
A DaFT (Mixed Radix) FFT
for DL_POLY_4

Ian J. Bush
Nag Ltd.

Jordan Hill

Oxford

OX2 8DR

Table of Contents
1Introduction and Background..2
2The Ewald Summation and SPME..3
3DaFT..4
4DaFT (Mixed Radix)..7
5Other Changes..10
6Testing and Verification...11
7Benchmarking..11
8Conclusion...14

1 Introduction and Background

DL_POLY_4i and its predecessor, DL_POLY_3, is a general purpose classical
molecular dynamics (MD) simulation software package which has been
developed at Daresbury Laboratory by I.T. Todorov and W. Smith. The package
is used to model the atomistic evolution of the full spectrum of models
commonly employed in the materials science, solid state chemistry, biological
simulation and soft condensed-matter communities. It has been developed
under the auspices of CCP5ii and is widely used throughout the UK as well as
world-wide. It is a fully data distributed code, employing methodologies such
as spatial domain decomposition (DD), link-cells (LC) built Verlet neighbourlist
(VN)iii and 3D Daresbury Fourier Transform (DaFT)iv. The code demonstrates
excellent performance and has been shown to scale to large numbers of
processors.

As stated above the linked cells algorithmv is the basis upon which DL_POLY_4
is parallelised, which it achieves by using an equispatial domain decomposition.
The simulation cell is divided into a number of equal volume, isomorphic,
parallelipiped domains, and each domain is assigned to an MPI process. As
most inter-atomic interactions become negligible beyond a finite distance, the
“cutoff”, only position data for atoms near the edges of each domain need
communicating to neighbouring cores for the atomic interactions to be
calculated, provided the cutoff is much smaller than the length of the edge of
the domains. The LC method thus has much in common with the halo
exchange methods used in solving differential equations on grids, except that it
is generalised to allow for the “grid points”, i.e. the atoms, to be disordered in
space, and for them to move from time step to time step.

However the key phrase in the above paragraph is “most inter-atomic
interactions become negligible beyond a finite distance,” and in particular the
word “most.” An extremely important exception is the Coulomb potential,
which decays as 1/r, where r is the inter-atomic separation. This is therefore an
extremely long ranged interaction and in fact it strictly can not be cut off at all.
It therefore appears that it can not be used at all within a periodic system,
which is the kind DL_POLY is most often used to study, as the sums involved to
evaluate the inter-atomic interactions will run over all periodic images of the
particles, an infinite number of operations! However this problem can be
circumvented by using the Ewald Summationvi, which is essentially a
summation acceleration method that exploits the translational symmetry of the
periodic system. The traditional method for performing this scales as N3/2vii viii,
where N is the number of particles in the system being studied. However more
modern variants, such as the Smooth Particle Mesh Ewald method (SPME) due
to Darden et al.ix, employ fast Fourier transforms (FFTs)x to reduce this scaling
to N*log(N), and it is the SPME method that DL_POLY_4 employs.

In the remainder of this report I shall briefly describe the steps in the SPME
method and how DL_POLY_4 employs it within the LC method. Then I shall
describe the original implementation in DL_POLY which employed a radix-2
parallel FFT written by myself, and discuss the limitations that a single radix
transform results in. After that I shall describe the current work, namely how
the FFT has been generalised to a mixed radix parallel transform and how this

has impacted the rest of the code. Finally I shall report some performance
figures for the current code, and also its current status.

2 The Ewald Summation and SPME

In this section I shall outline the steps in the SPME method so as to provide a
better understanding of the work required. A much more comprehensive
discussion, including error analyses, is given in the references above

The main steps of the SPME method are as follows:

1. Form Q. This is defined on a grid within the unit cell and given by

Q (k 1,k 2, k3)=∑
i=1

N

∑
n1,n2,n3=−∞

∞

qi

M n(u1i−k 1−nΚ1)M n(u2i−k 2−nΚ2)M n(u3i−k3−nΚ3)

In this qi is the charge on atom i, uμi=Kμrμi is the scaled position of atom
i, K1,2,3 are the dimensions of the grid, 0≤kμ<Kμ and Mn is a cardinal
b-splinexi of order n

2. Forward Fourier transform Q(k) to Q(m)

3. Form V(m) V (m)=
e

−π2m2

β2

m2 Q (m)

4. Form G(m) G (m)=∏
μ=1

3

∣bμ(mμ)∣
2
V (m) where

bμ(mμ)=e
(2πi (n−1)mμ /Κμ)[∑

k=0

n−2

M n(k+1)e
2π i mμk

Κμ]
−1

5. Inverse Fourier Transform G(m) to G(k)

6. From G(k) it is straightforward to calculate both the total energy of the
system and the forces on the ions comprising it.

This scheme has 2 important properties which allow it to be used easily within
a the data distribution used by DL_POLY_4

1. First a very important property of the cardinal b-splines, Mn(u), is that
they are non-zero only in the range 0<u<n. Thus in the calculation of
the contribution due to atom i to Q(m) it is necessary to consider only
points near the atom. This is effectively a short range interaction with a
cutoff, precisely the kind at which that the link cell algorithm excels

2. In Fourier space all operations are local, i.e. all that is required to
evaluate the quantities at a given point in space are values at that point,
there is no coupling of different points in the grid.

3 DaFT

Thus the main steps in the evaluation of the quantities of interest are the
calculation of Q(k) which exploits the link cell decomposition of the problem,
and then a forward and back Fourier transform. Unfortunately standard parallel
three dimensional FFTs such as FFTWxii require data decomposed in planes, not
the equispatial domain decomposed form that DL_POLY_4 uses. Thus a large
scale data redistribution would be required to use FFTW or similar, a process
that is notoriously inefficient on distributed data parallel machines.

Instead a number of years ago I wrote DaFT, the Daresbury Fourier Transform,
which can perform the 3D FFT using the DL_POLY_4 data distribution directly.
The core idea is to perform each of the 1D FFTs in parallel and the original
version of DaFT used the radix 2 Sande-Tukeyxiii algorithm for the forward
transform. This is a decimation in frequency (DIF) algorithm; given a Fourier
transform

X (k)=∑
j=0

N−1

x (j)e
2π i
N

jk

then the result can be written in terms of two transforms of half the length,
one for the even elements of the result, and one for the odd:

X (2r)= ∑
j=0

N /2−1

x (j)e
2π i

(N /2)
(2r) j

+ ∑
j=0

N /2−1

x (j+N /2)e
2π i

(N /2)
(2r) j

X (2r+1)= ∑
j=0

N /2−1

x (j)e
2π i

(N /2)
(2r+1) j

− ∑
j=0

N /2−1

[x (j+N /2)e
2π i
N

j

]e
2πi

(N /2)
(2r+1) j

Graphically this can be represented as

Thus using 2 MPI processes a distributed memory FFT of length 8 can be
performed by distributing the data such that process 0 has elements 0-3 and
process 2 elements 4-7. The two processes then send their data to each other
which is combined as described above, and then finally a library routine is
called to perform the final FFT which is completely local to the process. This
divide and conquer method can obviously be generalised to any power of two
number of processes calculating an FFT which is of length a power of 2; in
general for P processes there will be Log2(P) stages where data is exchanged
and combined by pairs of processes, and then each of the processes will
perform a length N/P serial FFT by use of a standard library routine.

It can also be seen that the data distribution in the above is the 1 dimensional
analogue of the domain decomposition used by DL_POLY. The generalisation of
the above to 3 dimensions is clear. The processors are split into a Px*Py*Pz grid
(“the processor grid”), the parallel 1D transforms in the x direction are all
performed at once, and this is repeated for y and z. This results in a FFT
algorithm that precisely matches that required by DL_POLY and therefore
avoids any initial or final data redistribution. It is this method that I earlier
implemented. The resulting code, the Daresbury Fourier Transform (DaFT), was
then used by DL_POLY_3.

The only apparent problem is the vectors produced by the DIF method are not
in natural order; it is in so called “bit reversed” order, and to return it to
natural order would require extensive communications so apparently defeating
the point of the exercise. In fact for DL_POLY_3 and DL_POLY_4 this is not an
issue because the operations required in Fourier space are, as noted above,

local. As a result the operations in Fourier space can be performed very easily
in bit reversed order as all that is required to be known is the value of m for
the grid point under consideration, and in particular it is not necessary to know
the value on the grid for any other vector m', thus obviating the need for any
communication. Further if the inverse Fourier transform required for the
calculation of the forces is performed by the Cooley and Tukey algorithm, a
decimation in time (DIT) algorithm, and the input values are provided in bit
reversed order, the final result is returned in the natural ordering in real space.
The graphical representation of the DIT method is

It can be seen that in parallel a very similar method to that employed for the
forward transform can be employed, except the data exchange and serial FFT
steps are reversed. Further because the inverse transform takes its input in bit
reversed order no communication is required between the two FFT stages.

The resulting code performs very well, and it was shown in xiv that while as a
stand alone routine it is often slower than the standard slab based 3D FFT
methods, in DL_POLY_3 DaFT was almost always superior within DL_POLY due
to the extra communications that slab based methods require to bring the data
into the appropriate distribution.

However the code as described above is limited to process counts that are
powers of 2. As at large processor counts the separation between neighbouring
powers of 2 increases this restriction can result in the scientist having to
markedly “scale up” his computational system simply so that he or she can run
on the next lowest power of 2 cores, so resulting in an appreciable increase in
cost of the calculation. This is a waste of their computational budget. Further

with HECToR phase2a for the first time the nodes themselves were not powers
of 2, forcing the scientist to under-populate at least 1 of the nodes in most
runs. As HECToR accounting is “by the node” this was another waste of
computational resources. Both these above points led to the current work, to
remove the above restrictions.

On the other hand it should be noted that the dimensions of the FFT grid, as
opposed to the processor grid, are not restricted to powers of 2. Rather the
dimensions are restricted to the values PμNFFT, where Pμ is the number of
processors down a given dimension (x,y or z) of the processor grid, and NFFT is
a length which the serial FFT library routine can perform. In other words the
restriction is that the length must be a multiple of the number of processors,
and the allowed multiples are determined by the capabilities of the serial FFT
library function. In practice the GPFA routines of Tempertonxv are used. These
can perform FFTs for sequences whose lengths have prime factors 2, 3, or 5.
Thus DaFT in its original formulation was capable of 3 dimensional parallel FFTs
where the dimensions of the FFT had length Pμ*2a*3b*5c, for zero or positive
integer a, b and c and Pμ a power of 2. However DL_POLY_3 imposed the
restriction that the dimensions of the FFT grid must be a power of 2, a point I
shall return to when describing the current work.

Thus the overall 3D DaFT algorithm is actually very simple, in many ways
much simpler than the standard “transpose” based methods. Given a processor
grid of size Px*Py*Pz and an FFT grid of size Nx*Ny*Nz

1. Perform the 1D FFTs in the x direction. Each of these are split over Px

cores, and each core has (Ny/Py)*(Nz/Pz) of these to perform, and
obviously only one message need be sent for all the 1D FFTs at each
stage, thus ensuring long messages

2. As 1 but for the y direction

3. As 1 but for the z direction

Thus to be effective it is necessary only to achieve good scaling of the 1D FFTs
to approximately P1/3 cores, where P is the total number of cores used by the
job, since each 1D FFT is only distributed across ~ P1/3 cores.

4 DaFT (Mixed Radix)

The major limitation on DaFT is that it limited to powers of 2 number of
processes, a limit that is not commensurate with either some modern
computational systems or the needs of some users of DL_POLY. Thus for
DL_POLY_4 work has been funded by the dCSE mechanism to provide a
generalisation of the above. The original proposal was to allow process grids
which had factors of the form 2a*30-2*50-1, this form being chosen to

1. Fit the architecture of the then current phase2a HECToR system which
had 24 core nodes

2. Allow some future proofing to possible future architectures

3. Allow sufficient flexibility to the scientist so that waste of computational
resources due to using “oversized” systems was markedly reduced.

In fact what was implemented was a full mixed radix domain decomposed

parallel FFT. This allows for any number of processes to be used for the FFT,
though due to the nature of the both the algorithm and implementation it is
most efficient if the prime factors of the number of processes used be small
integers.

The mixed radix algorithm depends upon the following identity: If the length of
a Fourier Transform is N and it can be factored as N=N1*N2 then

X (k)=∑
j=0

N−1

x (j)e
2π i
N

jk

can be written in terms of the two factors as

X (N 2k 1+k 2)=∑
j1=0

N 1−1

[e
2π i
N

j 1k 2](∑j2=0

N 2−1

x(N 1 j2+ j1)e
2π i
N 2

j 2k 2)e
2π i
N

j 1k 1

It can be see that again the Fourier transform has been decomposed into 2;
the term in parentheses is an FT of length N2, while the outer sum is an FT of
length N1 with some extra phase (“twiddle”) factors. Thus each of the two FTs
could be calculated by the parallel DIF algorithm described above, generalising
it where necessary to deal with the case where 2 is not the factor of interest.

However in practice to deal with a general number of processes efficiently
would be somewhat complicated by this method as the communication
patterns depend fundamentally on the value of the prime factor of interest.
Instead the pragmatic decision was made to split the factors into two sets,
short and long. Short factors are small primes, and thus the factorisation of
the number of processors will typically contain these factors raised to high
powers. As such these are performed by either a DIF or DIT FFT algorithm,
depending on the direction of the transform. Long factors are larger primes,
and thus they will be (typically) raised to low powers in the factorisation. In
this case the FFT algorithm often gives little gain compared to a simple,
straightforward quadrature based discrete Fourier transform (DFT - in fact if
the power is unity the DFT and FFT are identical), and as such the longer
factors are all amalgamated and a single DFT is performed. Currently the only
short factor supported is 2, but the code has been designed to allow easy
addition of other primes numbers to this set.

To clarify the above consider the case where the 1D FFT in a given direction is
being performed by 36 cores. As 36=22*32 the short factors are 2, and will use
the distributed FFT algorithm outlined above, while the long factor is 32=9, and
this FT associated with this factor will be performed by a simple DFT.

In the above equation the long factors correspond to the summation over j2,
while the short factors are the j1 sum. Thus the method for the mixed radix
forward transform is

1. Perform the DFT for the long factors

2. Scale with the appropriate twiddle factors

3. Perform the FFT for the short factors

To perform the DFT the data has to be circulated amongst the processors that

hold the DFT of length N2. If the factorisation of the number of processors
along the dimension is Pμ=S*L, where S is the product of the short factors and
L the same for the long, then there will be S of these transforms, and each of
these transforms require the data to be communicated between the L
processes that hold the data for it. A number of different ways of performing
this data circulation were investigated, but the in practice a simple systolic loop
with double buffering was found most effective. This is possibly because it
allows some overlap of computation and communication as can be seen from
the code excerpt below:

 which = 0
 work = a

 a = 0.0_wp

 rank = desc%rank; rem_rank = rank

 Do pulse = 0, desc%size - 1

 t = Exp(Cmplx(0.0_wp, &

 (sign * 2.0_wp * pi * rank * rem_rank) / desc%length, Kind = wp))

 If (which == 0) Then

 If (pulse /= desc%size - 1) Then

 Call MPI_IRECV(work2, 2 * Size(work2), wp_mpi, down, down, &

desc%comm, comms_request1, comms_error)

 Call MPI_ISEND(work , 2 * Size(work), wp_mpi, up, rank, &

desc%comm, comms_request2, comms_error)

 End If

 a = a + t * work

 If (pulse /= desc%size - 1) Then

 Call MPI_WAIT(comms_request1, comms_status, comms_error)

 Call MPI_WAIT(comms_request2, comms_status, comms_error)

 End If

 Else

 If (pulse /= desc%size - 1) Then

 Call MPI_IRECV(work , 2 * Size(work), wp_mpi, down, down, &

desc%comm, comms_request1, comms_error)

 Call MPI_ISEND(work2, 2 * Size(work2), wp_mpi, up, rank, &

desc%comm, comms_request2, comms_error)

 End If

 a = a + t * work2

 If (pulse /= desc%size - 1) Then

 Call MPI_WAIT(comms_request1, comms_status, comms_error)

 Call MPI_WAIT(comms_request2, comms_status, comms_error)

 End If

 End If

 which = Mod(which + 1, 2)

 rem_rank = Mod(rem_rank + 1, desc%size)

 End Do

The algorithm described above will work for any number of processors
provided the length of the 1D FFTs in each direction is a multiple of size of the
processor grid in the corresponding dimension. For DL_POLY_4 in practice this
is not an issue. The user input that determines the grid size is a minimum
accuracy for the SPME method. As increasing the FFT grid size increases the

accuracy of the SPME method, it is therefore sufficient to simply increase the
grid size until both the accuracy criterion and the above restriction are
satisfied. In practice the overhead is small; the cube root of the number of
processors on HECToR is roughly 35, thus indicating that in a bad case the FFT
grid is 34 bigger than necessary in each direction. Compare this to a factor of 2
for the previous version! As a job on so many cores would have a grid of the
order of 1000s in each of the 3 directions the overhead is obviously small.

5 Other Changes

After the FFT was generalised to deal with arbitrary numbers of processes it
was necessary to do the same for DL_POLY. Earlier version of the application
assumed

1. The number of cores was a power of 2

2. The dimensions of the FFT grid were powers of 2

The former is the major restriction, once it is removed the later follows
naturally; indeed the general procedure is described in the previous section,
namely to pick a size that satisfies the minimum accuracy criterion and then
increase it until the dimension was consistent with the requirements of the new
DaFT routines.

The removal of restriction 1 required a number of changes to code. By far the
largest of these was to implement an algorithm to determine the domain
decomposition for an arbitrary number of processes. For a given number of
cores the chosen decomposition should

1. Enable DL_POLY to run as efficiently as possible

2. Reproduce the results of earlier versions of the code where appropriate

To develop such an algorithm note that

1. Just as for halo exchange codes the time spent in message passing is
proportional to the surface area of the parallelipipeds into which the unit
cell is decomposed

2. For a given process count the volume each process holds is constant,
irrespective of the decomposition

3. Therefore as to maximise efficiency one has to minimise the ratio of
surface area of the parallelipipeds to their volume, the problem reduces
to finding that decomposition which minimises the surface area of the
parallelipipeds

Thus the problem reduces to an optimisation. There are, however, two slight
complications when different decompositions can result in the same surface
area. This can occur due to symmetry of the system, e.g. on 16 processors
with a cubic unit cell 4*2*2, 2*4*2 and 2*2*4 decompositions all obviously
give the same surface area for the parallelipipeds. However it can occur for
more general cases where no such apparent symmetry exists. To choose a
decomposition in such “degenerate” cases the new code

1. Chooses the factorisation which minimises the maximum number of
cores along any dimension in the process grid as this should maximise

the efficiency of DaFT

2. If 1 does not remove all degeneracies choose the case such that
Px≥Py≥Pz. This ensures that results from earlier versions of DL_POLY are
reproduced

Thus the full algorithm for choosing the decomposition for P cores is

• Calculate the prime factorisation of P

• Loop over all Px = Possible factors of P

◦ Pyz=P/Px

◦ Calculate the prime factorisation of Pyz

◦ Loop over all Py = Possible factors of Pyz

▪ Pz=Pyz/Py

▪ Calculate the S=the surface area of the parallelipipeds

▪ If S < the previous best store S, Px, Py, Pz

▪ If S = the previous best

• If Min(Px,Py,Pz)<Min(Best Px,Py,Pz) store S, Px, Py, Pz

• If Min(Px,Py,Pz)=Min(Best Px,Py,Pz)

◦ If Px< Best Px store S, Px, Py, Pz

◦ If Px=Best Px and Py < Best Py store S, Px, Py, Pz

◦ Finish Py loop

• Finish Px loop

6 Testing and Verification

The new code was verified against all the standard DL_POLY test cases found
at xvi and also a number of supercells of Sodium Chloride. In all cases when run
on powers of two cores the results from the earlier versions of the code were
reproduced. For cases that were not on powers of 2 the calculated
thermodynamic properties of the system were the same as those calculated for
runs on powers of 2.

7 Benchmarking

The new code was benchmarked by studying NaCl with a system comprising
216,000 ions and run for 2000 time steps. This is a sufficient number of steps
to minimise the effect of the start up and close down time. Configuration
dumping was also turned off. The time taken for studying such a system is
dominated by the electrostatics, and so it is ideal for studying the effect of this
work. In particular the major concern was that the performance of the code
may be significantly degraded when the processor grid was not a power of 2.

Figure 1 shows the performance, measured as MD time steps per second:

The two curves are for those runs that are on powers of two (in red) and those
that are not (in blue). It can be seen that there is little difference in the two
curves. Thus the concerns about the efficiency on non-powers of 2 were
unwarranted.

Table 1 shows the raw numbers used to generate the above curves, along with
the prime factorisations of the number of cores

Figure 1: Performance of the new code

0 500 1000 1500 2000 2500
0

5

10

15

20

25

30

35

40

45

50

Other
Power of 2

Cores

T
im

e
st

e
p

s/
s

Cores Prime
factorisation

Timesteps/s
(non power

of 2)

Timesteps/s
(power of 2)

24 23*3 2.08

32 25 2.8

40 23*5 3.19

48 24*3 3.98

64 26 5.19

72 23*32 4.87

96 25*3 6.76

120 23*3*5 7.93

128 27 9.1

160 25*5 10.8

192 26*3 12.34

216 23*33 13.65

256 28 15.85

288 25*32 15.82

384 27*3 20.72

512 29 24.48

768 28*3 31.18

1024 210 36.02

1536 29*3 38.84

2048 211 44.01

Table 1: Performance of the new code

It can be seen that factorisations involving low powers of 3 and 5 are very
effectively dealt with by the new routines, and certainly the initial aim of core
counts that factored as 2a*30-2*50-1 has been more than met.

The new code has been released to users, and is part of the standard release
of DL_POLY_4.

8 Conclusion
A new multi-radix parallel FFT has been implemented within DL_POLY_4. Like
the old FFT this fits exactly the same domain decomposition that DL_POLY_4
uses, but is not restricted to using powers of 2 number of cores. This new
flexibility has been shown to come at little performance penalty, and thus the
new code both better fits modern multicore architectures, such as HECToR
phase 2, and also allows the scientist to study the system of interest without
having to artificially inflate it to fit the restrictions of the code.

Acknowledgements

This project was funded under the HECToR Distributed Computational Science
and Engineering (CSE) Service operated by NAG Ltd. HECToR A Research
Councils UK High End Computing Service – is the UK’s national supercomputing
service, managed by EPSRC on behalf of the participating Research Councils.
Its mission is to support capability science and engineering in UK academia.
The HECToR supercomputers are managed by UoE HPCx Ltd and the CSE
Support Service is provided by NAG Ltd. http://www.hector.ac.uk.

References

i http://www.ccp5.ac.uk/DL_POLY/

ii http://www.ccp5.ac.uk/
iii I.T. Todorov, W. Smith, K. Trachenko & M.T.Dove, J. Mater. Chem., 16,
1911-1918 (2006)

iv I.J. Bush, I.T. Todorov and W. Smith, Comp. Phys. Commun., 175, 323-
329 (2006)

v M.R.S. Pinches, D. Tildesley, W. Smith, 1991, Mol Simulation, 6, 51

vi P Ewald, Ann. Phys. 64 (1921) 253.
vii J. Perram, H. Petersen and S. De Leeuw, Mol. Phys. 65 (1988) 875.
viii D. Fincham, Mol. Simulation 13, (1994), 1
ix U. Essman, L. Perera, M.L. Berkowitz, T. Darden, H. Lee, L.G. Pedersen,
J. Chem. Phys. 103, 19, (1995)
x J.W. Cooley, O.W. Tukey, Math. Comput. 19, 297-301, (1965)
xi I.J. Schoenberg, “Cardinal Spline Interpolation”, Society for Industrial
and Applied Mathematics, Philadelphia, PA, (1973)
xii www.fftw.org
xiii Stoer, J. and Bulirsch, R. Introduction to Numerical Analysis. New York:
Springer-Verlag, (1980)
xiv I.J. Bush, I.T. Todorov and W. Smith, Comp. Phys. Commun., 175, 323-
329 (2006)

xv C. Temperton, J. Comp. Phys. 52, 1, (1983)
xvi ftp://ftp.dl.ac.uk/ccp5/DL_POLY/DL_POLY_4.0/DATA/

http://www.ccp5.ac.uk/DL_POLY/
http://www.amazon.com/exec/obidos/ASIN/0486653633/ref=nosim/weisstein-20
http://www.fftw.org/

	1 Introduction and Background
	2 The Ewald Summation and SPME
	3 DaFT
	4 DaFT (Mixed Radix)
	5 Other Changes
	6 Testing and Verification
	7 Benchmarking
	8 Conclusion

