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1  Introduction

DL_POLY_4i is a general purpose classical Molecular Dynamics (MD) simulation software 
package which has been developed at STFC Daresbury Laboratoryii by I.T. Todorov and 
W. Smith. The package is used to model the atomistic evolution of the full spectrum of 
models commonly employed in the materials science, solid state chemistry, biological 
simulation and soft condensed-matter communities. It has been developed under the 
auspices of CCP5iii and is widely used throughout the UK as well as world-wide. It is a fully 
data distributed code, employing methodologies such as spatial domain decomposition , 
link-cells, Verlet neighbourlistiv and the 3D Daresbury Fourier Transform (DaFT)v. The code 
demonstrates excellent performance and has been shown to scale to large numbers of 
processors.

The purpose of this dCSE project is to markedly increase not only the number of cores that 
can be used efficiently by DL_POLY_4 but also the system sizes that it can be used to 
study.  The first of these aims has been achieved by the introduction of a second level of 
parallelism using OpenMP, so circumventing a limitation of the link cell approach. This is 
covered in section 2. The system size issues result from DL_POLY_4 using default 32 bit 
integers throughout, and so the second part of the project has introduced 64 bit integers 



into DL_POLY_4 where appropriate, thus making the maximum system size well beyond 
that which can be currently studied on HPC architectures. This is described in section 3.

2  Work Package 1: Implementing a Mixed Mode DL_POLY_4

2.1  Introduction

As stated above the linked cells algorithmvi is the basis upon which DL_POLY_4 is 
parallelised, which it achieves by using an equispatial domain decomposition. The 
simulation cell is divided into a number of equal volume, isomorphic, parallelipiped 
domains, and each domain is assigned to an MPI process. As most inter-atomic 
interactions become negligible beyond a finite distance, the “cut off”, only position data for 
atoms near the edges of each domain need communicating to neighbouring cores for the 
atomic interactions to be calculated, provided the cut off is much smaller than the length of 
the edge of the domains. The link cell method thus has much in common with the halo 
exchange methods used in solving differential equations on grids, except that it is 
generalised to allow for the “grid points”, i.e. the atoms, to be disordered in space, and for 
them to move from time step to time step.

However, as  the   number  of  MPI  processes  is  increased the   link   cell  algorithm 
begins  to show  its limitations. Many  MPI processes result in small  domains, and for the  
algorithm to  work  at  all  the  sides  of  the  domains must   be  larger than   the cut off.   
In fact for   some   simulations, especially those with inter-atomic potentials that require 
large cut offs,  this breakdown of the  link cell algorithm is ultimately the  limit on the  
number of cores  that can  be  used,  despite the  simulation still  scaling well  at  the  point 
the  breakdown occurs.    However, if this  breakdown occurs  at  P  processes were  it  
also  possible to employ T threads, as it would be in a mixed mode  code,  it is clear  that 
T*P cores  in total can now be exploited.  Thus provided a second level of parallelism 
based upon threads can be introduced and if it is efficient it will allow the scientist studying 
such problems to immediately be able to exploit up to an order of magnitude more cores 
(given current multicore architectures), a situation of particular benefit to those who wish to 
study phenomena that have relatively short length but extremely long time scales. A 
second point is that the cost of the calculation is roughly proportional to the size of the cut 
off cubed, and so in the case of potentials with large cut offs  it is  again  clear   that   the   
ability  to   use  a  second   level   of parallelism to enable more  cores  to be used will  be 
extremely beneficial.

2.2  Implementation

The implementation of an extra level of parallelism into DL_POLY_4 is in principle quite 
straightforward. The link cell algorithm provides the domain decomposition of the problem, 
so at least to zeroth order one may ignore the MPI framework and the main issues to 
address are

1. The assignment of the atoms to the link cells and the evaluation of the Verlet 
neighbour list

2. The evaluation of the various different force terms

We shall describe the implementation in this order before returning to the issue of the MPI 
framework and whether it can be improved by the use of threads.



 Assignment of Atoms to the Link Cells and Calculation of the Verlet Neighbour List

In the link cell algorithm the unit cell is broken down into a number of small parallelepipeds 
with sides of length as close as possible to the cut off. Each of these parallelepipeds is 
called a Link Cell. This means that an atom only interacts with atoms in its own link cell or 
its neighbours. To run this model on many processes it is then a simple matter of assigning 
an equal number of link cells to each process. To minimise the amount of communications 
this is best done by assigning a volume of space to each process, and hence all the link 
cells in that space, and the nett result is similar to that found for many parallel PDE 
solvers: The work required to evaluate the forces is proportional to the volume of the 
domain, since that is proportional to the number of atoms contained, while the 
communications are proportional to surface area, and it is the ratio of the two quantities 
that determine the parallel scaling.

Thus the link cell algorithm accelerates the evaluation of the inter-atomic forces by 
massively reducing the space that must be searched for atoms when calculating 
interactions. DL_POLY_4 takes this one step further by also calculating a Verlet Neighbour  
Listvii. This is simply to list for each atom explicitly which other atoms it can interact with 
due to them being within the cut off, a calculation that is massively accelerated by the use 
of the the link cell method. That such a list can make a marked saving over and above the 
link cell method may seem surprising, but if one considers the volume of a sphere 
inscribed in a cube one sees that the ratio of volumes is approximately 1.9 so one can 
hope for a saving of a factor of roughly 2 in each of the force terms by this method.

The use of link cells and Verlet neighbour lists is both highly efficient, reducing the scaling 
of the calculation of the forces from in principle O(N2) to O(N), and also a victim of its own 
success; the calculation of the forces is now so quick that the assignment of the atoms to 
the link cells and the evaluation of the neighbour list becomes an appreciable proportion of 
the run time! In some cases we have observed the routines involved taking up to 30% of 
the run time. As such

1. If we propose to speed up the evaluation of the forces by the use of OpenMP 
threads we must also address this portion of the code

2. A second dCSE project has been submitted and accepted to incorporate algorithmic 
improvements in this portion of the code.

The parallelisation of the evaluation of the neighbour list is straightforward; each neighbour 
list is independent of any of the others, and so each thread can evaluate the neighbour list 
for a different set of atoms. The assignment of the atoms to link cells is, however, a little 
more complicated. The serial method is

• For each atom in turn

◦ Evaluate which cell the atom is in

◦ Add the atom to the end of list for that cell

The last of these steps requires care if shared memory parallelism is being employed due 
to the potential race condition that may occur when more than 1 thread is trying to add to 
the end of a given list. A number of methods to work around this were tried, but by far the 
most effective was found to be to let each thread built up its own list independently and 
then merge the lists rather than to introduce synchronisation points directly into the serial 
method. While fairly simple to solve it does point to one issue that occurred a number of 
times through the project – while the link cell algorithm and subsequent decomposition by 
domains results in a structure that does, in some ways, remind one of solving PDEs on a 



regular grid, the fact that the atoms do move and that density fluctuations, however slight, 
will occur means that unlike the regular grid case where the points are static one can 
never know which atoms neighbour one another at a given point in time, or even simply 
how many atoms are in a given region of space. This means that at a number of places in 
the code similar lists must be built, thus introducing an overhead in the threaded code 
when compared to the serial.

 The evaluation of the force terms

The general from of the force field supported by DL_POLY can be given as

where the potential energy of the system is written as a function of the coordinates of all 
the species comprising the system. From this it can be seen that the main issue of 
parallelising the evaluation of the force terms is simply the number of terms in the 
expansion! 

In fact the majority of the terms are simply loops over independent entities, often, but not 
always, atoms, which can easily be parallelised provided one is careful to correctly state 
that energy, forces, stresses and related quantities need to be reduced across the threads 
at the end of the loops. Thus these terms are fairly straightforward, though in practice the 
use of static variables by the code, OpenMP 2's non-existent mechanisms for error 
handling in parallel regions and simply the sheer number of variables that needed scoping 
in a parallel region meant the work required a large amount of care.

However a small number of routines do not fit this structure, and as such needed to be 
handled differently. In particular these included
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• The long range component of the Ewald Forces

• And forces due to constraints on the atoms

It is also convenient here to consider the communication routines that reform the halo at 
the end of each timestep.

 Long Range Forces:

DLPOLY_4 uses the SPMEviii variant of the Ewald method to evaluate the Coulomb forces 
between atoms. As one component of these interactions is long ranged they do not fit into 
the link cell method outlined above, and instead a Fourier space based method is used. 
This requires the following main steps

1. Evaluate (a quantity related to) the charge density of the atoms on a regular grid in 
real space

2. Fourier transform that grid to Fourier space

3. Convolve the result of step 2 with the Fourier space representation of the Ewald 
potential

4. Inverse Fourier transform the result back to real space

5. Calculate the energy, stresses, and forces on the atoms using the result from step 4

Steps 3 and 5 require loops over independent quantities, grid points and atoms 
respectively, and so fit into the recipe described above. However a number of different 
methods were investigated for step 1, and the DaFTix routines used for the FFT by 
DL_POLY_4 needed to be parallelised with OpenMP.

The evaluation of the charge density on the grid is simple in principle: Loop over all atoms 
that can contribute to the charge density in the domain of interest and for each atom add 
their contribution to the appropriate grid points. Thus to parallelise using OpenMP the 
easiest method is to have each thread evaluate the charge density for a different subset of 
the atoms being careful to synchronise appropriately to avoid race conditions when two 
different atoms contribute to the same grid point. We considered 3 different methods for 
this synchronisation, namely a reduction on the grid at the end of the loops, and using 
either atomic or critical to protect the addition. We expected to find that the reduction was 
the best performing. However as the grid is, in memory terms, a very expensive object we 
wished to examine whether the other methods were viable as we expected using a 
reduction would require each thread to have a private copy of the grid. In practice the 
performance overheads  for using either atomic or critical were found to be totally 
unacceptable, and the final version uses a reduction despite the potential memory issues.

The FFT as implemented by DaFT has two main steps

1. A set of serial 1D FFTs on the local data

2. Combining the data held by two different MPI processes. This requires a 
communication stage and also the application of a set of complex “twiddle factors”

The first step was parallelised by changing the 1D FFT routines used by the code from 
GPFA, a commonly used set of FFT routines implemented by Clive Tempertonx, to the 
routines in ACMLxi. These were chosen not only because they are threaded but also 
because they offer high performance solutions on a wide variety of HPC architectures 
without having a licence that would place undue restrictions on the use of DL_POLY_4.

Two methods were investigated for step 2. They are closely related in that the thread 



parallelism is over the vectors in the x, y or z direction (depending on the stage of the 3D 
transform) but in one synchronous communications were used, while in the other it was 
attempted to overlap the communications stage with the computation by having 1 of the 
threads performing the communication while the others worked. In practice no gain was 
found for the second method, and for reasons of code simplicity the first method is the one 
used in the final implementation.

 Constraint Forces

One way DL_POLY_4 supports species with chemical bonds is by the use of constraints: 
Two atoms are constrained to always be separated by constant distance. This is 
implemented by the SHAKExii (and where appropriate RATTLExiii) algorithms. In these the 
atoms are initially moved without including the effect of the constraints, and then the non-
linear constraint equations are solved iteratively by a Gauss-Siedel method to move the 
atoms back to the correct separation. Thus each constraint affects the position of two 
atoms. Further it is easy to see that a given atom may have more than one constraint 
acting upon it; for instance consider modelling water using constraints, at the simplest level 
it is clear that the oxygen atom will have two constraints, one for each of the hydrogen 
atoms.

The way DL_POLY_4 is structured means that the simplest way to parallelise the SHAKE 
routines is over the constraints. However the above discussion shows clearly that as the 
position of a given atom can be affected by more than one constraint there is the 
possibility of race conditions when performing this update. A number of methods were 
investigated to avoid this, and in practice an atomic directive was found to be the most 
effective of the ones tried, though it does introduce a degree of synchronisation between 
the threads.

In fact it is possible to restructure the SHAKE and RATTLE routines such that they can be 
parallelised over atoms so avoid this synchronisation. However this would require a fairly 
major rewriting of this section of DL_POLY_4 and there was insufficient time to attempt it.

 Communications

Similar to solving PDEs on a regular grid at the end of each time step it is necessary for 
DL_POLY_4 to communicate data so that the information held by a given process is 
correctly updated. In the case of DL_POLY_4 this includes not just updating the halo for a 
given processes domain, but also the domain itself as the whole point of the program is 
that the atoms can move! 

In the case of PDEs it has been shown that in a mixed MPI/OpenMP program quite 
substantial performance gains can be achieved by using the threads to overlap the 
communication and computation. An example is given in figure 1. This shows the speed up 
for the solution of the 2-D Poisson equation, and it can be seen that almost linear speed 
up can be achieved if communications and communications are overlapped (cco).

It was hoped that similar effects could be achieved for DL_POLY_4, but in practice this 
proved difficult within the current framework. Ultimately the situation is similar to that found 
when building the link cells in parallel using threads. Again, unlike the regular grid, we do 
not know a priori which atoms needed to be communicated, thus making it difficult to 
overlap the communication with computation, and also meaning that lists of atoms and 
their associated data need to be generated before the communication can occur thus 
incurring the parallel overhead noted before. In fact in this case the overhead due to 
synchronisation is worse as at least in the case of the link cells all atoms in the domain are 
involved, while here we are only dealing with the small subset that need to be 



communicated.

A number of attempts were made to efficiently parallelise the communication stage, for 
instance once the communication buffer has reached a certain size it is possible for one 
thread to start sending it while the other start building the next buffer. In each case it was 
found that the original method was more efficient, and in the final code while the parallel 
communications are available and may be turned on by the user, by default the serial 
method is used. However the experience developed here has been built into the more 
recent dCSE proposal for improving the communications within the code which addresses 
in a more general way the communications within the code.

2.3  Results

In this section we shall review some performance results for the mixed OpenMP/MPI code. 
In all the graphs the cores axis to the total number of cores used, NOT the number of MPI 
processes. Thus 256 cores could mean 256 MPI processes all single threaded, or 128 
process each with 2 threads etc. In all cases all nodes are fully populated. All results 
presented are from an executable generated by the GNU compiler suite (version 4.4 or 
later), but the code has also been run on HECToR with the Cray compiler, and limited 
testing has occurred on other machines with the Intel and Sun compilers.

In Figure 2 are results from HECToR for the simulation of one of the simplest possible 
systems for MD, liquid Argon. The force field only uses Van der Waals terms, which are 

Figure 1: Performance of a 2D Laplace equation solver
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modelled by a simple Lennard-Jones 12-6 potential. The systems consists of 256,000 
atoms, the unit cell is a cube with side 210.36Å and a cut off of 9Å is used. 

It can be seen that almost throughout the single threaded code is the most efficient. 
However in some ways this is not too surprising – the parallel link cell algorithm was 
designed to solve this problem, only short ranged forces and a cut off much smaller than 
the edge of the until cell, and one of the main points of introducing OpenMP was to 
improve the scaling of the code when these assumptions begin to break down.

Figure 3 shows the same system except with a cut off of 15Å.

Figure 2: Performance For Argon with a 9Å cut off
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It can be seen now that the threading of the code markedly increases its scalability. In fact 
the single threaded (blue) line stops at 512 cores precisely because the link cell algorithm 
can go no further as, due to the larger cut off, there is now only 1 link cell per domain. But 
now the ability to use threads means the system can effectively use up to at least 2048 
cores by employing 256 MPI processes each having 8 threads. The improved scalability 
for more than 1 thread is because fewer MPI processes are communicating using larger 
messages, thus avoiding the code being trapped in the latency regime where effective 
scaling is very difficult to achieve.

Figure 3: Performance for Argon with a 15Å cut off
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The simple force field employed for Argon is a little artificial. Figure 4 shows a more 
realistic example. This is for a Sodium/Potassium Disilicate glass. The simulation has 
69,120 particles, employs a cut off of 12.03Å and a cubic cell with side 96.72Å. This case 
has been chosen as the force field employs almost all the important non-bonded terms, 
including not only Van Der Waals and Ewald terms, as would be the case for Sodium 
Chloride, but also three body terms. It can be seen that threads again markedly increase 
the number of cores that can be exploited – again the end of the single threaded line is the 
maximum that DL_POLY can exploit with a pure MPI implementation. However this time it 
is for both a more realistic problem and without an unnecessarily increased cut off.

The final example in figure 5 is the biological molecule Gramicidin-A in water. This is a 
polypeptide that displays antibiotic behaviour.  The simulation contains 99120 atoms in 
total and has a cut off of 8Å. The unit cell is tetragonal with a=94.6Å and c=112.7Å. The 
force field is more complex again, and includes not only the terms considered above, but 
also terms involving bonds, modelled both as constrained separations (for the water 
molecules) and as springs (within the Gramicidin molecule), and terms depending on bond 
angles and also dihedral (torsional) angles.

 

Figure 4: Performance for a Sodium/Potassium Disilicate Glass
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In this case again threading increases the number of cores that can be exploited. The 
ability to do this is limited to 2 threads, further threads result in a reduced performance. An 
investigation of why this is the case identifies the constraints as the main problem. Table 1 
shows the scaling with number of threads on 64 MPI processes

Threads Time/s

1 6.64

2 4.81

4 4.10

8 3.67

Table 1: The scaling of the constraint routines

The effect of the synchronization introduced by the atomic directives is clear, and should 
time be available it would be hoped that restructuring of the SHAKE routines to better 
exploit thread parallelism would result in scaling with thread number that is closer to the 
disilicate glass case.

Figure 5: Performance for Gramicidin-A in Water
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Thus while threads are generally beneficial quite what is the best combination of threads 
and processes is force field (and computational system) dependent. In practice to get the 
best out of the code it will be necessary for the user to experiment with a few short runs to 
find the best combination, but as experience is gained with the mixed mode code we will 
document findings to help guide them in this choice. In fact this is much the same as the 
pure MPI code!

2.4  Current status

The code including the changes described above is currently in an experimental branch of 
the DL_POLY repository at CCPForge, and the plan is to merge it in the near future with 
the main branch and release to users.

2.5  Conclusions

It can be clearly seen from the above examples that the use of threads can both increase 
the number of cores that DL_POLY can exploit and also increase the performance. In 
some cases, such as the glass presented above, this can be a very marked increase in 
both quantities. However what can be achieved does depend upon the form of the force 
field being employed by the simulation, but it does seem that the use of threads can 
definitely improve what DL_POLY is capable of, especially close to the “MPI limit.”

3  Work Package 2: Enabling Billion Atom Simulations

3.1  Introduction

The largest simulations currently performed by  DL_POLY_4 are  of the  order  of 500 
million particles.  These  are used  to  examine the  damage in materials that  occurs due  
to  the  recoil  of a radioactive nucleus when  it decays. Due  to  the  extremely high  
energies involved in nuclear processes this  can  affect very  large  areas  within the    
material,  and   thus    the    simulation   requires  extremely   large    cells    and 
consequently large  numbers of atoms.  However, even  with the  current numbers of 
atoms  employed in the  simulation the  simulated volume is still  not  large  enough to hold 
a real  high  energy recoil, let  alone multiple and  overlapping recoils to simulate realistic 
damage events.  Therefore, it is  desirable to  use  somewhat  larger  systems, but   this   
runs   into   a  simple yet frustrating computational limit  within the   code,  that   default 32-
bit  integers are used  throughout, and  the  largest (positive) integer that these   can  
represent  is about   231=2,147,483,648, only   a  factor of  4  bigger  than   simulations that 
are currently being performed.

Thus  to future proof  the  code  any  integer that represents a global index  needs  to be  
changed to  a  longer integer  kind.     Given   that the   latest Fortran standard, Fortran 
2008,  specifies  that   integers  in  the   range  +/-1018  must  be  supportedxiv and  that 
these  integers are all  but  universally supported by Fortran compilersxv it was proposed  
to introduce this  integer kind  into  the  code to be used  for  all  variables that may  hold 
the  global indices.

These global indices are used where it is necessary to identify a specific atom within the 
run. A simple example is on output, it is necessary to define a quantity for each atom so 
that we can, for instance, follow the motion of a given atom. However internally there are a 
number of other tables that are used to define the connectivity of the species being 



simulated – when calculating the forces associated with a water molecule it is not enough 
to know that the oxygen atom is bonded to 2 hydrogen atoms, one must know exactly 
which hydrogen atoms out of all those within the simulation. Thus global indices permeate 
much of the code, and it proved necessary to go through the code very carefully to identify 
exactly what required promotion and what could be left as 32 bit. For this portion of the 
work we are extremely indebted to Dr Ilian Todorov, author of DL_POLY_4, for his help in a 
number of unclear situations. In fact due to these discussions the resultant code is 
somewhat clearer than the original, especially where variables were being used to hold 
both local and global indices at different parts in the code.

Thus the work, while not difficult, did require painstaking care, though use of NAG compiler 
version 5.3.1 and later which can detect integer overflow did help on occasion. We should 
also stress again, as said in the proposal, that simply promoting all integers in the code 
was not an appropriate solution. The main reason for this is that the largest data structure 
in the code, the Verlet Neighbour list mentioned above, requires only local indices and can 
thus be perfectly adequately represented with 32 bit kinds. Promoting to 64 bits could 
nearly double the memory usage of the code, and in a world with decreasing memory per 
core this is simply not acceptable. 

3.2  Testing the 64 bit Code

Testing the 64 bit code proved difficult as the runs on the largest systems are only just 
possible on HECToR, in each case at least half the machine had to be used. In fact in 
some cases we had to artificially reduce cut offs to perform the runs, and thus the runs 
may not be very accurate. However they are enough to test the molecular dynamics 
portion of the code. That said it must be admitted that simply due to disk space 
considerations we had to turn off much of the I/O of the code, and thus that part of a run 
has not been tested as well as we would like.

We should also note that progress in certain places was not as swift as one might like due 
to bugs when dealing with 64 bit integers in the MPI library on HECToR. For instance the 
routine MPI_TYPE_CREATE_F90_INTEGER should return a handle to a MPI integer type 
with requested range that can be used in subsequent communications. In practice we 
found that while a handle was returned subsequent communications failed on HECToR 
with the MPI library claiming the type did no exist. Therefore we had to work around this by 
using MPI_INTEGER8 though strictly the MPI standard does not require that this is 
supported.

3 series of runs were performed, on Argon (with a markedly reduced cut off) to check the 
basic code, Sodium Chloride to check the non-bonded terms (with slightly reduced Ewald 
tolerances) and Water to check the bonded terms (again slightly reduced Ewald 
tolerances). In each case the method used to verify that the run was correct was to scale 
the system up from a small size and check that that the energy per particle was constant 
within the expected tolerances. As before the GNU compiler suite has been used to 
generate the results.

The results of the Argon runs are shown in table 2



Number Of Particles Number/231 Total Energy Total Energy/Particle

2048000 0.0009536743 379597287015.312 185350.237800445

16384000 0.0076293945 3036778296122.86 185350.237800468

131072000 0.0610351563 24294226368983.3 185350.237800471

1048576000 0.48828125 194353810951866 185350.23780047

4294967296 2 796073209658845 185350.237800471

Table 2; Argon

It can be seen that the energy per particle is extremely well conserved thus providing good 
evidence of the correctness of the code. Out of interest in the largest case the side of the 
cubic simulation cell is 539nm, or roughly the wavelength of visible light.

The results for NaCl are shown in table 3

Number Of Particles Number/231 Total Energy Total Energy/Particle

4096000 0.0019073486 -159282467501.217 -38887.3211672893

32768000 0.0152587891 -1274643765558.87 -38899.040696987

262144000 0.1220703125 -10197290041763 -38899.5744390984

2097152000 0.9765625 -81566710329911.9 -38894.0383576927

4298942376 2.0018510409 -167173602476120 -38887.1466175987

Table 3: NaCl

It can be seen that while roughly consistent the energy per particle shows much more 
variation than for the Argon case. In fact the tolerances used for the Ewald summation 
should lead to variation in roughly the 5th significant figure, which is what is observed, so 
again these results support  the code being correct

Finally in table 4 are the results for the simulations of water

Number Of Particles Number/231 Total Energy Total Energy/Particle

768 3.576278686*10-7 -2484.9971734628 -3.2356734029

52931328 0.0246480703 -171254197.138575 -3.2354033728

578742528 0.2694979906 -1872529167.86996 -3.2355133367

2152873728 1.0025099516 -6965827487.98538 -3.2355950084

Table 4: Water

Again variations in roughly the 5th significant figure can be observed, and again due to the 
reduce tolerances used this is the order of variation we expect



The above results all support that the code is correct. While the set of tests are not as 
extensive as we hoped they do cover most of the important parts of the force field, 
especially those parts which will be affected by the promotion of the appropriate integers to 
64 bits. More tests would be useful on large systems, but it has to be admitted that the 
process of getting 32000+ core jobs through HECToR and then debugging at that scale 
makes it extremely time consuming, not to say frustrating!

3.3  Current Status

The code was derived from the OpenMP code described above, and is therefore also in 
the CCPForge repository, and will be merged with the main branch for release in the near 
future.

4  Overall Conclusions

Both work packages have been successfully completed. The use of threads extends the 
scalability of DL_POLY_4 by up to, in a favourable case, a factor of 5-10 in the number of 
cores it can use, while the introduction of 64 bit integers has been demonstrated with 
limited simulations on systems with up to 4 billion particles. The former work package 
should allow marked improvements in what can be done with DL_POLY_4 from the 
moment of release which will occur in the very near future. The 64 bit work looks more to 
the future as at present only demonstration runs can be performed on HECToR, but one 
might expect that on ARCHER and other higher performance machines this will allow 
simulations on a scale that are just not possible with any other general purpose molecular 
dynamics package.
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