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ABSTRACT:  With  the  increase  in  size  of  HPC facilities  it  is  not  only  the  parallel  
performance of applications that is preventing greater exploitation; in many cases it is  
the  I/O  which  is  the  bottleneck.   This  is  especially  the  case  for  distributed  data 
algorithms. In this paper we will discuss how the I/O in the distributed data molecular  
dynamics application DL_POLY_3 has been optimised.  In particular, we shall show that  
extensive data redistribution specifically to allow best use of the I/O subsystem can result  
in  a  code  that  scales  to  many  more  processors,  despite  the  large  increase  in  
communications required. 
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1. Introduction

DL_POLY_3 [i] is a general purpose package for classical molecular dynamics (MD) simulations developed by I.T. 
Todorov and W. Smith at STFC Daresbury Laboratory.  The main purpose of this software is to enable the exploitation of 
large scale MD simulations on multi-processor platforms.  DL_POLY_3 is fully self-contained and written in a modularised 
manner with communications handled by MPI.  The rigorous and defensive programming style conforms to the Fortran95 
standard  (as  checked  by  both  NAGWare95  [ii]  and  FORCHECK95  [iii])  and  guarantees  exceptional  portability. 
Parallelisation is based on equi-spatial domain decomposition distribution which guarantees excellent load balancing and full 
memory distribution provided the system’s particle density is fairly uniform across space [i].  This parallelisation strategy 
results in mostly point to point communication with very few global operations, and excellent scaling.

However, for a practical MD run excellent scaling of the CPU bound portion of the code is only one part of the total 
solution; it is also necessary both to save the results of the calculation to disk and to read the initial set up.  As MD is a time-
stepping algorithm the writing must be done periodically, and for a typical calculation it is performed every 100-1000 time-
steps. As discussed in [iv] and [v] it is this reading and particularly the writing of data that has now become the bottleneck, 
especially at high processor counts and/or large problem sizes. 

The work described in this report was carried out by Ian Bush who also gave a presentation on the project at the 
Cray User Group meeting which was held in Edinburgh 24-27 May 2010. The remainder  of this report  is organised as 
follows.  In the next section we discuss in more detail the problem to be solved and earlier methods used by DL_POLY_3 
and their drawbacks.  In section 3, we shall describe a new method for writing that was released to users in version 3.10 of 



the code, and compare its performance with the earlier implementation.  Section 4 discusses the new parallel reading method 
which will  be in the next release of  the code,  and again we compare the performance with the previous methodology. 
Section 5 describes recent developments based upon netCDF [7], and finally we discuss how the improvements in I/O have 
improved the scaling of the whole code.

2. I/O in Domain Decomposed MD

The  main  I/O  in  DL_POLY_3  is,  as  is  in  most  classical  MD  codes,  the  reading  and  writing  of  configurations 
representing frames of the time evolution of the modelled system.  In both cases these are simply lists of the coordinates of  
the particles in the system, and optionally the velocities  and forces acting on those particles.   In DL_POLY_3 this has 
traditionally been performed using formatted I/O for portability. This is because while the MD run itself may be done on 
HPC facility or commodity cluster, the analysis of the results is often done on a workstation at the user’s own establishment.  
Thus the output resembles the following

Na+              1
-184.5476802        -167.5198486        -185.5358832
-2.881253622        -4.727721670         2.235042811
-10840.17697        -5695.571326        -2740.726482

repeated many times, where the four lines are the atom's identity, position, velocity and the force acting upon it.
Although one may think this looks simple, there is one major complication as a consequence of domain decomposition 

scheme: As a parallel MD run progresses the original internal ordering of the atoms is scrambled, and furthermore atoms can 
migrate from one domain to another.  Thus while the second atom as input may originally reside on processor 0 as the run 
proceeds it may migrate through the regions of space assigned to a number of other processors.  The nett result is that while 
at the start of the calculation a particle is read in as the  nth atom, at the end it may no longer be natural to write it to the 
equivalent place in the output file.  One might contrast this with methods based upon solving differential equations on a grid. 
Despite both methods being domain decomposed in the latter case there is not usually this complication as the grid is fixed in 
space throughout the run.

Of course for the MD itself this is not an issue; obviously any numerical labelling of those atoms on input or output can 
make no difference to the results of the simulation.  However, many post-processing software tools rely on the order of the 
atoms in the output file(s) to be maintained.  One example of such is visualisation software that displays the time evolution of 
the positions of the atoms in the run.  Such software must be able to track a given atom from one frame to another, and this is 
typically done by assuming that the position of a given atom within the output is conserved.

Thus for the user it is extremely convenient that the order of the atoms be conserved.  On the other hand for the parallel 
application  it  is  extremely  inconvenient!   It  implies  that  a  reordering  of  the  data  must  be  performed  every  time  a 
configuration is written, an operation that can be expensive for distributed data applications.  This reorganisation can be 
achieved in one of two ways (or a combination of both)

1. Between the CPUs: The CPUs communicate between each other to restore the original ordering of the data.
2. On the disk: By examination of the local data each CPU identifies where in the file the records for a given atom 

should be written, and simply writes directly into that section of the file.

Historically option 2 has been used by DL_POLY_3.  This is made relatively simple by use of Fortran’s direct access 
I/O facility, especially given the very regular format of the output files.  This is described more fully in [vi].  Two methods 
were implemented and tested:

1. SWRITE: Each processor in turn sends it data to processor zero, which deals with all the I/O by use of a direct  
access file.

2. PWRITE: Each processor writes its local data to the appropriate records in the direct access file.

As described in [vii] both these have their drawbacks.  SWRITE is obviously not a scalable solution, and further the 
available disk bandwidth on modern parallel file systems often cannot be saturated by a single processor.  On the other hand 
while PWRITE may scale with processor count the limited disk bandwidth may cause contention at the disk, and this is 
normally the case for large numbers of processors.  However, this is not the only drawback of the PWRITE method.  The 
Fortran standard describes the behaviour of a serial code.  Therefore quite what should occur when multiple processes access 



one direct access file is not well defined, and in practice it is observed that on the Cray XT3/4 series using Lustre “spurious” 
NULL characters  are  introduced  into  the  file  when the  PWRITE method  is  used.   This  problem is  ultimately  due  to 
incoherence between the disk and caches.

Over and above the portability concerns the performance of the PWRITE method was simply insufficient to permit good 
scaling of the whole code, as described in [viii].  Therefore since [vii] two new portable and potentially scalable methods have 
been developed, MWRITE and MWRITE_SORTED and they are the main focus for this paper.

However for very large systems there are two further problems.  Though writing is much more important than reading, 
since the atomic configuration has to be dumped periodically throughout the run while reading is done but once, at large 
system sizes and processor counts reading the initial configuration can become prohibitively expensive.  Further for large 
systems the formatted input and output files can become extremely large.  We discuss both these points; a parallel reading 
method has been developed and is described, and an initial implementation of a netCDF [ ix] version of the main I/O routines 
has also very recently been completed.

3. Writing Configurations

One solution to the portability problems associated with the PWRITE method is  to use MPI-IO.  If  one wishes to 
preserve the format of Fortran Direct Access files, as is the case here for backward compatibility, this is particularly simple. 
In such files each record is the same length.  A record can therefore be mapped onto a MPI derived type composed of an 
array of characters of the appropriate size.  One then simply uses MPI_FILE_SET_VIEW to set the elementary data type for 
the file to be this data type, and subsequently all offsets within the file are calculated in units of the size of this type.  The nett  
result is that MPI_FILE_WRITE_AT can be used exactly as for a Fortran direct access write except that

1. The program has to address the conversion of data to its character representation.  For instance floating point 
numbers need to be converted to a string which is identical to the representation of the number obtained when 
using formatted output.  In Fortran this is most easily achieved by the use of internal writes.

2. The indexing of the records is from 0, rather than from 1.

We are very grateful to David Tanqueray of Cray who brought this idea to our attention.  He also kindly provided us with an 
implementation which we shall call MWRITE, and until version 3.09 of DL_POLY_3 this was the default writing method.

MWRITE is portable.  However, as described in [viii] and [x] its performance is not sufficient to enable good scaling of 
the whole code.  This poor performance is for two primary reasons

1. Each I/O transaction is the data for just 1 atom, and is therefore very short (292 bytes).
2. With all the processors writing contention may occur at the disk, resulting in reduced performance.

To address these problems, the MWRITE_SORTED method has been developed.  A very early prototype of this which 
lacked a number of facilities is discussed in [xi].  Here we discuss the full implementation as released to users.  The ideas 
behind this are two-fold:

1. To avoid disk contention the data is gathered onto a subset of the processes within the job. These,  the I/O 
processors, then perform the writing.

2. Within this subset before writing the data is sorted so that the particles are put back into their original order.  As 
the data is now in the correct order this allows the writing of the data associated with many particles to be 
performed at once, thus allowing larger transactions and hence better I/O performance.

After these two stages the output itself is performed using MPI-I/O.
To avoid large memory overheads the gathering is done in batches. For instance consider a simulation of N particles 

with PI/O I/O processors.  Rather than gather all the data onto the I/O processors, which may not be possible due to memory 
constraints, initially the data corresponding to the first  PI/O*NB atoms is gathered onto the I/O processors, across which the 
atoms are evenly distributed, and then written out.  Here  NB, the  batch size, is a parameter to be chosen.  Then the next 
PI/O*NB atoms are gathered and written, and so on until all the data is written.  This is simple to achieve as all that is required  
to efficiently identify the member of a given batch on a given core is a local sort of the atoms into their original increasing 
order.  NB should be chosen according to two competing criteria:

1. It should be large enough to ensure that both the message passing in the gathering and the also the actual 
writing of the data to disk is efficient.

2. It should be small so that the memory overheads on the I/O processors are acceptable.



In practice  the ranks of  the I/O processors  in  the code are evenly spread throughout  MPI_COMM_WORLD.  It  is  our 
experience that on many systems the cores with the first n ranks reside on the first n-way multi-core processor, the next n on 
the next processor and so on. If this is the case the memory overhead is on the per-node basis, rather than per-core, and thus 
larger batching may be used as there is more available memory.  However, it must be stressed that this method does not 
ensure this placement as there is no portable method within MPI to identify cores on the same or different nodes.  The 
method  will  always  successfully  write  the  data  to  disk,  though,  assuming  sufficient  memory  is  available. 
MWRITE_SORTED has now been fully implemented, and is now released to the users as the default output method in 
version 3.10 of DL_POLY_3.

Figure 1 compares  the performance of DL_POLY_3 versions 3.09 and 3.10 on phase2a HECToR [xii], a Cray XT4 
system based on 2.3 GHz quad core AMD Opteron processors and a Lustre file system [xiii].  Each case was run 5 times, and 
the best time was chosen.

The physical system being studied is 216,000 ions of Sodium Chloride.  The run is for 1000 time steps, and then the 
coordinates are written out once at the end of the job.  This has been chosen as it is representative of the size of system that a 
number of groups are studying.

Figure 1: Write Performance for 216000 Ions

It can be seen from the compute only curves that the code is scaling well and that there is little difference between the 
versions.  As the compute part of the code differs little between the two versions this is unsurprising. However, it can be seen 
that once the time for writing the final configuration is included the scaling is markedly different for the two code versions. 
Version 3.09 scales up to about 128 cores, and then the I/O inhibits any further improvement in performance, even though 
the compute is scaling well.  The inclusion of the I/O time for 3.10, however, hardly makes any difference in the overall  
performance  on  the  processor  counts  studied  here,  thus  indicating  a  much improved  I/O performance  due  to  the  new 
MWRITE_SORTED method.

In the above the default settings were used throughout for both the code and any environment variables that affect the 
behaviour  of  the  Lustre  file  system.  We feel  that  this  is  important  as  the  majority  of  users  will  be  unaware  of  what 
mechanisms can be used to tune the I/O performance of the code, and so will run with the defaults.

For the code the defaults have been chosen by examining how they affect performance on both HECToR and the earlier 
HPCx system [xiv].  It has been found empirically that a reasonable set of defaults for writing are 

• 8P1/2 I/O processors, where P is the total number of cores.
• Batch the atoms 50,000 at a time.
• Write 5,000 the data associated with atoms per I/O transaction.



The reason for the last is the need to convert the numerical data into its character representation.   Again a large number 
favours  good I/O performance,  but  its  range is  limited  by  memory  overheads.  Of  course  it  would  be  best  if  the code 
automatically optimised the side of the various buffers, but given the lazy allocation mechanism currently implemented in the 
kernel of the XT4 this is difficult to do, as it is difficult to identify how much unused memory is available.

More generally MWRITE_SORTED has been tested against the 34 DL_POLY_3 test cases which are available at [xv], 
and it has been found that on 256 cores of HECToR the writing in 3.10 is on average over 50 times quicker than in 3.09.

Table 1 shows the effective performance of the I/O for the two versions of DL_POLY_3 in terms of time and MByte/s. 
The time used to evaluate the performance includes all message passing and compute associated with the methods, hence the 
use of “effective” above.  We choose this as it is this time that is of interest for the MD practitioner and programmer, not just 
the time to access the disks.

3.09 3.10 3.09 3.10
Core s I/O  ProcsTim e /s Tim e /s Mbyte /s Mbyte /s

32 32 143.30 1.27 0.44 49.78
64 64 48.99 0.49 1.29 128.46

128 128 39.59 0.53 1.59 118.11
256 128 68.08 0.43 0.93 147.71
512 256 113.97 1.33 0.55 47.60

1024 256 112.79 1.20 0.56 52.47
2048 512 135.97 0.95 0.46 66.39

Table 1: Writing Performance for 216000 Ions

Firstly,  it  should be noted that  despite running each case a number of times and taking the best result  there is  still 
appreciable noise in the data.  Despite this a number of conclusions can be reached.  Most importantly, it can be seen how 
much superior MWRITE_SORTED as implemented in version 3.10 is to MWRITE.  It can also be seen that the default 
choices for the code result in the best performance at 256 cores.  As this is the point to which the compute scales almost 
linearly (as seen in Figure 1) for this particular case this is indeed the place where we need the performance to be best as this 
is the number of cores that we would recommend the user to run it on to best make use of their computational budget.  As 
such the degradation at higher core counts is not important, especially because, as can be seen for Figure 1, the overall effect 
on the code is minimal.

We have also tested whether  MWRITE_SORTED scales sufficiently  well  with system size to  allow larger physical 
problems to be studied on larger numbers of processors.  This is illustrated in Figure 2.  The system is again NaCl, but now 
the total size is 1,728,000 ions.  Again, the system was run for 1000 time steps and a single configuration was dumped, and 
again the default I/O parameters have been used.  It can be seen that the whole run, including I/O, is now scaling excellently 
to beyond 1000 cores.  Also the peak writing bandwidth is much superior to that found for the smaller case at 810 MByte/s. 
We have not run this system using the 3.09 code as the time required for I/O makes it impractical.



 
Figure 2: Write Performance for 1728000 ions

It is worth noting that larger system was generated from the original by use of DL_POLY_3’s nfold option.  This allows a 
system to be scaled in directions parallel to each of the lattice vectors, and in this case the system was doubled in each of the 
x, y and z directions.  To perform this requires a new configuration to be written.  Version 3.10, using MWRITE_SORTED, 
completes this operation on 256 cores in 1.5 seconds. Version 3.09, using MWRITE, takes around 1 hour!

4. Reading Configurations

The currently released version of DL_POLY_3, 3.10, does not read configurations in parallel. The method used is
• The core with rank zero in MPI_COMM_WORLD reads in a batch of the atomic data.
• Core zero then broadcast all the data for a given batch to all the other processors.
• From the batch a given processor extracts which atoms are in the domain for which it is responsible.
• Core zero reads in the next batch, and the above is repeated until all the data has been read from the file.

Reading the input data in parallel is both easier and harder than writing.  For reading no sorting is required, and so as 
illustrated in the above scheme reading in large batches is straightforward.  However on writing the programmer may specify 
the format so as to best suit has own needs, provided it is within the constraints described in the DL_POLY_3 manual [xvi]. 
On the other hand for reading it is the user that provides the file, and thus the program must be flexible enough to adjust to 
any choices the user may make for his or her convenience.  In practice, there are two important cases:

1. The input file was originally generated by DL_POLY_3 (e.g. for a restart or an analysis of a trajectory).  In this 
case the format is exactly that chosen by the code.

2. The input file was generated by some other method.

In practice case 1 is both the more important and the easier to deal with.  Therefore the new code automatically detects 
which category the provided input file falls into, and if it is case 1 it implements an optimised method, while if it is an 
example of case 2 a more general method is used.

The idea behind the two methods is essentially the same:
• A subset of the processors, again termed the I/O processors, each read in a batch of atomic data.
• Each I/O processor determines upon which core each of the atoms within its batch should reside.
• The I/O processors scatter their batch to the other cores so that each atom is received by the appropriate core.



• The I/O processors each read in another batch, and the process is repeated until all the data has been read from 
the file.

The main optimisation available if the format is known a priori (case 1 above) is that the length of each of the records in 
the input file is known. This permits

• Knowing a priori where each batch starts in the file.  If this is not known in Fortran it is necessary to skip over 
each batch until the correct starting place is found, thus incurring an overhead.

• Optimal reading of each record, as the record length is known.

For either variants of the parallel reading method the potential benefits are that the reading is now in parallel and that the 
use of large I/O transaction lengths is retained from the original.

Table 2 shows the performance of the reading in version 3.10 and the new code.  The example is the smaller NaCl case 
outlined above, and the format of the file allows the optimised method to be used.

3.10N e w 3.10N e w
Co re s I/O  P ro csTim e /s Tim e /s M b y te /s M b y te /s

32 16 3.71 0.29 17.01 219.76
64 16 3.65 0.30 17.28 211.65

128 32 3.56 0.22 17.74 290.65
256 32 3.71 0.30 16.98 213.08
512 64 3.60 0.48 17.53 130.31

1024 64 3.64 0.71 17.32 88.96
2048 128 3.75 1.28 16.84 49.31

Table 2: Reading performance for 216000 Ions

Again all defaults for both the code, in terms of batch sizes and number of I/O processors, and the Lustre file system have 
been used.  It can be seen that though there is a significant gain due to reading in parallel it is not as pronounced as for  
writing.   This is unsurprising as in DL_POLY_3.10 though the reading is not done in parallel at least it  uses large I/O 
transactions.  The serial nature of the reading for the released 3.10 version of the code is also very clear, as is the fact that it is 
disk accesses that dominate the time, not the broadcasting of the batches.  It can also be seen that the reading performance 
degrades more sharply at higher processor counts than for writing.  This requires more investigation, and may indicate that 
the defaults for I/O used by the code can be optimised further.  Currently, they are

• 2P1/2 I/O processors, where P is the total number of cores.
• Batch the atoms 50,000 at a time.
• Write the data associated with 5000 atoms at each I/O transaction.

Table 3 shows the scaling of the I/O performance for the larger case.

Time/s Mbyte/s
128 32 1.15 437.24
256 32 1.02 494.68
512 64 1.22 414.61

1024 64 1.56 323.24
2048 128 3.64 138.73
4096 128 5.64 89.48



Table 3: Reading Performance for 1728000 Ions

Only data for the new method is shown.  It can be seen that for this larger case a better peak I/O effective bandwidth is  
attained, and but that again there is a rapid fall off in performance.  

5. NetCDF

In all released versions of DL_POLY to date the input and output files have always been readable by standard Fortran 
formatted read statements.  For very large systems the reading and generation of such files may be undesirable for two 
reasons:

1. The conversion  of  the  character  representation  of  a  number to/from its  internal  binary  representation  may 
impose a large overhead on the I/O performance.

2. Formatted files are usually appreciably bigger than binary files containing the same data.

In an attempt to deal with both these problems whilst retaining the portability of the input and output files very recently 
DL_POLY_3’s I/O subsystem has been extended to enable parallel reading and writing of netCDF [xvii] files.  The chosen 
format for these files is based very closely on the published Amber convention [xviii], the major differences being

1. The files are opened as netCDF4 files so as to be able to use the parallel I/O capabilities in netCDF version 4 
[ix] provided by the use of HDF5 [xix].

2. Double precision is used to store the coordinates and velocities of the atoms, rather than single precision.
3. The forces are also stored, as per the formatted files in DL_POLY_3.

The resulting files are roughly one third the size of their formatted equivalent.  Given that a trajectory history can result 
in files many hundreds of gigabytes long this is a very substantial saving.

The current implementation is based upon the earlier parallel I/O methods.  All the sorting and batching is performed 
exactly as before, only the initialisation of the files, their closing and the actual I/O statements are changed.  No effort has 
been made to optimise the various I/O parameters for the netCDF method, and those employed are exactly the same as those 
for the corresponding MPI-I/O based method.

Table 4 shows the results  for  writing for  the smaller  NaCl  test  case.   It  can be  seen that  the performance is  very 
disappointing, especially when compared with that achieved via MPI-I/O upon which netCDF is itself ultimately based.  The 
behaviour of the reading is similar.  It is clear that further investigation is required in this area, for the potential benefits due 
to the savings in file size are very great.

3.10 3.10 NetCDF NetCDF
Cores I/O Procs Time/s Mbyte/s Time/s Time/s

32 32 1.27 49.78 4.77 13.22
64 64 0.49 128.46 8.63 7.31

128 128 0.53 118.11 13.81 4.57
256 128 0.43 147.71 27.24 2.32
512 256 1.33 47.60 40.57 1.55

1024 256 1.20 52.47 67.55 0.93
2048 512 0.95 66.39 147.47 0.43

Table 4: NetCDF Writing Performance

5. Conclusions

Figure 3 shows the scaling of the latest version of the code with all the optimisation for a complete run, i.e. including all 
I/O, for the smaller NaCl case.  Also shown is the scaling of the code released as version 3.09.  It is clear that for systems of 
this size that the I/O problems that previously prevented scaling to large core counts are now solved.



Figure 3: Total Performance for 216,000 Ions

Figure 4 shows the larger case.  Only the newer code has been run.  Again, the scaling is good even when I/O is included 
in the times.

Figure 4: Total Performance for 1,728,000 Ions

The excellent  scaling  of  the  new code is  despite  it  passing  many  more  messages  than  the  old,  especially  at  the 
configuration writing stage.  This is because all the extra messages allow much better utilisation of the disks,  and slow 
though the network may be when compared to the computational power of the CPUs, it is much quicker than the quickest of 
disks.   Thus because of  the slowness  of I/O it  is  worth a large scale reorganization of the data to obtain the best  I/O 
performance possible.  That one should optimise to get the best out of the slowest part of the problem is obvious, this being 
the basis of virtually optimisation work. However the improvements are not always as dramatic as in this case!

From the above it is clear that given a suitable set of parameters DL_POLY_3 can now scale to thousands of processers 
even when the I/O is included.  This is absolutely vital, for without the I/O portion of the code no science can be performed, 
and the simulation simply becomes a synthetic benchmark will little practical application.  Now, however, DL_POLY_3 
users can perform real scientific runs on thousands of processors.
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