Benchmarking, Profiling and Optimising
DL_POLY_3 on HECToR

Valene PELLISSIER

August 24, 2011

Contents

1 Introduction

1.1 About DL_POLY e
1.2 Optimising ot
2 Optimisations
2.1 link_cell_pairs e e e e e e e e e
2.1.1 Results e e
2.1.2 Modifications e e e e e
2.2 ewald_spme_forces e e e e
22.1 Results e e e e
222 Modifications e e
2.3 constraints_shake_vv e e
2.3.1 Results e e e
2.3.2 Modifications e e e e
24 vdw_forces e
24.1 Results e e e
242 Modifications e e e
2.5 Bestcombination e e e e
2.5.1 Results forno frozenatomscase
2.5.2 Results for generic caseso e e e
3 Conclusions
3.1 AboutDL_POLY e e e e
3.2 Acknowledgments

List of Tables

2.1

2.2

23

24

25

2.6

2.7

2.8

29
2.10

2.11

2.12

2.13

Timing comparison of different runs with Bak on XT4, XE6 and optimised link_cell_pairs

onXEO e 6
Variation rate of different runs of optimised link_cell_pairs on XE6 with Bak on XT4 and

XEO . 7
Timing comparison of different runs with Bak on XT4, XE6 and optimised ewald_spme_forces
onXEG . . . 9
Variation rate of different runs of optimised ewald_spme_forces on XE6 with Bak on XT4

and XE6 . . . e 9
Timing comparison of different runs with Bak on XT4, XE6 and optimised constraints_shake_vv
on XE6 e 12
Variation rate of different runs of no frozen atoms optimised constraints_shake_vv on XE6
withBakon XT4and XE6 12
Variation rate of different runs of generic optimised constraints_shake_vv on XE6 with Bak
onXT4and XE6 e 13
Timing comparison of different runs with Bak on XT4, XE6 and optimised vdw_forces on

XEO . . 15

Variation rate of different runs of optimised vdw_forces on XE6 with Bak on XT4 and XE6 15
Timing comparison of different runs with Bak on XT4, XE6 and best combination for non

frozenatomcaseson XE6 Lo e 16
Variation rate of different runs of best combination for no frozen atom cases on XE6 with
Bakon XT4and XE6 e 16
Timing comparison of different runs with Bak on XT4, XE6 and best combination for
genericcaseson XEO L e e e 17
Variation rate of different runs of best combination for generic cases on XE6 with Bak on
XT4and XEO6 o 17

List of Algorithms

AN AW

Bak Version of link_cell_pairs mainloop 8
Optimised Version of link_cell_pairs mainloop 8
Bak Version of ewald_spme_forcesmainloop 10
Optimised Version of ewald_spme_forces mainloop 10
Bak Version of constraints_shake vv 14
Optimised Version of constraints_shake_vv 14

Chapter 1

Introduction

1.1 About DL._POLY

DL_POLY_3 is a general purpose parallel molecular dynamics simulation package developed at Dares-
bury Laboratory by W. Smith and I.T. Todorov. The package was developed under the auspices of the En-
gineering and Physical Sciences Research Council (EPSRC) for the EPSRC’s Collaborative Computational
Project for the Computer Simulation of Condensed Phases (CCP5), the Computational Chemistry Group
(CCG) at Daresbury Laboratory and the Natural Environment Research Council (NERC) for the NERC’s
eScience project Computational Chemistry in the Environment (eMinerals), directed by M.T. Dove.

It supports both the Velocity and Leap-Frog Verlet algorithms for a large number of ensembles, with a
number of different baro- and thermo-stats. Further a very large wide variety of force fields are supported,
making simulation of a many very different chemical systems possible. For more details see

http://www.cse.scitech.ac.uk/ccg/software/DL$_SPOLY/MANUALS/USRMAN4 .01 .pdf/

which also covers the licensing and availability of the code.

1.2 Optimising

In this report I will present results from optimising a number of routines in DL POLY_3. Throughout
the report the GNU compiler has been used as this was found to be superior to both the PGI and Pathscale
compilers for DL_POLY , and for the report a standard test case TEST8 has been used (though in practice
other cases were examined as well). This is a simulation of a complex biomolecule, gramicidin A, in water
which both exercises many routines in the code and is sufficently large to exhibit good scalability. Professor
Richard Catlow has also observed that it is a representative case for the work performed by the Materials
Chemistry Consortium. The various input files for this test case are available from :

ftp://ftp.dl.ac.uk/ccp5/DLS_SPOLY/DLS_$POLYS$S_S$4.0/DATA/

Extensive profiling of this (and related) cases pinpointed a number of potential bottlenecks in the code,
and the rest of the report examines the improvements made in these routines, and the impact that the changes
make on the run time of DL._POLY.

I shall also compare the performance on 2 of the Cray MPP architectures which have formed the main
part of the HECToR service: The XT4 which consists of 4 core nodes connected by the SeaStar network,

and the XE6 (24 core nodes and Gemini). For more details of the architecture see :
http://www.hector.ac.uk/service/hardware/

Chapter 2

Optimisations

2.1 link_cell_pairs

2.1.1 Results

In table [2.1] a comparison of different runs of testcase TESTS is shown for different numbers of cores.
Bak XT4 and Bak XE6 corresponds to “vanilla” DL_POLY_3 compiled and run on XT4 and XE6 respec-
tively, while Opt link is for DL._POLY with an optimised implementation link_cell_pairs algorithm and run
on the XE6. Except for 16 and 512 cores it can be seen that the vanilla code is noticeabaly faster on the XE6
when compared to the XT4. It can also be seen that Opt link is faster than the original code, resulting in a
23% improvement in performance on 512 cores.

Nb. Procs | Bak XT4 | Bak XE6 | Opt link
16 199.154 | 218.722 | 211.924
32 106.790 98.113 95.955
64 63.129 57.494 51.436
128 42.036 39.360 34.150
256 27.471 29.492 23.760
512 22.137 25.951 19.961

Table 2.1: Timing comparison of different runs with Bak on XT4, XE6 and optimised link_cell_pairs on
XE6

Table [2.2] shows the percentage improvement of the optimised code compared to the XT4 and XE6. The
improvement due to Opt link increases with the number of cores, reaching 23.08 % at 512 processes on the
XE®6, as noted above. On average, the optimised version of DL._POLY with the optimised link_cell_pairs
routine is 10.73 % faster than vanilla code on the XT4, and 11.93 % faster than on the XE6.

Opt link comp. to
Nb. Procs 5.k XT4 | Bak XE6
16 6.41 -3.11
32 -10.15 2.2
64 -18.52 -10.54
128 -18.76 -13.24
256 -13.51 -19.44
512 -9.83 -23.08
Average -10.73 -11.93

Table 2.2: Variation rate of different runs of optimised link_cell_pairs on XE6 with Bak on XT4 and XE6

2.1.2 Modifications

The main modification of link_cell_pairs consists of removing the condition /I > mxlist in the loop over
Jj (the inner loop over atoms). This is shown below in Algorithm 1. It should be noted that it is not possible
to do the same for the If conditon dependent on rsq as rsq depends on jj.

The main point is to divide the loop over jj into two parts : one part when, for every jj in [j_start, lct_start(jc + 1)],
Il > malist ; the second part for all the other cases. For the former, the condition above can be written as
Il < malist and ll + jj_span < malist. Asll = list(0,4) + 1 and j_span = lct_start(jc+ 1) — j_start
testing whether (list(0,¢)+1 < malist).and.(list(0,7)+ 1+ (lct_start(je+1) — 1 —j_start) < mxlist)
is true outside the loop allows us to evaluate whether the /I > mxlist condition need be tested inside the loop.
If this new condition is true the /I > mxlist condition in the original code can never be true, and so in the the
loop over j7 it is sufficient just to evaluate the If condition over rsq. On the other hand if it is not true the
original version of the loop over jj must be executed, with both the conditions over rsq and [l evaluated.

This optimisation should improve the performance of the code whenever Il > mxlist for every jj in
[j_start,lct_start(jc + 1)], which is the common case; if this condition is not true it actually indicates a
run time error for the code. A comparison of the two algorithms can be seen below.

Algorithm 1 Bak Version of link_cell_pairs main

loop

for jj=j_start, Ict_start(jc+1) do
Iget domain local particle index
j=at_list(jj)
!distance in real space
1sq=(xxx(J)-xxx(1))**2+(yyy(j)-

Algorithm 2 Optimised Version of link_cell_pairs

main loop

Icheck if overfloat condition not verified

if (list(0,)+1 < mxlist) .and. (list(0,i)+1+(

Iet_start(jc+1)-1 - j_start) < mxlist) then
for jj=j_start, Ict_start(jc+1) do
!get domain local particle index

yyy(1)**2+(zzz(j)-zzz(1)) **2 j=at_list(jj)
Icheck cutoff criterion !distance in real space
if (rsq <= rcsq) then rsq=(xxx(j)-xxx(1))**2+(yyy(j)-
Icheck for overfloat and add an entry yyy(1)**2+(zzz(j)-zzz(1)) ¥*2
11=list(0,i)+1 Icheck cutoff criterion
if 11 > mxlist then if (rsq <=rcsq) then
ibig=Max(ibig,11) 11=1ist(0,i)+1

safe=.false. ibig=Max(ibig,1l)
else list(0,1)=11
ibig=Max(ibig,1I) list(1l,i)=j
list(0,1)=11 end if
list(11,1)=j end for
end if else
lend of if-block for cutoff criterion Same loop over jj than Bak Version
end if lend of inner if-block on new condition on
lend of loop over secondary cell contents mxlist
end for end if

2.2 ewald_spme_forces

2.2.1 Results

Table [2.3] compares of the vanilla version of DL._POLY on the XT4 and XE6 with DL_POLY with an
optimised version of the routine ewald_spme_forces. This evaluates the reciprocal space contribution to the
Ewald energy and forces, and uses the SPME algorithm [Darden et al., J. Chem. Phys., 103, 19, (1995)]. A
small decrease in timings can be observed with the Opt ewald version.

In the next table [2.4], as before with link_cell_pairs, 1 show the percentage speed up due to the optimised
code. In this case no improvement is found for the 16 processes run, but in all other cases there is a small
improvement a with a peak of 13% less time for the 256 processes run.

2.2.2 Modifications

For this function the modifications lie in unrolling the loops which evaluate the representation of the
charge density on a grid. As discussed in the reference above this involves evaluating a fairly low order
cardinal B-spline, values of 6-16 being common (for TESTS8 the value is 8). Unfortunately the inner most
loop in the implementation has an upper bound which is at most equal to the order of the spline (maspl

Nb. Procs | Bak XT4 | Bak XE6 | Opt ewald
16 199.154 | 218.722 216.172
32 106.790 98.113 94.852
64 63.129 57.494 53.736
128 42.036 39.360 35.639
256 27.471 29.492 27.062
512 22.137 25.951 21.960

Table 2.3: Timing comparison of different runs with Bak on XT4, XE6 and optimised ewald_spme_forces
on XE6

Opt ewald comp. to

Nb. Procs g 1 XT4 | Bak XE6
16 8.55 -1.17
32 -11.18 -3.32
64 -14.88 -6.54
128 -15.22 -9.45
256 -1.49 -8.24
512 -0.80 -15.38
Average -5.84 -7.35

Table 2.4: Variation rate of different runs of optimised ewald_spme_forces on XE6 with Bak on XT4 and
XE6

in the code), while the outer loops are much longer. The optimised version consists, therefore, of using a
"Select Case" statement in order to manually unroll the loop over j for the different values maximum values
that it can take (up to 8 in this case). This is especially effective as the case construction can be moved into
one of the outer loops, thus leaving long inner loops with no conditionals and stride 1 memory access, which

are therefore good candidates for vectorisation:

Algorithm 3 Bak Version of ewald_spme_forces
main loop

for j=1,mxspl do
gsum=qqc_domain(jj,kk,II)
bdxj=qsum*bdxk*bsdx(j,i)
bdyj=qsum*bdyk*bspx(j,i)
bdzj=qsum*bdzk*bspx(j,i)
fix=fix+bdxj
fiy=fiy+bdyj
fiz=fiz+bdzj

end for

2.3 constraints_shake vv

Algorithm 4 Optimised Version of
ewald_spme_forces main loop

Select Case (mxspl)
Case Default
for j=1,mxspl do
Calculation
end for
Case (0)
Case (1)
j=1
Calculation for j=1
Case (2)
j=1
Calculation for j=1
j=2
Calculation for j=2
Case (3)

Case (8)
j=1
Calculation for j=1

j=8
Calculation for j=8
End Select

For this function, two versions have been implemented. The no frozen Opt constraints relates to an
optimised version of constraints_shake_vv which does not implement frozen atoms. Generic Opt constraints
takes account of this case. The difference is purely a function of the testcase and can be determined once and
for all just after the input files have been read and before the main time stepping loop starts. As the no frozen
atoms case is the more common and offers greater potential for optimisation it is useful to differentiate the

two cases.

10

2.3.1 Results

In the following table [2.5], timings obtained from no frozen Opt constraints and generic Opt constraints
are presented. The generic version is faster for small number of processes and then the trend changes for
greater number of processes. However the differences are small, and may simply be due to noise in the
timings.

11

Nb. Procs | Bak XT4 | Bak XE Opt constraints

no frozen | generic

16 199.154 218.722 213.314 | 210.336

32 106.790 98.113 94.112 92.688

64 63.129 57.494 51.421 53.652
128 42.036 39.360 35.527 34.627
256 27.471 29.492 22.997 24.787
512 22.137 25.951 20.190 21.397

Table 2.5: Timing comparison of different runs with Bak on XT4, XE6 and optimised constraints_shake_vv
on XE6

No frozen Opt constraints comp. to
Nb. Procs 5o XT4 Bak XE6

16 7.11 -2.47

32 -11.87 -4.08

64 -18.55 -10.56
128 -15.48 -9.74
256 -16.29 -22.02
512 -8.8 -22.20
Average -10.65 -11.85

Table 2.6: Variation rate of different runs of no frozen atoms optimised constraints_shake_vv on XE6 with
Bak on XT4 and XE6

In tables [2.6] and [2.7] , the percentage improvements are again presented for the no frozen and generic
cases respectively. In every case an improvement is observed. For the no frozen case the best improvement
is 22%, which is for the 256 and 512 cores runs. The results for the generic version are slightly slower. For
this case on average an improvement of 10.26 % si observed, with a peak at 17.55% when compared to the
vanilla code on the XE6.

12

Generic Opt constraints comp. to
Nb. Procs g kXT3 Bak XE6
16 5.61 -3.83
32 -13.21 -5.53
64 -15.01 -6.68
128 -17.63 -12.02
256 -9.77 -15.95
512 -3.34 -17.55
Average -8.89 -10.26

Table 2.7: Variation rate of different runs of generic optimised constraints_shake_vv on XE6 with Bak on
XT4 and XE6

2.3.2 Modifications

The modifications to constraints_shake_vv mainly concern loops over k in [1, ntcons]. In the original
there are a number of loops over all the possible constraints, and in each of these loops tests are performed
to determine whether a pair of atoms is affected by this loop. Instead in the optimised version in the first loop
alist is created of the atoms which are affected, and subsequent loops are only over this, shorter, list. In more
detail (see the algorithm below) the new list, [stval, is of i, j and k for which i = Istop(1, k), j = lstop(2, k)
and (i > 0.and.j > 0).and.(i < natms.or.j < natms).and.(Ifrzn(i) * lfrzn(j) == 0) so avoiding
all these condiotns in later loops. & has been stored because some external function calls or arrays use k
which, in those calls, corresponds to the old k. The k-loops became loops over over k in [1, ntval] for
which ¢ = lstval(1,k), j = lstval(2, k) and the condition (i > 0.and.j > 0).and.(i < natms.or.j <
natms).and.(Ifrzn(i) « [frzn(j) == 0) is tested.

Results obtained for the no frozen atoms version of constraints_shake_vv show a speed up when compared
to the generic version. This version is obtained from the previous optimised version when taking off all the
If conditions over lfrzn. This version is not presented as the main changes are presented on the pseudo
algorithm [6].

All those modifications are shown below in the algorithms [5] and [6].

13

Algorithm 5 Bak Version of
constraints_shake_vv

while (.not. safe) .and. (icyc < mxshak) do
icyc=icyc+l
for k=1,ntcons do
i=Istop(1,k)
j=lstop(2,k)
if (1> 0 .and. j > 0) .and. (i < natms .or. j
< natms) then
dxt(k)=xxx(1)-xxx()
dyt(k)=yyy(®-yyy()
dzt(k)=zzz(i)-zzz(j)
else
dxt(k)=0.0_wp
dyt(k)=0.0_wp
dzt(k)=0.0_wp
end if
end for

for k=1,ntcons do
i=lIstopt(1,k)
j=lIstopt(2,k)
if (i>0 .and. j>0) .and. (i < natms .or. j <
natms) .and. Ifrzn(i)*lfrzn(j)=0 then

end if
end for

if (.not.safe) then
for i=1, natms ...
for k=1,ntcons do
i=Istopt(1,k)
j=lIstopt(2.k)
if (i>0 .and. j>0) .and. (i < natms .or. j
< natms) .and. Ifrzn(i)*Ifrzn(j)=0 then

end if
end for
for k=1,ntcons do
i=Istopt(1,k)
j=lIstopt(2,k)
! for all constrained particles, native
and shared
if (i>0 .and. j>0) .and. (i < natms .or. j
< natms) .and. Ifrzn(i)*Ifrzn(j)=0 then

end if
end for
end if
end while

Algorithm 6 Optimised Version of
constraints_shake_vv

while (.not.safe) .and. icyc<mxshak do
icyc=icyc+1
ntval=0
for k=1,ntcons do
i=Istop(1,k)
j=Istop(2,k)
if (i>0 .and. j>0) .and. (i < natms .or. j <
natms) .and. (Ifrzn(i)*1frzn(j) == 0) then
ntval=ntval+1
Istval(1,ntval)=i
Istval(2,ntval)=j
Istval(3,ntval)=k
dxt(ntval)=xxx(i)-xxx(j)
dyt(ntval)=yyy(i)-yyy(j)
dzt(ntval)=zzz(i)-zzz(j)
end if
end for

for k=1,ntval do

i=lIstval(1,k)

j=lstval(2,k)

k_old=Istval(3.k)

listcon(0,k) = listcon(0,k_old)
end for

if (.not.safe) then

for i=1, natms ... endfor

for k=1,ntval do
i=lIstval(1,k)
j=lIstval(2,k)
k_old=lIstval(3,k)
Change dxx(k) = dxx(k_old)
Change dyy(k) = dyy(k_old)
Change dzz(k) = dzz(k_old)

end for

for k=1,ntval do
i=lIstval(1,k)
j=Istval(2,k)
k_old=lstval(3,k)
! for all constrained particles, native
and shared
l'if (i>0 .and. j>0) .and. (i < natms .or.
j<natms) .and. lfrzn(i)*lfrzn(j)=0

end if
end for
end if
end while

2.4 vdw_forces
2.4.1 Results

The results of optimising the evaluation of the Van Der Waal’s forces are shown in table [2.8].

Nb. Procs | Bak XT4 | Bak XE6 | Opt vdw
16 199.154 | 218.722 | 212913
32 106.790 98.113 94.590
64 63.129 57.494 56.761
128 42.036 39.360 35.121
256 27.471 29.492 25.631
512 22.137 25.951 21.641

Table 2.8: Timing comparison of different runs with Bak on XT4, XE6 and optimised vdw_forces on XE6

The optimised version of vdw_forces shows a speed up of 8% in average over all runs.A peak is observed
at 16.61% speed up compare to the Bak version on XE6 for 512 processes run.

Opt vdw comp. to
Nb. Procs 5 K XT4 | Bak XE6
16 6.91 -2.66
32 -11.42 -3.59
64 -10.09 -1.27
128 -16.45 -10.77
256 -6.7 -13.09
512 -2.24 -16.61
Average -6.67 -8.00

Table 2.9: Variation rate of different runs of optimised vdw_forces on XE6 with Bak on XT4 and XE6

2.4.2 Modifications

The vdw_forces routine includes an If condition over ld_vdw variable from vdw_module inside the main
loop. As this variable is invariant through this loop the code has been optimised by taking the test outside of
the loop and generating two versions of the code, one for which If and one where it is false.

2.5 Best combination

In this section I shall examine the effects of including all the above changes. Again I shall separate the no
frozen atom and generic cases.

15

2.5.1 Results for no frozen atoms case

Here are presented the results obtained by using the modified routines for the non-frozen atoms case. A
speed up can be observed for each number of cores.

Nb. Procs | Bak XT4 | Bak XE6 | Best Comb.
16 199.154 | 218.722 214.343
32 106.790 98.113 94.078
64 63.129 57.494 52.895
128 42.036 39.360 33.877
256 27.471 29.492 25.176
512 22.137 25.951 19.291

Table 2.10: Timing comparison of different runs with Bak on XT4, XE6 and best combination for non
frozen atom cases on XE6

One can observe that the speedup is greater with the number of processes. On average, the best combi-
nation for no frozen atom cases is 10.18% faster than the Bak version on XT4, and 11.39% faster than the
one on XE6. For 512 processes, the best combination version reaches a peak of 25.66% speedup compare
to XE6.

Best combination
Nb. Procs 5 i XT4 | Bak XE6
16 +7.63 -2.00
32 -11.90 -4.11
64 -16.21 -8.00
128 -19.41 -13.93
256 -8.35 -14.63
512 -12.86 -25.66
Average -10.18 -11.39

Table 2.11: Variation rate of different runs of best combination for no frozen atom cases on XE6 with Bak
on XT4 and XE6

2.5.2 Results for generic cases

In this part, all the cases are taken in account.

16

Nb. Procs | Bak XT4 | Bak XE6 | Best Comb.
16 199.154 | 218.722 214.409
32 106.790 98.113 92.137
64 63.129 57.494 53.182
128 42.036 39.360 33.556
256 27.471 29.492 24.347
512 22.137 25.951 20.363

Table 2.12: Timing comparison of different runs with Bak on XT4, XE6 and best combination for generic
cases on XE6

One can observe that the speedup is slightly greater on average than the no frozen combination routines
runs, a surprising result but the differences are small and when the above runs were performed large varia-
tions in runtime were observed. On average, the best combination is 10.31% faster than the Bak version on
XT4, and 11.63% faster than the one on XE6. A peak is reached for 512 processes, with 21.53% speedup
compare to XE6. Another one is noticed for 128 cores with a time reduction of 20.65% compare to XT4.

Best combination
Nb. Procs | XT4 | Bak XE6
16 7.66 -1.97
32 -13.72 -6.10
64 -15.76 -7.50
128 -20.65 -15.25
256 -11.37 -17.45
512 -8.01 -21.53
Average -10.31 -11.63

Table 2.13: Variation rate of different runs of best combination for generic cases on XE6 with Bak on XT4
and XE6

17

Chapter 3

Conclusions

3.1 About DL_POLY

This work has concentrated on the serial optimisation of a number of routines in DL_POLY_3. The
routines were identified by profiling and the work has resulted in a roughly 10-25% increase in performance
dependent upon the number of cores in use. Given that the main driver for this project was ultimately the
poor performance of DL_POLY on the XT6 compared to the XT4, to have the code now running on the XE6
appreciably faster than on the original architecture is a very satisfying result.

3.2 Acknowledgments

This project was funded under the HECToR Distributed Computational Science and Engineering (CSE)
Service operated by NAG Ltd. HECToR - A Research Councils UK High End Computing Service - is
the UK’s national supercomputing service, managed by EPSRC on behalf of the participating Research
Councils. Its mission is to support capability science and engineering in UK academia. The HECToR
supercomputers are managed by UoE HPCx Ltd and the CSE Support Service is provided by NAG Ltd.
http://www.hector.ac.uk

18

