water using constraints, at the simplest level
it is clear that the oxygen atom will have two constraints, one for each of the hydrogen
atoms.

The way DL_POLY_4 is structured means that the simplest way to parallelise the SHAKE
routines is over the constraints. However the above discussion shows clearly that as the
position of a given atom can be affected by more than one constraint there is the
possibility of race conditions when performing this update. A number of methods were
investigated to avoid this, and in practice an atomic directive was found to be the most
effective of the ones tried, though it does introduce a degree of synchronisation between
the threads.

In fact it is possible to restructure the SHAKE and RATTLE routines such that they can be
parallelised over atoms so avoid this synchronisation. However this would require a fairly
major rewriting of this section of DL_POLY_4 and there was insufficient time to attempt it.

 Communications

Similar to solving PDEs on a regular grid at the end of each time step it is necessary for
DL_POLY_4 to communicate data so that the information held by a given process is
correctly updated. In the case of DL_POLY_4 this includes not just updating the halo for a
given processes domain, but also the domain itself as the whole point of the program is
that the atoms can move!

In the case of PDEs it has been shown that in a mixed MPI/OpenMP program quite
substantial performance gains can be achieved by using the threads to overlap the
communication and computation. An example is given in figure 1. This shows the speed up
for the solution of the 2-D Poisson equation, and it can be seen that almost linear speed
up can be achieved if communications and communications are overlapped (cco).

It was hoped that similar effects could be achieved for DL_POLY_4, but in practice this
proved difficult within the current framework. Ultimately the situation is similar to that found
when building the link cells in parallel using threads. Again, unlike the regular grid, we do
not know a priori which atoms needed to be communicated, thus making it difficult to
overlap the communication with computation, and also meaning that lists of atoms and
their associated data need to be generated before the communication can occur thus
incurring the parallel overhead noted before. In fact in this case the overhead due to
synchronisation is worse as at least in the case of the link cells all atoms in the domain are
involved, while here we are only dealing with the small subset that need to be

communicated.

A number of attempts were made to efficiently parallelise the communication stage, for
instance once the communication buffer has reached a certain size it is possible for one
thread to start sending it while the other start building the next buffer. In each case it was
found that the original method was more efficient, and in the final code while the parallel
communications are available and may be turned on by the user, by default the serial
method is used. However the experience developed here has been built into the more
recent dCSE proposal for improving the communications within the code which addresses
in a more general way the communications within the code.

2.3 Results

In this section we shall review some performance results for the mixed OpenMP/MPI code.
In all the graphs the cores axis to the total number of cores used, NOT the number of MPI
processes. Thus 256 cores could mean 256 MPI processes all single threaded, or 128
process each with 2 threads etc. In all cases all nodes are fully populated. All results
presented are from an executable generated by the GNU compiler suite (version 4.4 or
later), but the code has also been run on HECToR with the Cray compiler, and limited
testing has occurred on other machines with the Intel and Sun compilers.

In Figure 2 are results from HECToR for the simulation of one of the simplest possible
systems for MD, liquid Argon. The force field only uses Van der Waals terms, which are

Figure 1: Performance of a 2D Laplace equation solver

0 100 200 300 400 500 600 700
0

2000

4000

6000

8000

10000

12000

Th=4 no cco
Th=4 cco

Cores

T
im

e
st

e
p

s/
s

modelled by a simple Lennard-Jones 12-6 potential. The systems consists of 256,000
atoms, the unit cell is a cube with side 210.36Å and a cut off of 9Å is used.

It can be seen that almost throughout the single threaded code is the most efficient.
However in some ways this is not too surprising – the parallel link cell algorithm was
designed to solve this problem, only short ranged forces and a cut off much smaller than
the edge of the until cell, and one of the main points of introducing OpenMP was to
improve the scaling of the code when these assumptions begin to break down.

Figure 3 shows the same system except with a cut off of 15Å.

Figure 2: Performance For Argon with a 9Å cut off

0 500 1000 1500 2000 2500
0

5

10

15

20

25

30

35

1 Thread
2 Threads
4 Threads
8 Threads
Best

Cores

T
im

e
st

e
p

s/
s

It can be seen now that the threading of the code markedly increases its scalability. In fact
the single threaded (blue) line stops at 512 cores precisely because the link cell algorithm
can go no further as, due to the larger cut off, there is now only 1 link cell per domain. But
now the ability to use threads means the system can effectively use up to at least 2048
cores by employing 256 MPI processes each having 8 threads. The improved scalability
for more than 1 thread is because fewer MPI processes are communicating using larger
messages, thus avoiding the code being trapped in the latency regime where effective
scaling is very difficult to achieve.

Figure 3: Performance for Argon with a 15Å cut off

0 500 1000 1500 2000 2500
0

2

4

6

8

10

12

1 Thread
2 Threads
4 Threads
8 Threads
Best

Cores

T
im

e
st

e
p

s/
s

The simple force field employed for Argon is a little artificial. Figure 4 shows a more
realistic example. This is for a Sodium/Potassium Disilicate glass. The simulation has
69,120 particles, employs a cut off of 12.03Å and a cubic cell with side 96.72Å. This case
has been chosen as the force field employs almost all the important non-bonded terms,
including not only Van Der Waals and Ewald terms, as would be the case for Sodium
Chloride, but also three body terms. It can be seen that threads again markedly increase
the number of cores that can be exploited – again the end of the single threaded line is the
maximum that DL_POLY can exploit with a pure MPI implementation. However this time it
is for both a more realistic problem and without an unnecessarily increased cut off.

The final example in figure 5 is the biological molecule Gramicidin-A in water. This is a
polypeptide that displays antibiotic behaviour. The simulation contains 99120 atoms in
total and has a cut off of 8Å. The unit cell is tetragonal with a=94.6Å and c=112.7Å. The
force field is more complex again, and includes not only the terms considered above, but
also terms involving bonds, modelled both as constrained separations (for the water
molecules) and as springs (within the Gramicidin molecule), and terms depending on bond
angles and also dihedral (torsional) angles.

Figure 4: Performance for a Sodium/Potassium Disilicate Glass

0 500 1000 1500 2000 2500
0

5

10

15

20

25

1 Thread
2 Threads
4 Threads
8 Threads
Best

Cores

T
im

e
st

e
p

s/
s

In this case again threading increases the number of cores that can be exploited. The
ability to do this is limited to 2 threads, further threads result in a reduced performance. An
investigation of why this is the case identifies the constraints as the main problem. Table 1
shows the scaling with number of threads on 64 MPI processes

Threads Time/s

1 6.64

2 4.81

4 4.10

8 3.67

Table 1: The scaling of the constraint routines

The effect of the synchronization introduced by the atomic directives is clear, and should
time be available it would be hoped that restructuring of the SHAKE routines to better
exploit thread parallelism would result in scaling with thread number that is closer to the
disilicate glass case.

Figure 5: Performance for Gramicidin-A in Water

0 500 1000 1500 2000 2500
0

2

4

6

8

10

12

14

16

18

1 Thread

2 Threads

4 Threads

8 Threads

Best

Cores

T
im

e
st

e
p

s/
s

Thus while threads are generally beneficial quite what is the best combination of threads
and processes is force field (and computational system) dependent. In practice to get the
best out of the code it will be necessary for the user to experiment with a few short runs to
find the best combination, but as experience is gained with the mixed mode code we will
document findings to help guide them in this choice. In fact this is much the same as the
pure MPI code!

2.4 Current status

The code including the changes described above is currently in an experimental branch of
the DL_POLY repository at CCPForge, and the plan is to merge it in the near future with
the main branch and release to users.

2.5 Conclusions

It can be clearly seen from the above examples that the use of threads can both increase
the number of cores that DL_POLY can exploit and also increase the performance. In
some cases, such as the glass presented above, this can be a very marked increase in
both quantities. However what can be achieved does depend upon the form of the force
field being employed by the simulation, but it does seem that the use of threads can
definitely improve what DL_POLY is capable of, especially close to the “MPI limit.”

3 Work Package 2: Enabling Billion Atom Simulations

3.1 Introduction

The largest simulations currently performed by DL_POLY_4 are of the order of 500
million particles. These are used to examine the damage in materials that occurs due
to the recoil of a radioactive nucleus when it decays. Due to the extremely high
energies involved in nuclear processes this can affect very large areas within the
material, and thus the simulation requires extremely large cells and
consequently large numbers of atoms. However, even with the current numbers of
atoms employed in the simulation the simulated volume is still not large enough to hold
a real high energy recoil, let alone multiple and overlapping recoils to simulate realistic
damage events. Therefore, it is desirable to use somewhat larger systems, but this
runs into a simple yet frustrating computational limit within the code, that default 32-
bit integers are used throughout, and the largest (positive) integer that these can
represent is about 231=2,147,483,648, only a factor of 4 bigger than simulations that
are currently being performed.

Thus to future proof the code any integer that represents a global index needs to be
changed to a longer integer kind. Given that the latest Fortran standard, Fortran
2008, specifies that integers in the range +/-1018 must be supportedxiv and that
these integers are all but universally supported by Fortran compilersxv it was proposed
to introduce this integer kind into the code to be used for all variables that may hold
the global indices.

These global indices are used where it is necessary to identify a specific atom within the
run. A simple example is on output, it is necessary to define a quantity for each atom so
that we can, for instance, follow the motion of a given atom. However internally there are a
number of other tables that are used to define the connectivity of the species being

simulated – when calculating the forces associated with a water molecule it is not enough
to know that the oxygen atom is bonded to 2 hydrogen atoms, one must know exactly
which hydrogen atoms out of all those within the simulation. Thus global indices permeate
much of the code, and it proved necessary to go through the code very carefully to identify
exactly what required promotion and what could be left as 32 bit. For this portion of the
work we are extremely indebted to Dr Ilian Todorov, author of DL_POLY_4, for his help in a
number of unclear situations. In fact due to these discussions the resultant code is
somewhat clearer than the original, especially where variables were being used to hold
both local and global indices at different parts in the code.

Thus the work, while not difficult, did require painstaking care, though use of NAG compiler
version 5.3.1 and later which can detect integer overflow did help on occasion. We should
also stress again, as said in the proposal, that simply promoting all integers in the code
was not an appropriate solution. The main reason for this is that the largest data structure
in the code, the Verlet Neighbour list mentioned above, requires only local indices and can
thus be perfectly adequately represented with 32 bit kinds. Promoting to 64 bits could
nearly double the memory usage of the code, and in a world with decreasing memory per
core this is simply not acceptable.

3.2 Testing the 64 bit Code

Testing the 64 bit code proved difficult as the runs on the largest systems are only just
possible on HECToR, in each case at least half the machine had to be used. In fact in
some cases we had to artificially reduce cut offs to perform the runs, and thus the runs
may not be very accurate. However they are enough to test the molecular dynamics
portion of the code. That said it must be admitted that simply due to disk space
considerations we had to turn off much of the I/O of the code, and thus that part of a run
has not been tested as well as we would like.

We should also note that progress in certain places was not as swift as one might like due
to bugs when dealing with 64 bit integers in the MPI library on HECToR. For instance the
routine MPI_TYPE_CREATE_F90_INTEGER should return a handle to a MPI integer type
with requested range that can be used in subsequent communications. In practice we
found that while a handle was returned subsequent communications failed on HECToR
with the MPI library claiming the type did no exist. Therefore we had to work around this by
using MPI_INTEGER8 though strictly the MPI standard does not require that this is
supported.

3 series of runs were performed, on Argon (with a markedly reduced cut off) to check the
basic code, Sodium Chloride to check the non-bonded terms (with slightly reduced Ewald
tolerances) and Water to check the bonded terms (again slightly reduced Ewald
tolerances). In each case the method used to verify that the run was correct was to scale
the system up from a small size and check that that the energy per particle was constant
within the expected tolerances. As before the GNU compiler suite has been used to
generate the results.

The results of the Argon runs are shown in table 2

Number Of Particles Number/231 Total Energy Total Energy/Particle

2048000 0.0009536743 379597287015.312 185350.237800445

16384000 0.0076293945 3036778296122.86 185350.237800468

131072000 0.0610351563 24294226368983.3 185350.237800471

1048576000 0.48828125 194353810951866 185350.23780047

4294967296 2 796073209658845 185350.237800471

Table 2; Argon

It can be seen that the energy per particle is extremely well conserved thus providing good
evidence of the correctness of the code. Out of interest in the largest case the side of the
cubic simulation cell is 539nm, or roughly the wavelength of visible light.

The results for NaCl are shown in table 3

Number Of Particles Number/231 Total Energy Total Energy/Particle

4096000 0.0019073486 -159282467501.217 -38887.3211672893

32768000 0.0152587891 -1274643765558.87 -38899.040696987

262144000 0.1220703125 -10197290041763 -38899.5744390984

2097152000 0.9765625 -81566710329911.9 -38894.0383576927

4298942376 2.0018510409 -167173602476120 -38887.1466175987

Table 3: NaCl

It can be seen that while roughly consistent the energy per particle shows much more
variation than for the Argon case. In fact the tolerances used for the Ewald summation
should lead to variation in roughly the 5th significant figure, which is what is observed, so
again these results support the code being correct

Finally in table 4 are the results for the simulations of water

Number Of Particles Number/231 Total Energy Total Energy/Particle

768 3.576278686*10-7 -2484.9971734628 -3.2356734029

52931328 0.0246480703 -171254197.138575 -3.2354033728

578742528 0.2694979906 -1872529167.86996 -3.2355133367

2152873728 1.0025099516 -6965827487.98538 -3.2355950084

Table 4: Water

Again variations in roughly the 5th significant figure can be observed, and again due to the
reduce tolerances used this is the order of variation we expect

The above results all support that the code is correct. While the set of tests are not as
extensive as we hoped they do cover most of the important parts of the force field,
especially those parts which will be affected by the promotion of the appropriate integers to
64 bits. More tests would be useful on large systems, but it has to be admitted that the
process of getting 32000+ core jobs through HECToR and then debugging at that scale
makes it extremely time consuming, not to say frustrating!

3.3 Current Status

The code was derived from the OpenMP code described above, and is therefore also in
the CCPForge repository, and will be merged with the main branch for release in the near
future.

4 Overall Conclusions

Both work packages have been successfully completed. The use of threads extends the
scalability of DL_POLY_4 by up to, in a favourable case, a factor of 5-10 in the number of
cores it can use, while the introduction of 64 bit integers has been demonstrated with
limited simulations on systems with up to 4 billion particles. The former work package
should allow marked improvements in what can be done with DL_POLY_4 from the
moment of release which will occur in the very near future. The 64 bit work looks more to
the future as at present only demonstration runs can be performed on HECToR, but one
might expect that on ARCHER and other higher performance machines this will allow
simulations on a scale that are just not possible with any other general purpose molecular
dynamics package.

5 Acknowledgements

This project was funded under the HECToR Distributed Computational Science and
Engineering (CSE) Service operated by NAG Ltd. HECToR A Research Councils UK High
End Computing Service – is the UK’s national supercomputing service, managed by
EPSRC on behalf of the participating Research Councils. Its mission is to support
capability science and engineering in UK academia. The HECToR supercomputers are
managed by UoE HPCx Ltd and the CSE Support Service is provided by NAG Ltd.
http://www.hector.ac.uk.

i http://www.ccp5.ac.uk/DL_POLY/
ii http://www.sci-techdaresbury.com/properties/daresbury-laboratory/
iii http://www.ccp5.ac.uk/
iv I.T. Todorov, W. Smith, K. Trachenko & M.T.Dove, J. Mater. Chem., 16, 1911-1918

(2006)
v I.J. Bush, I.T. Todorov and W. Smith, Comp. Phys. Commun., 175, 323-329 (2006)
vi M.R.S. Pinches, D. Tildesley, W. Smith, 1991, Mol Simulation, 6, 51
vii Verlet, L. (1967). "Computer 'experiments' on classical fluids. I. Thermodynamical

properties of Lennard-Jones molecules". Phys. Rev. 159: 98–103.
viii Essmann U et al. "A smooth particle mesh Ewald method" J. Chem. Phys. 103 8577

(1995)
ix http://www.hector.ac.uk/cse/distributedcse/reports/DL_POLY03/DL_POLY03_domain/
x C. Temperton, J. Comp. Phys. 52, 1, (1983)
xi http://developer.amd.com/tools-and-sdks/cpu-development/amd-core-math-library-acm/
xii Ryckaert, J-P; Ciccotti G, Berendsen HJC (1977). "Numerical Integration of the

Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-
Alkanes". Journal of Computational Physics 23 (3): 327–341.
Bibcode:1977JCoPh..23..327R. Doi:10.1016/0021-9991(77)90098-5.

xiii Andersen, Hans C. (1983). "RATTLE: A "Velocity" Version of the SHAKE Algorithm for
Molecular Dynamics Calculations". Journal of Computational Physics 52: 24–34.
Bibcode:1983JCoPh..52...24A. doi:10.1016/0021-9991(83)90014-1.

xiv "Modern Fortran Explained", Metcalf, Reid and Cohen, section 20.2.1
xv http://www.polyhedron.com/pb05-linux-language0html

http://www.polyhedron.com/pb05-linux-language0html
http://dx.doi.org/10.1016%2F0021-9991(83)90014-1
http://en.wikipedia.org/wiki/Digital_object_identifier
http://adsabs.harvard.edu/abs/1983JCoPh..52...24A
http://en.wikipedia.org/wiki/Bibcode
http://dx.doi.org/10.1016%2F0021-9991(77)90098-5
http://en.wikipedia.org/wiki/Digital_object_identifier
http://adsabs.harvard.edu/abs/1977JCoPh..23..327R
http://en.wikipedia.org/wiki/Bibcode
http://developer.amd.com/tools-and-sdks/cpu-development/amd-core-math-library-acm/
http://www.hector.ac.uk/cse/distributedcse/reports/DL_POLY03/DL_POLY03_domain/
http://www.ccp5.ac.uk/
http://www.sci-techdaresbury.com/properties/daresbury-laboratory/
http://www.ccp5.ac.uk/DL_POLY/

	Preparing DL_POLY_4 for the Exascale
	Asimina Maniopoulou and Ian Bush (NAG Ltd.)
	Ilian Todorov (STFC Daresbury Laboratory)
	1 Introduction
	2 Work Package 1: Implementing a Mixed Mode DL_POLY_4
	2.1 Introduction
	2.2 Implementation
	Assignment of Atoms to the Link Cells and Calculation of the Verlet Neighbour List
	The evaluation of the force terms
	Long Range Forces:
	Constraint Forces
	Communications

	2.3 Results
	2.4 Current status
	2.5 Conclusions

	3 Work Package 2: Enabling Billion Atom Simulations
	3.1 Introduction
	3.2 Testing the 64 bit Code
	3.3 Current Status

	4 Overall Conclusions
	5 Acknowledgements

