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1 Introduction and Background

DL_POLY_4i and its predecessor, DL_POLY_3, is a general purpose classical 
molecular dynamics (MD) simulation software package which has been 
developed at Daresbury Laboratory by I.T. Todorov and W. Smith. The package 
is used to model the atomistic evolution of the full spectrum of models 
commonly employed in the materials science, solid state chemistry, biological 
simulation and soft condensed-matter communities. It has been developed 
under the auspices of CCP5ii and is widely used throughout the UK as well as 
world-wide. It is a fully data distributed code, employing methodologies such 
as spatial domain decomposition (DD), link-cells (LC) built Verlet neighbourlist 
(VN)iii and 3D Daresbury Fourier Transform (DaFT)iv. The code demonstrates 
excellent performance and has been shown to scale to large numbers of 
processors.

As stated above the linked cells algorithmv is the basis upon which DL_POLY_4 
is parallelised, which it achieves by using an equispatial domain decomposition. 
The simulation cell is divided into a number of equal volume, isomorphic, 
parallelipiped domains, and each domain is assigned to an MPI process. As 
most inter-atomic interactions become negligible beyond a finite distance, the 
“cutoff”, only position data for atoms near the edges of each domain need 
communicating to neighbouring cores for the atomic interactions to be 
calculated, provided the cutoff is much smaller than the length of the edge of 
the domains. The LC method thus has much in common with the halo 
exchange methods used in solving differential equations on grids, except that it 
is generalised to allow for the “grid points”, i.e. the atoms, to be disordered in 
space, and for them to move from time step to time step.

However the key phrase in the above paragraph is “most inter-atomic 
interactions become negligible beyond a finite distance,” and in particular the 
word “most.” An extremely important exception is the Coulomb potential, 
which decays as 1/r, where r is the inter-atomic separation. This is therefore an 
extremely long ranged interaction and in fact it strictly can not be cut off at all. 
It therefore appears that it can not be used at all within a periodic system, 
which is the kind DL_POLY is most often used to study, as the sums involved to 
evaluate the inter-atomic interactions will run over all periodic images of the 
particles, an infinite number of operations! However this problem can be 
circumvented by using the Ewald Summationvi, which is essentially a 
summation acceleration method that exploits the translational symmetry of the 
periodic system. The traditional method for performing this scales as N3/2vii viii, 
where N is the number of particles in the system being studied. However more 
modern variants, such as the Smooth Particle Mesh Ewald method (SPME) due 
to Darden et al.ix, employ fast Fourier transforms (FFTs)x to reduce this scaling 
to N*log(N), and it is the SPME method that DL_POLY_4 employs. 

In the remainder of this report I shall briefly describe the steps in the SPME 
method and how DL_POLY_4 employs it within the LC method. Then I shall 
describe the original implementation in DL_POLY which employed a radix-2 
parallel FFT written by myself, and discuss the limitations that a single radix 
transform results in. After that I shall describe the current work, namely how 
the FFT has been generalised to a mixed radix parallel transform and how this 



has impacted the rest of the code. Finally I shall report some performance 
figures for the current code, and also its current status.

2 The Ewald Summation and SPME

In this section I shall outline the steps in the SPME method so as to provide a 
better understanding of the work required. A much more comprehensive 
discussion, including error analyses, is given in the references above

The main steps of the SPME method are as follows:

1. Form Q. This is defined on a grid within the unit cell and given by

Q (k 1,k 2, k3)=∑
i=1

N

∑
n1,n2,n3=−∞

∞

qi

M n(u1i−k 1−nΚ1)M n(u2i−k 2−nΚ2)M n(u3i−k3−nΚ3)

In this qi is the charge on atom i, uμi=Kμrμi is the scaled position of atom 
i, K1,2,3 are the dimensions of the grid, 0≤kμ<Kμ and Mn is a cardinal 
b-splinexi of order n

2. Forward Fourier transform Q(k) to Q(m)

3. Form V(m) V (m)=
e

−π2m2

β2

m2 Q (m)

4. Form G(m) G (m)=∏
μ=1

3

∣bμ(mμ)∣
2
V (m) where 
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(2πi (n−1)mμ /Κμ )[∑
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M n(k+1)e
2π i mμk

Κμ ]
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5. Inverse Fourier Transform G(m) to G(k)

6. From G(k) it is straightforward to calculate both the total energy of the 
system and the forces on the ions comprising it.

This scheme has 2 important properties which allow it to be used easily within 
a the data distribution used by DL_POLY_4

1. First a very important property of the cardinal b-splines, Mn(u), is that 
they are non-zero only in the range 0<u<n. Thus in the calculation of 
the contribution due to atom i to Q(m) it is necessary to consider only 
points near the atom. This is effectively a short range interaction with a 
cutoff, precisely the kind at which that the link cell algorithm excels

2. In Fourier space all operations are local, i.e. all that is required to 
evaluate the quantities at a given point in space are values at that point, 
there is no coupling of different points in the grid.



3 DaFT

Thus the main steps in the evaluation of the quantities of interest are the 
calculation of Q(k) which exploits the link cell decomposition of the problem, 
and then a forward and back Fourier transform. Unfortunately standard parallel 
three dimensional FFTs such as FFTWxii require data decomposed in planes, not 
the equispatial domain decomposed form that DL_POLY_4 uses. Thus a large 
scale data redistribution would be required to use FFTW or similar, a process 
that is notoriously inefficient on distributed data parallel machines.

Instead a number of years ago I wrote DaFT, the Daresbury Fourier Transform, 
which can perform the 3D FFT using the DL_POLY_4 data distribution directly. 
The  core idea is to perform each of the 1D FFTs in parallel and the original 
version of DaFT used the radix 2 Sande-Tukeyxiii algorithm for the forward 
transform. This is a decimation in frequency (DIF) algorithm; given a Fourier 
transform 

X (k )=∑
j=0

N−1

x ( j)e
2π i
N

jk

then the result can be written in terms of two transforms of half the length, 
one for the even elements of the result, and one for the odd:

X (2r )= ∑
j=0

N /2−1

x ( j)e
2π i
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+ ∑
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(N /2)
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Graphically this can be represented as



Thus using 2 MPI processes a distributed memory FFT of length 8 can be 
performed by distributing the data such that process 0 has elements 0-3 and 
process 2 elements 4-7. The two processes then send their data to each other 
which is combined as described above, and then finally a library routine is 
called to perform the final FFT which is completely local to the process. This 
divide and conquer method can obviously be generalised to any power of two 
number of processes calculating an FFT which is of length a power of 2; in 
general for P processes there will be Log2(P) stages where data is exchanged 
and combined by pairs of processes, and then each of the processes will 
perform a length N/P serial FFT by use of a standard library routine.

It can also be seen that the data distribution in the above is the 1 dimensional 
analogue of the domain decomposition used by DL_POLY. The generalisation of 
the above to 3 dimensions is clear. The processors are split into a Px*Py*Pz grid 
(“the processor grid”), the parallel 1D transforms in the x direction are all 
performed at once, and this is repeated for y and z. This results  in a FFT 
algorithm that precisely matches that required by DL_POLY and therefore 
avoids any initial or final data redistribution. It is this method that I earlier 
implemented. The resulting code, the Daresbury Fourier Transform (DaFT), was 
then used by DL_POLY_3. 

The only apparent problem is the vectors produced by the DIF method are not 
in natural order; it is in so called “bit reversed” order, and to return it to 
natural order would require extensive communications so apparently defeating 
the point of the exercise.  In fact for DL_POLY_3 and DL_POLY_4 this is not an 
issue because the operations required in Fourier space are, as noted above, 



local. As a result the operations in Fourier space can be performed very easily 
in bit reversed order as all that is required to be known is the value of m for 
the grid point under consideration, and in particular it is not necessary to know 
the value on the grid for any other vector m', thus obviating the need for any 
communication. Further if the inverse Fourier transform required for the 
calculation of the forces is performed by the Cooley and Tukey algorithm, a 
decimation in time (DIT) algorithm, and the input values are provided in bit 
reversed order, the final result is returned in the natural ordering in real space. 
The graphical representation of the DIT method is

It can be seen that in parallel a very similar method to that employed for the 
forward transform can be employed, except the data exchange and serial FFT 
steps are reversed. Further because the inverse transform takes its input in bit 
reversed order no communication is required between the two FFT stages.

The resulting code performs very well, and it was shown in xiv that while as a 
stand alone routine it is often slower than the standard slab based 3D FFT 
methods, in DL_POLY_3 DaFT was almost always superior within DL_POLY due 
to the extra communications that slab based methods require to bring the data 
into the appropriate distribution.

However the code as described above is limited to process counts that are 
powers of 2. As at large processor counts the separation between neighbouring 
powers of 2 increases this restriction can result in the scientist having to 
markedly “scale up” his computational system simply so that he or she can run 
on the next lowest power of 2 cores, so resulting in an appreciable increase in 
cost of the calculation. This is a waste of their computational budget. Further 



with HECToR phase2a for the first time the nodes themselves were not powers 
of 2, forcing the scientist to under-populate at least 1 of the nodes in most 
runs. As HECToR accounting is “by the node” this was another waste of 
computational resources. Both these above points led to the current work, to 
remove the above restrictions. 

On the other hand it should be noted that the dimensions of the FFT grid, as 
opposed to the processor grid, are not restricted to powers of 2. Rather the 
dimensions are restricted to the values PμNFFT, where Pμ is the number of 
processors down a given dimension (x,y or z) of the processor grid, and NFFT is 
a length which the serial FFT library routine can perform. In other words the 
restriction is that the length must be a multiple of the number of processors, 
and the allowed multiples are determined by the capabilities of the serial FFT 
library function. In practice the GPFA routines of Tempertonxv are used. These 
can perform FFTs for sequences whose lengths have prime factors 2, 3, or 5. 
Thus DaFT in its original formulation was capable of 3 dimensional parallel FFTs 
where the dimensions of the FFT had length Pμ*2a*3b*5c, for zero or positive 
integer a, b and c and Pμ a power of 2. However DL_POLY_3 imposed the 
restriction that the dimensions of the FFT grid must be a power of 2, a point I 
shall return to when describing the current work.

Thus the overall 3D DaFT algorithm is actually very simple, in many ways 
much simpler than the standard “transpose” based methods. Given a processor 
grid of size Px*Py*Pz and an FFT grid of size Nx*Ny*Nz

1. Perform the 1D FFTs in the x direction. Each of these are split over Px 

cores, and each core has (Ny/Py)*(Nz/Pz) of these to perform, and 
obviously only one message need be sent for all the 1D FFTs at each 
stage, thus ensuring long messages

2. As 1 but for the y direction

3. As 1 but for the z direction

Thus to be effective it is necessary only to achieve good scaling of the 1D FFTs 
to approximately P1/3 cores, where P is the total number of cores used by the 
job, since each 1D FFT is only distributed across ~ P1/3 cores.

4 DaFT (Mixed Radix)

The major limitation on DaFT is that it limited to powers of 2 number of 
processes, a limit that is not commensurate with either some modern 
computational systems or the needs of some users of DL_POLY. Thus for 
DL_POLY_4 work has been funded by the dCSE mechanism to provide a 
generalisation of the above. The original proposal was to allow process grids 
which had factors of the form 2a*30-2*50-1, this form being chosen to

1. Fit the architecture of the then current phase2a HECToR system which 
had 24 core nodes

2. Allow some future proofing to possible future architectures

3. Allow sufficient flexibility to the scientist so that waste of computational 
resources due to using “oversized” systems was markedly reduced.

In fact what was implemented was a full mixed radix domain decomposed 



parallel FFT. This allows for any number of processes to be used for the FFT, 
though due to the nature of the both the algorithm and implementation it is 
most efficient if the prime factors of the number of processes used be small 
integers.

The mixed radix algorithm depends upon the following identity: If the length of 
a Fourier Transform is N and it can be factored as N=N1*N2 then 

X (k )=∑
j=0

N−1

x ( j)e
2π i
N

jk

can be written in terms of the two factors as

X (N 2k 1+k 2)=∑
j1=0

N 1−1

[e
2π i
N

j 1k 2 ](∑j2=0

N 2−1

x(N 1 j2+ j1)e
2π i
N 2

j 2k 2)e
2π i
N

j 1k 1

It can be see that again the Fourier transform has been decomposed into 2; 
the term in parentheses is an FT of length N2, while the outer sum is an FT of 
length N1 with some extra phase (“twiddle”) factors. Thus each of the two FTs 
could be calculated by the parallel DIF algorithm described above, generalising 
it where necessary to deal with the case where 2 is not the factor of interest.

However in practice to deal with a general number of processes efficiently 
would be  somewhat complicated  by this method as the communication 
patterns depend fundamentally on the value of the prime factor of interest. 
Instead the pragmatic decision was made to split the factors into two sets, 
short and long. Short factors are small primes, and thus the factorisation of 
the number of processors will typically contain these factors raised to high 
powers. As such these are performed by either a DIF or DIT FFT algorithm, 
depending on the direction of the transform. Long factors are larger primes, 
and thus they will be (typically) raised to low powers in the factorisation. In 
this case the FFT algorithm often gives little gain compared to a simple, 
straightforward quadrature based discrete Fourier transform (DFT - in fact if 
the power is unity the DFT and FFT are identical), and as such the longer 
factors are all amalgamated and a single DFT is performed. Currently the only 
short factor supported is 2, but the code has been designed to allow easy 
addition of other primes numbers to this set.

To clarify the above consider the case where the 1D FFT in a given direction is 
being performed by 36 cores. As 36=22*32 the short factors are 2, and will use 
the distributed FFT algorithm outlined above, while the long factor is 32=9, and 
this FT associated with this factor will be performed by a simple DFT. 

In the above equation the long factors correspond to the summation over j2, 
while the short factors are the j1 sum. Thus the method for the mixed radix 
forward transform is

1. Perform the DFT for the long factors

2. Scale with the appropriate twiddle factors

3. Perform the FFT for the short factors

To perform the DFT the data has to be circulated amongst the processors that 



hold the DFT of length N2. If the factorisation of the number of processors 
along the dimension is Pμ=S*L, where S is the product of the short factors and 
L the same for the long, then there will be S of these transforms, and each of 
these transforms require the data to be communicated between the L 
processes that hold the data for it. A number of different ways of performing 
this data circulation were investigated, but the in practice a simple systolic loop 
with double buffering was found most effective. This is possibly because it 
allows some overlap of computation and communication as can be seen from 
the code excerpt below:

    which = 0
    work = a

    a = 0.0_wp

    rank = desc%rank; rem_rank = rank

    Do pulse = 0, desc%size - 1

       t = Exp( Cmplx( 0.0_wp, &

           ( sign * 2.0_wp * pi * rank * rem_rank ) / desc%length, Kind = wp ) )

       If ( which == 0 ) Then

          If ( pulse /= desc%size - 1 ) Then

             Call MPI_IRECV(  work2, 2 * Size( work2 ), wp_mpi, down, down, &

desc%comm, comms_request1, comms_error )

             Call MPI_ISEND( work , 2 * Size( work  ), wp_mpi,   up, rank, &

desc%comm, comms_request2, comms_error )

          End If

          a = a + t * work

          If ( pulse /= desc%size - 1 ) Then

             Call MPI_WAIT( comms_request1, comms_status, comms_error )

             Call MPI_WAIT( comms_request2, comms_status, comms_error )

          End If

       Else

          If ( pulse /= desc%size - 1 ) Then

             Call MPI_IRECV(  work , 2 * Size( work  ), wp_mpi, down, down, &

desc%comm, comms_request1, comms_error )

             Call MPI_ISEND( work2, 2 * Size( work2 ), wp_mpi,   up, rank, &

desc%comm, comms_request2, comms_error )

          End If

          a = a + t * work2

          If ( pulse /= desc%size - 1 ) Then

             Call MPI_WAIT( comms_request1, comms_status, comms_error )

             Call MPI_WAIT( comms_request2, comms_status, comms_error )

          End If

       End If

       which = Mod( which + 1, 2 )

       rem_rank = Mod( rem_rank + 1, desc%size )

    End Do

The algorithm described above will work for any number of processors 
provided the length of the 1D FFTs in each direction is a multiple of size of the 
processor grid in the corresponding dimension. For DL_POLY_4 in practice this 
is not an issue. The user input that determines the grid size is a minimum 
accuracy for the SPME method. As increasing the FFT grid size increases the 



accuracy of the SPME method, it is therefore sufficient to simply increase the 
grid size until  both the accuracy criterion and the above restriction are 
satisfied. In practice the overhead is small; the cube root of the number of 
processors on HECToR is roughly 35, thus indicating that in a bad case the FFT 
grid is 34 bigger than necessary in each direction. Compare this to a factor of 2 
for the previous version! As a job on so many cores would have a grid of the 
order of 1000s in each of the 3 directions the overhead is obviously small.

5 Other Changes

After the FFT was generalised to deal with arbitrary numbers of processes it 
was necessary to do the same for DL_POLY. Earlier version of the application 
assumed

1. The number of cores was a power of 2

2. The dimensions of the FFT grid were powers of 2

The former is the major restriction, once it is removed the later follows 
naturally; indeed the general procedure is described in the previous section, 
namely to pick a size that satisfies the minimum accuracy criterion and then 
increase it until the dimension was consistent with the requirements of the new 
DaFT routines.

The removal of restriction 1 required a number of changes to code. By far the 
largest of these was to implement an algorithm to determine the domain 
decomposition for an arbitrary number of processes. For a given number of 
cores the chosen decomposition should 

1. Enable DL_POLY to run as efficiently as possible

2. Reproduce the results of earlier versions of the code where appropriate

To develop such an algorithm note that

1. Just as for halo exchange codes the time spent in message passing is 
proportional to the surface area of the parallelipipeds into which the unit 
cell is decomposed

2. For a given process count the volume each process holds is constant, 
irrespective of the decomposition

3. Therefore as to maximise efficiency one has to minimise the ratio of 
surface area of the parallelipipeds to their volume, the problem reduces 
to finding that decomposition which minimises the surface area of the 
parallelipipeds

Thus the problem reduces to an optimisation. There are, however, two slight 
complications when different decompositions can result in the same surface 
area. This can occur due to symmetry of the system, e.g. on 16 processors 
with a cubic unit cell 4*2*2, 2*4*2 and 2*2*4 decompositions all obviously 
give the same surface area for the parallelipipeds. However it can occur for 
more general cases where no such apparent symmetry exists. To choose a 
decomposition in such “degenerate” cases the new code

1. Chooses the factorisation which minimises the maximum number of 
cores along any dimension in the process grid as this should maximise 



the efficiency of DaFT

2. If 1 does not remove all degeneracies choose the case such that 
Px≥Py≥Pz. This ensures that results from earlier versions of DL_POLY are 
reproduced

Thus the full algorithm for choosing the decomposition for P cores is

• Calculate the prime factorisation of P

• Loop over all Px = Possible factors of P

◦ Pyz=P/Px

◦ Calculate the prime factorisation of Pyz

◦ Loop over all Py = Possible factors of Pyz

▪ Pz=Pyz/Py

▪ Calculate the S=the surface area of the parallelipipeds

▪ If S < the previous best store S,  Px, Py, Pz

▪ If S = the previous best

• If Min(Px,Py,Pz)<Min(Best Px,Py,Pz) store S,  Px, Py, Pz

• If Min(Px,Py,Pz)=Min(Best Px,Py,Pz) 

◦ If Px< Best Px store S,  Px, Py, Pz

◦ If Px=Best Px and Py < Best Py store S,  Px, Py, Pz

◦ Finish Py loop

• Finish Px loop

6 Testing and Verification

The new code was verified against all the standard DL_POLY test cases found 
at xvi and also a number of supercells of Sodium Chloride. In all cases when run 
on powers of two cores the results from the earlier versions of the code were 
reproduced. For cases that were not on powers of 2 the calculated 
thermodynamic properties of the system were the same as those calculated for 
runs on powers of 2. 

7 Benchmarking

The new code was benchmarked by studying NaCl with a system comprising 
216,000 ions and run for 2000 time steps. This is a sufficient number of steps 
to minimise the effect of the start up and close down time. Configuration 
dumping was also turned off. The time taken for studying such a system is 
dominated by the electrostatics, and so it is ideal for studying the effect of this 
work. In particular the major concern was that the performance of the code 
may be significantly degraded when the processor grid was not a power of 2.



Figure 1 shows the performance, measured as MD time steps per second:

The two curves are for those runs that are on powers of two (in red) and those 
that are not (in blue). It can be seen that there is little difference in the two 
curves. Thus the concerns about the efficiency on  non-powers of 2 were 
unwarranted.

Table 1 shows the raw numbers used to generate the above curves, along with 
the prime factorisations of the number of cores

Figure 1: Performance of the new code
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Cores Prime 
factorisation

Timesteps/s 
(non power 

of 2)

Timesteps/s 
(power of 2)

24 23*3 2.08

32 25 2.8

40 23*5 3.19

48 24*3 3.98

64 26 5.19

72 23*32 4.87

96 25*3 6.76

120 23*3*5 7.93

128 27 9.1

160 25*5 10.8

192 26*3 12.34

216 23*33 13.65

256 28 15.85

288 25*32 15.82

384 27*3 20.72

512 29 24.48

768 28*3 31.18

1024 210 36.02

1536 29*3 38.84

2048 211 44.01

Table 1: Performance of the new code

It can be seen that factorisations involving low powers of 3 and 5 are very 
effectively dealt with by the new routines, and certainly the initial aim of core 
counts that factored as  2a*30-2*50-1 has been more than met.

The new code has been released to users, and is part of the standard release 
of DL_POLY_4.



8 Conclusion
A new multi-radix parallel FFT has been implemented within DL_POLY_4. Like 
the old FFT this fits exactly the same domain decomposition that DL_POLY_4 
uses, but is not restricted to using powers of 2 number of cores. This new 
flexibility has been shown to come at little performance penalty, and thus the 
new code both better fits modern multicore architectures, such as HECToR 
phase 2, and also allows the scientist to study the system of interest without 
having to artificially inflate it to fit the restrictions of the code.
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