

� Cray Performance Analysis Toolset Overview

� Recent Release Highlights

� Measuring Performance� Measuring Performance

� What’s Next

14/09/2010 2

� Assist the user with application performance analysis and
optimization
• Help user identify important and meaningful information from

potentially massive data sets
• Help user identify problem areas instead of just reporting data
• Bring optimization knowledge to a wider set of users

� Focus on ease of use and intuitive user interfaces
• Automatic program instrumentation
• Automatic analysis

� Target scalability issues in all areas of tool development
• Data management

� Storage, movement, presentation

14/09/2010 3

� Supports traditional post-mortem performance analysis
• Automatic identification of performance problems

� Indication of causes of problems
� Suggestions of modifications for performance improvement

� CrayPat� CrayPat
• pat_build: automatic instrumentation (no source code changes needed)
• run-time library for measurements (transparent to the user)
• pat_report for performance analysis reports
• pat_help: online help utility

� Cray Apprentice2

• Graphical performance analysis and visualization tool

14/09/2010 4

� CrayPat
• Instrumentation of optimized code
• No source code modification required
• Data collection transparent to the user
• Text-based performance reports
• Derived metrics• Derived metrics
• Performance analysis

� Cray Apprentice2
• Performance data visualization tool
• Call tree view
• Source code mappings

14/09/2010 5

� When performance measurement is triggered
• External agent (asynchronous)

� Sampling
o Timer interrupt
o Hardware counters overflow

• Internal agent (synchronous)
� Code instrumentation� Code instrumentation

o Event based
o Automatic or manual instrumentation

� How performance data is recorded
• Profile ::= Summation of events over time

� run time summarization (functions, call sites, loops, …)

• Trace file ::= Sequence of events over time

14/09/2010 6

� Millions of lines of code
• Automatic profiling analysis

� Identifies top time consuming routines
� Automatically creates instrumentation template customized to your

application

� Lots of processes/threads� Lots of processes/threads
• Load imbalance analysis

� Identifies computational code regions and synchronization calls that could
benefit most from load balance optimization

� Estimates savings if corresponding section of code were balanced

� Long running applications
• Detection of outliers

14/09/2010 7

� Important performance statistics:

• Top time consuming routines

• Load balance across computing resources

• Communication overhead• Communication overhead

• Cache utilization

• FLOPS

• Vectorization (SSE instructions)

• Ratio of computation versus communication

14/09/2010 8

� No source code or makefile modification required
• Automatic instrumentation at group (function) level

� Groups: mpi, io, heap, math SW, …

� Performs link-time instrumentation
•• Requires object files
• Instruments optimized code
• Generates stand-alone instrumented program
• Preserves original binary
• Supports sample-based and event-based instrumentation

14/09/2010 9

� Analyze the performance data and direct the user to
meaningful information

� Simplifies the procedure to instrument and collect
performance data for novice users

� Based on a two phase mechanism
1. Automatically detects the most time consuming functions in the

application and feeds this information back to the tool for further (and
focused) data collection

2. Provides performance information on the most significant parts of the
application

14/09/2010 10

� Performs data conversion

• Combines information from binary with raw performance
data

� Performs analysis on data

� Generates text report of performance results

� Formats data for input into Cray Apprentice2

14/09/2010 11

� Craypat / Cray Apprentice2 5.1 released 17 June, 2010
• xt-craypat and apprenctice2 repackaged as perftools module
• Support for Gemini interconnect
• Support for the Chapel programming language
• New predefined trace groups – adios, armci, chapel, dmapp, pblas,

petscpetsc
• License check support through FlexNet license server
• Fully supports dynamically linked applications

14/09/2010 12

� Access performance tools software

% module load perftools

� Build application keeping .o files (CCE: -h keepfiles)

% make clean
% make

� Instrument application for automatic profiling analysis
• You should get an instrumented program a.out+pat

% pat_build –O apa a.out

� Run application to get top time consuming routines
• You should get a performance file (“<sdatafile>.xf”) or

multiple files in a directory <sdatadir>

% aprun … a.out+pat (or qsub <pat script>)

14/09/2010 13

� Generate report and .apa instrumentation file

% pat_report –o my_sampling_report [<sdatafile>.xf |
<sdatadir>]

� Inspect .apa file and sampling report

14/09/2010 Slide 14

� Verify if additional instrumentation is needed

You can edit this file, if desired, and use it

to reinstrument the program for tracing like this:

#

pat_build -O mhd3d.Oapa.x+4125-401sdt.apa

#

These suggested trace options are based on data from:

#

/home/crayadm/ldr/mhd3d/run/mhd3d.Oapa.x+4125-401sdt.ap2,
/home/crayadm/ldr/mhd3d/run/mhd3d.Oapa.x+4125-401sdt.xf

--

HWPC group to collect by default.

43.37% 99659 bytes

-T mlwxyz_

16.09% 17615 bytes

-T half_

6.82% 6846 bytes

-T artv_

1.29% 5352 bytes

-T currenh_

1.03% 25294 bytes
HWPC group to collect by default.

-Drtenv=PAT_RT_HWPC=1 # Summary with instructions metrics.

--

Libraries to trace.

-g mpi

--

User-defined functions to trace, sorted by % of samples.

Limited to top 200. A function is commented out if it has < 1%

of samples, or if a cumulative threshold of 90% has been reached,

or if it has size < 200 bytes.

Note: -u should NOT be specified as an additional option.

1.03% 25294 bytes

-T bndbo_

Functions below this point account for less than 10% of samples.

1.03% 31240 bytes

-T bndto_

. . .

--

-o mhd3d.x+apa # New instrumented program.

/work/crayadm/ldr/mhd3d/mhd3d.x # Original program.

14/09/2010 15

� biolibs Cray Bioinformatics library routines
� blas Basic Linear Algebra subprograms
� caf coarray Fortran
� heap dynamic heap
� io includes stdio and sysio groups
� lapack Linear Algebra Package
� math ANSI math� math ANSI math
� mpi MPI
� omp OpenMP API
� pthreads POSIX threads (not supported on Catamount)
� shmem SHMEM
� sysio I/O system calls
� system system calls
� upc unified parallel c

14/09/2010 16

� Instrument application for further analysis (a.out+apa)

% pat_build –O <apafile>.apa

� Run application

% aprun … a.out+apa (or qsub <apa script>)

14/09/2010 Slide 17

� Generate text report and visualization file (.ap2)

% pat_report –o my_text_report.txt [<datafile>.xf |
<datadir>]

� View report in text and/or with Cray Apprentice2

% app2 < datafile>.ap2

� MUST run on Lustre (/work/… , /lus/…, /scratch/…, etc.)

� Number of files used to store raw data

• 1 file created for program with 1 – 256 processes

• √n files created for program with 257 – n processes

• Ability to customize with PAT_RT_EXPFILE_MAX

14/09/2010 18

� Full trace files show transient events but are too large

� Current run-time summarization misses transient events

� Plan to add ability to record:

• Top N peak values (N small)

14/09/2010 Slide 19

• Top N peak values (N small)

• Approximate std dev over time

• For time, memory traffic, etc.

• During tracing and sampling

� Looking for ways to reduce both

• Overhead of data collection during run-time

• Time to process data and generate a report or graphical view

� New file format and post-processing architecture in 5.0

14/09/2010 Slide 20

� 5.0 release has modest improvements in both areas

� 5.1 and succeeding releases will have

• Much improved processing time

• Better remote access to large data files

• Analysis based on patterns and thresholds, generating advice

� What do we want to measure?

� Data collection

� Data reporting� Data reporting

14/09/2010 23

� Measure overhead incurred entering and leaving
• Parallel regions
• Work-sharing constructs within parallel regions

� Trace entry points automatically inserted by Cray and PGI
(7.2.0 or later) compilers
• Provides per-thread information

� Can use sampling to get performance data without API (per
process view… no per-thread counters)

14/09/2010 24

� -g omp
• Specifies tracing of user OpenMP API functions (like omp_test_lock)

� Need to add tracing support for barriers (both implicit and
explicit)
• Need support from compilers• Need support from compilers

� User API also available for OpenMP trace points when using
other compilers

14/09/2010 25

� C API (Same names for Fortran)

void PAT_omp_parallel_enter (void);
void PAT_omp_parallel_exit (void);
void PAT_omp_parallel_begin (void);
void PAT_omp_parallel_end (void);
void PAT_omp_loop_enter (void);
void PAT_omp_loop_exit (void);
void PAT_omp_sections_enter (void);void PAT_omp_sections_enter (void);
void PAT_omp_sections_exit (void);
void PAT_omp_section_begin (void);
void PAT_omp_section_end (void);

� Don’t support combined parallel work sharing constructs
• Must split apart into parallel construct that contains work sharing

constructs

� See pat_help for API function requirements

14/09/2010 26

� Default view (no options needed to pat_report)
• Focus on where program is spending its time

• Calculate load imbalance across all threads
� Options also available to report per MPI rank, per thread

• OpenMP overhead

• Hardware counter statistics
� Parallel regions
� Work-sharing constructs within parallel regions

• Assumes all requested resources should be used

14/09/2010 27

� profile_pe.th (default view)
• Imbalance based on the set of all threads in the program

� profile_pe_th
• Highlights imbalance across MPI ranks
• Uses max for thread aggregation to avoid showing under-performers• Uses max for thread aggregation to avoid showing under-performers
• Aggregated thread data merged into MPI rank data

� profile_th_pe
• For each thread, show imbalance over MPI ranks
• Example: Load imbalance shown where thread 4 in each MPI rank

didn’t get much work

14/09/2010 28

Table 1: Profile by Function Group and Function

Time % | Time |Imb. Time | Imb. | Calls |G roup
| | | Time % | | Functio n
| | | | | PE.Thr ead='HIDE'

100.0% | 12.548996 | -- | -- | 7944.7 |Tot al
|-- ------------------
| 97.8% | 12.277316 | -- | -- | 3371.8 |U SER
||--- ------------------
|| 35.6% | 4.473536 | 0.072259 | 1.6% | 498.0 |calc3_.LOOP@li.96
|| 29.1% | 3.653288 | 0.070551 | 1.9% | 500.0 |calc2_.LOOP@li.74
|| 28.3% | 3.545677 | 0.056303 | 1.6% | 500.0 |calc1_.LOOP@li.69
. . .
||=== ==================

OpenMP Parallel DOs

<function>.<region>@<line>

automatically instrumented

14/09/2010
Slide

29

||=== ==================
| 1.2% | 0.155028 | -- | -- | 1000.5 |M PI_SYNC
||--- ------------------
|| 1.2% | 0.154899 | 0.674518 | 82.0% | 999.0 |mpi_barrier_(sync)
|| 0.0% | 0.000129 | 0.000489 | 79.8% | 1.5 |mpi_reduce_(sync)
||=== ==================
| 0.7% | 0.082943 | -- | -- | 3197.2 |M PI
||--- ------------------
|| 0.4% | 0.047471 | 0.158820 | 77.6% | 999.0 |mpi_barrier_
|| 0.1% | 0.015157 | 0.295055 | 95.9% | 297.1 |mpi_waitall_
. . .
||=== ==================
| 0.3% | 0.033683 | -- | -- | 374.5 |O MP
||--- ------------------
|| 0.1% | 0.013098 | 0.078620 | 86.4% | 125.0 |calc2_.REGION@li.74(ovhd)
|| 0.1% | 0.010298 | 0.052760 | 84.3% | 124.5 |calc3_.REGION@li.96(ovhd)
|| 0.1% | 0.010287 | 0.068428 | 87.6% | 125.0 |calc1_.REGION@li.69(ovhd)
||=== ==================
| 0.0% | 0.000027 | 0.000128 | 83.0% | 0.8 |PTHREAD
| | | | | | pthread_create
|== ==================

OpenMP overhead is normally

small and is filtered out on

the default report (< 0.5%).

When using “–T” the filter is

deactivated

==
USER / calc3_.LOOP@li.96
--

Time% 37.3%
Time 6.826587 secs
Imb.Time 0.039858 secs
Imb.Time% 0.6%
Calls 72.9 /sec 498.0 calls
DATA_CACHE_REFILLS:

L2_MODIFIED:L2_OWNED:
L2_EXCLUSIVE:L2_SHARED 64.364M/sec 439531950 fills

DATA_CACHE_REFILLS_FROM_SYSTEM:

14/09/2010
Slide

30

DATA_CACHE_REFILLS_FROM_SYSTEM:
ALL 10.760M/sec 73477950 fills

PAPI_L1_DCM 64.973M/sec 443686857 misses
PAPI_L1_DCA 135.699M/sec 926662773 refs
User time (approx) 6.829 secs 15706256693 cycles 100.0%Time
Average Time per Call 0.013708 sec
CrayPat Overhead : Time 0.0%
D1 cache hit,miss ratios 52.1% hits 47.9% misses
D1 cache utilization (misses) 2.09 refs/miss 0.261 avg hits
D1 cache utilization (refills) 1.81 refs/refill 0.226 avg uses
D2 cache hit,miss ratio 85.7% hits 14.3% misses
D1+D2 cache hit,miss ratio 93.1% hits 6.9% misses
D1+D2 cache utilization 14.58 refs/miss 1.823 avg hits
System to D1 refill 10.760M/sec 73477950 lines
System to D1 bandwidth 656.738MB/sec 4702588826 bytes
D2 to D1 bandwidth 3928.490MB/sec 28130044826 bytes

==

� When does it pay to add OpenMP to my MPI code?

• Add OpenMP when code is network bound

• Adding OpenMP to memory bound codes may aggrevate
memory bandwidth issues, but you have more control memory bandwidth issues, but you have more control
when optimizing for cache

• Look at collective time, excluding sync time: this goes up
as network becomes a problem

• Look at point-to-point wait times: if these go up, network
may be a problem

14/09/2010 31

� Software versions

� Online help

� Examples� Examples

14/09/2010 34

� Software package information
• Use avail, list or help parameters to module command
• With 5.0 release and later, ‘module help perftools’ shows release notes

� craypat version (same for pat_build, pat_report, pat_help)

% pat_build –V
CrayPat/X: Version 5.0 Revision 2786 08/31/09 12:18:23

� Cray Apprentice2 version
• Displayed in top menu bar when running GUI

14/09/2010 35

� User guide
• http://docs.cray.com
• Click on “Latest Docs” and choose “Performance Tools 5.0”

� Man pages

� To see list of reports that can be generated� To see list of reports that can be generated

% pat_report –O –h

� Notes sections in text performance reports provide
information and suggest further options

14/09/2010 36

� Cray Apprentice2 panel help

� pat_help – interactive help on the Cray Performance toolset

� FAQ available through pat_help� FAQ available through pat_help

14/09/2010 37

� intro_craypat(1)
• Introduces the craypat performance tool

� pat_build
• Instrument a program for performance analysis

� pat_help
• Interactive online help utility

� pat_report� pat_report
• Generate performance report in both text and for use with GUI

� hwpc(3)
• describes predefined hardware performance counter groups

� papi_counters(5)
• Lists PAPI event counters
• Use papi_avail or papi_native_avail utilities to get list of events when

running on a specific architecture

14/09/2010 38

14/09/2010 39

CrayPat/X: Version 5.0 Revision 2631 (xf 2571) 05/ 29/09 14:54:00

Number of PEs (MPI ranks): 48
Number of Threads per PE: 1
Number of Cores per Processor: 4

Execution start time: Fri May 29 15:31:49 2009
System type and speed: x86_64 2200 MHz
Current path to data file:

/ lus /nid 00008 /homer/sweep 3d/sweep 3d.mpi+samp.rts.ap 2 (RTS)

14/09/2010 Slide 40

/ lus /nid 00008 /homer/sweep 3d/sweep 3d.mpi+samp.rts.ap 2 (RTS)

Notes:
Sampling interval was 10000 microseconds (100.0/sec)
BSD timer type was ITIMER_PROF

Trace option suggestions have been generated into a separate file
from the data in the next table. You can examine t he file, edit
it if desired, and use it to reinstrument the progra m like this:

pat_build -O sweep3d.mpi+samp.rts.apa

pat_report: Help for -O option:

Available option values are in left column, a prefi x can be specified:

ct -O calltree
defaults Tables that would appear by defau lt.
heap -O heap_program,heap_hiwater,heap _leaks
io -O read_stats,write_stats
lb -O load_balance
load_balance - O lb_program,lb_group,lb_function

14/09/2010 Slide 41

load_balance - O lb_program,lb_group,lb_function
mpi -O mpi_callers

callers Profile by Function and Callers
callers+hwpc Profile by Function and Callers
callers+src Profile by Function and Callers, with Li ne Numbers
callers+src+hwpc Profile by Function and Callers, wi th Line Numbers
calltree Function Calltree View
calltree+hwpc Function Calltree View
calltree+src Calltree View with Callsite Line Numbers
calltree+src+hwpc Calltree View with Callsite Line Num bers
...

� Interactive by default, or use trailing '.' to just print a topic:

� New FAQ craypat 5.0.0.

� Has counter and counter group information� Has counter and counter group information

% pat_help counters amd_fam10h groups .

14/09/2010 42

The top level CrayPat/X help topics are listed belo w.
A good place to start is:

overview

If a topic has subtopics, they are displayed under the heading
"Additional topics", as below. To view a subtopic, you need
only enter as many initial letters as required to d istinguish
it from other items in the list. To see a table of contents
including subtopics of those subtopics, etc., enter :

toc

To produce the full text corresponding to the table of contents,

14/09/2010
Slide

43

To produce the full text corresponding to the table of contents,
specify "all", but preferably in a non-interactive invocation:

pat_help all . > all_pat_help
pat_help report all . > all_report_help

Additional topics:

API execute
balance experiment
build first_example
counters overview
demos report
environment run

pat_help (.=quit ,=back ^=up /=top ~=search)
=>

% pat_help (.=quit ,=back ^=up /=top ~=search)

=> FAQ

Additional topics that may follow "FAQ":

Application Runtime Application Runtime

Miscellaneous

Availability and Module Environment

Processing Data with pat_report

Building Applications

Visualizing Data with Apprentice2

Instrumenting with pat_build

14/09/2010 44

% => 11. inclusive time of region recorded by
CrayPat API

% (.=quit ,=back ^=up /=top ~=search) => 11

I cant find a way to make CrayPat report the I cant find a way to make CrayPat report the
inclusive time of a region recorded by the
API. What can I do?

pat_help FAQ "Processing Data with pat_report"

(.=quit ,=back ^=up /=top ~=search) =>

%

14/09/2010 45

