

Performance Measurement on the Cray XT System

Jason Beech-Brandt Tom Edwards Cray Centre of Excellence for HECToR

Topics

- Cray Performance Analysis Toolset Overview
- Recent Release Highlights
- Measuring Performance
- What's Next

Cray Toolset Design Goals

Assist the user with application performance analysis and optimization

- Help user identify important and meaningful information from potentially massive data sets
- Help user identify problem areas instead of just reporting data
- Bring optimization knowledge to a wider set of users
- Focus on ease of use and intuitive user interfaces
 - Automatic program instrumentation
 Automatic analysis
- Target scalability issues in all areas of tool development
 - Data management
 - > Storage, movement, presentation

The Cray Performance Analysis Framework

- Supports traditional post-mortem performance analysis
 - Automatic identification of performance problems
 - Indication of causes of problems
 - Suggestions of modifications for performance improvement

CrayPat

- pat_build: automatic instrumentation (no source code changes needed)
- run-time library for measurements (transparent to the user)
- pat_report for performance analysis reports
- pat_help: online help utility
- Cray Apprentice²
 - Graphical performance analysis and visualization tool

The Cray Performance Analysis Framework (2)

CrayPat

- Instrumentation of optimized code
- No source code modification required
- Data collection transparent to the user
- Text-based performance reports
- Derived metrics
- Performance analysis
- Cray Apprentice2
 - Performance data visualization tool
 - Call tree view
 - Source code mappings

Collecting Performance Data

When performance measurement is triggered

- External agent (asynchronous)
 - Sampling
 - Timer interrupt
 - Hardware counters overflow
- Internal agent (synchronous)
 - Code instrumentation
 - Event based
 - Automatic or manual instrumentation
- How performance data is recorded
 - Profile ::= Summation of events over time
 - > run time summarization (functions, call sites, loops, ...)
 - Trace file ::= Sequence of events over time

Multiple Dimensions of Scalability

Millions of lines of code

- Automatic profiling analysis
 - Identifies top time consuming routines
 - Automatically creates instrumentation template customized to your application
- Lots of processes/threads
 - Load imbalance analysis
 - Identifies computational code regions and synchronization calls that could benefit most from load balance optimization
 - Estimates savings if corresponding section of code were balanced
- Long running applications
 - Detection of outliers

Performance Analysis with Cray Tools

- Important performance statistics:
 - Top time consuming routines
 - Load balance across computing resources
 - Communication overhead
 - Cache utilization
 - FLOPS
 - Vectorization (SSE instructions)
 - Ratio of computation versus communication

14/09/2010

Application Instrumentation with pat_build

No source code or makefile modification required

- Automatic instrumentation at group (function) level
 - ➢ Groups: mpi, io, heap, math SW, ...
- Performs link-time instrumentation
 - Requires object files
 - Instruments optimized code
 - Generates stand-alone instrumented program
 - Preserves original binary
 - Supports sample-based and event-based instrumentation

Automatic Profiling Analysis

- Analyze the performance data and direct the user to meaningful information
- Simplifies the procedure to instrument and collect performance data for novice users
- Based on a two phase mechanism
 - Automatically detects the most time consuming functions in the application and feeds this information back to the tool for further (and focused) data collection
 - 2. Provides performance information on the most significant parts of the application

pat_report

Performs data conversion

- Combines information from binary with raw performance data
- Performs analysis on data
- Generates text report of performance results
- Formats data for input into Cray Apprentice²

Craypat / Cray Apprentice² Release Highlights

- Craypat / Cray Apprentice² 5.1 released 17 June, 2010
 - xt-craypat and apprenctice2 repackaged as perftools module
 - Support for Gemini interconnect
 - Support for the Chapel programming language
 - New predefined trace groups adios, armci, chapel, dmapp, pblas, petsc
 - License check support through FlexNet license server
 - Fully supports dynamically linked applications

Steps to Collecting Performance Data

- Access performance tools software
 - % module load perftools
- Build application keeping .o files (CCE: -h keepfiles)

% make clean
% make

- Instrument application for automatic profiling analysis
 - You should get an instrumented program a.out+pat

% pat_build -O apa a.out

- Run application to get top time consuming routines
 - You should get a performance file ("<sdatafile>.xf") or multiple files in a directory <sdatadir>

```
% aprun ... a.out+pat (or qsub <pat script>)
```


APA File Example

# You can edit this file, if desired, and use it	# 43.37% 99659 bytes
# to reinstrument the program for tracing like this:	-T mlwxyz_
#	
# pat_build -O mhd3d.Oapa.x+4125-401sdt.apa	# 16.09% 17615 bytes
#	-T half_
# These suggested trace options are based on data from:	
#	# 6.82% 6846 bytes
<pre># /home/crayadm/ldr/mhd3d/run/mhd3d.Oapa.x+4125-401sdt.ap2, /home/crayadm/ldr/mhd3d/run/mhd3d.Oapa.x+4125-401sdt.xf</pre>	-T artv_
	# 1.29% 5352 bytes
#	-T currenh_
# HWPC group to collect by default.	# 1.03% 25294 bytes
	-T bndbo_
-Drtenv=PAT_RT_HWPC=1 # Summary with instructions metrics.	
	# Functions below this point account for less than 10% of samples.
#	
# Libraries to trace.	# 1.03% 31240 bytes
a mpi	# -T bndto_
-g mpi	
#	
π	
# User-defined functions to trace, sorted by % of samples.	#
 Limited to top 200. A function is commented out if it has < 1% 	
 # of samples, or if a cumulative threshold of 90% has been reached, 	-o mhd3d.x+apa # New instrumented program.
 # or if it has size < 200 bytes. 	
	/work/crayadm/ldr/mhd3d/mhd3d.x # Original program.
# Note: -u should NOT be specified as an additional option.	

-g tracegroup

- biolibs
 Cray Bioinformatics library routines
- blas
 Basic Linear Algebra subprograms
- caf coarray Fortran
- heap dynamic heap
- io includes stdio and sysio groups
- lapack Linear Algebra Package
- math ANSI math
- mpi MPI
- omp
 OpenMP API
- pthreads POSIX threads (not supported on Catamount)
- shmem SHMEM
- sysio
 I/O system calls
- system system calls
- upc unified parallel c

Steps to Collecting Performance Data (2)

Instrument application for further analysis (a.out+apa)

% pat_build -O <apafile>.apa

Run application

% aprun ... a.out+apa (or qsub <apa script>)

Generate text report and visualization file (.ap2)

% pat_report -o my_text_report.txt [<datafile>.xf <datadir>]

View report in text and/or with Cray Apprentice²

% app2 <datafile>.ap2

Where to Run Instrumented Application

- MUST run on Lustre (/work/..., /lus/..., /scratch/..., etc.)
- Number of files used to store raw data
 - 1 file created for program with 1 256 processes
 - \sqrt{n} files created for program with 257 *n* processes
 - Ability to customize with PAT_RT_EXPFILE_MAX

Outliers, or peak values, over time

- Full trace files show transient events but are too large
- Current run-time summarization misses transient events
- Plan to add ability to record:
 - Top N peak values (N small)
 - Approximate std dev over time
 - For time, memory traffic, etc.
 - During tracing and sampling

Overhead, scaling, advice

- Looking for ways to reduce both
 - Overhead of data collection during run-time
 - Time to process data and generate a report or graphical view
- New file format and post-processing architecture in 5.0
- 5.0 release has modest improvements in both areas
- 5.1 and succeeding releases will have
 - Much improved processing time
 - Better remote access to large data files
 - Analysis based on patterns and thresholds, generating advice

Performance Measurement on the Cray XT System Questions / Comments Thank You!

Performance Measurement of OpenMP Programs

Jason Beech-Brandt Tom Edwards

Topics

- What do we want to measure?
- Data collection
- Data reporting

OpenMP Data Collection

- Measure overhead incurred entering and leaving
 - Parallel regions
 - Work-sharing constructs within parallel regions
- Trace entry points automatically inserted by Cray and PGI (7.2.0 or later) compilers
 - Provides per-thread information
- Can use sampling to get performance data without API (per process view... no per-thread counters)

OpenMP Data Collection (2)

g omp

- Specifies tracing of user OpenMP API functions (like omp_test_lock)
- Need to add tracing support for barriers (both implicit and explicit)
 - Need support from compilers
- User API also available for OpenMP trace points when using other compilers

OpenMP Trace Point API

C API (Same names for Fortran)

void PAT_omp_parallel_enter (void); void PAT_omp_parallel_exit (void); void PAT_omp_parallel_begin (void); void PAT_omp_parallel_end (void); void PAT_omp_loop_enter (void); void PAT_omp_loop_exit (void); void PAT_omp_sections_enter (void); void PAT_omp_sections_exit (void); void PAT_omp_section_begin (void); void PAT_omp_section_end (void);

- Don't support combined parallel work sharing constructs
 - Must split apart into parallel construct that contains work sharing constructs
- See pat_help for API function requirements

OpenMP Performance Data Reporting

Default view (no options needed to pat_report)

- Focus on where program is spending its time
- Calculate load imbalance across all threads
 - > Options also available to report per MPI rank, per thread
- OpenMP overhead
- Hardware counter statistics
 - Parallel regions
 - Work-sharing constructs within parallel regions
- Assumes all requested resources should be used

Imbalance Options for Data Display (pat_report -O ...)

- profile_pe.th (default view)
 - Imbalance based on the set of all threads in the program
- profile_pe_th
 - Highlights imbalance across MPI ranks
 - Uses max for thread aggregation to avoid showing under-performers
 - Aggregated thread data merged into MPI rank data
- profile_th_pe
 - For each thread, show imbalance over MPI ranks
 - Example: Load imbalance shown where thread 4 in each MPI rank didn't get much work

Profile by Function Group and Function (with –T)

Table 1: Profile by Function Group and Function						
Time % 	Time 	Imb. Time 	Imb. Time % 	Calls 	Group Function PE.Thread='HIDE'	OpenMP Parallel DOs <function>.<region>@<line></line></region></function>
100.0% 3	12.548996			7944.7	Total	automatically instrumented
97.8%	12.277316			3371.8	USER	7
35.6% 29.1% 28.3%	4.473536 3.653288 3.545677	0.070551	1.9%	500.0		4
========= 1.2%	0.155028			1000.5	MPI_SYNC	
1.2%	0.154899		82.0% 79.8%	999.0 1.5	mpi_barrier_(sync) 5 mpi_reduce_(sync)	small and is filtered out on
========= 0.7%	0.082943			3197.2	MPI	the default report (< 0.5%). When using "–T" the filter is
0.4% 0.1%	0.047471					deactivated
 ========== 0.3%	0.033683			374.5	OMP	
0.1%	0.013098 0.010298 0.010287	0.052760	86.4% 84.3% 87.6%	125.0 124.5 125.0	calc3REGION@li	.96(ovhd)
0.0%	0.000027	0.000128 	83.0%		PTHREAD pthread_create	

Hardware Counters Information at Loop Level

USER / calc3 .LOOP@li.96				
USER / CAICSLOOP@II.96				
 Time%		37.3%		
Time		6.826587		
Imb.Time		0.039858		
Imb.Time%		0.6%		
Calls	72.9 /sec			
DATA_CACHE_REFILLS:				
L2_MODIFIED:L2_OWNED:				
L2 EXCLUSIVE:L2 SHARED	64.364M/sec	439531950	fills	
DATA_CACHE_REFILLS_FROM_SYS	TEM:			
ALL	10.760M/sec	73477950	fills	
PAPI_L1_DCM	64.973M/sec	443686857	misses	
PAPI_L1_DCA	135.699M/sec	926662773	refs	
User time (approx)	6.829 secs	15706256693	cycles 100.0%Time	
Average Time per Call		0.013708	sec	
CrayPat Overhead : Time	0.0%			
D1 cache hit,miss ratios	52.1% hits	47.9%	misses	
D1 cache utilization (misse	s) 2.09 refs/m	iss 0.261	avg hits	
D1 cache utilization (refil	ls) 1.81 refs/r	efill 0.226	avg uses	
D2 cache hit,miss ratio	85.7% hits	14.3%	misses	
D1+D2 cache hit,miss ratio	93.1% hits	6.9%	misses	
D1+D2 cache utilization	14.58 refs/m	iss 1.823	avg hits	
System to D1 refill	10.760M/sec	73477950	lines	
System to D1 bandwidth	656.738MB/sec	4702588826	bytes	
D2 to D1 bandwidth	3928.490MB/sec	28130044826	bytes	-

MPI + OpenMP? (some ideas)

- When does it pay to add OpenMP to my MPI code?
 - Add OpenMP when code is network bound
 - Adding OpenMP to memory bound codes may aggrevate memory bandwidth issues, but you have more control when optimizing for cache
 - Look at collective time, excluding sync time: this goes up as network becomes a problem
 - Look at point-to-point wait times: if these go up, network may be a problem

Performance Measurement of OpenMP Programs Questions / Comments Thank You!

Documentation for the Cray Performance Toolset

Jason Beech-Brandt Tom Edwards

Topics

- Software versions
- Online help
- Examples

Accessing Software Versions

- Software package information
 - Use avail, list or help parameters to module command
 - With 5.0 release and later, 'module help perftools' shows release notes
- craypat version (same for pat_build, pat_report, pat_help)

% pat_build –V

CrayPat/X: Version 5.0 Revision 2786 08/31/09 12:18:23

- Cray Apprentice² version
 - Displayed in top menu bar when running GUI

Online information

- User guide
 - http://docs.cray.com
 - Click on "Latest Docs" and choose "Performance Tools 5.0"
- Man pages
- To see list of reports that can be generated

```
% pat_report -0 -h
```

 Notes sections in text performance reports provide information and suggest further options

Online Information (2)

- Cray Apprentice2 panel help
- pat_help interactive help on the Cray Performance toolset
- FAQ available through pat_help

Man pages

- intro_craypat(1)
 - Introduces the craypat performance tool
- pat_build
 - Instrument a program for performance analysis
- pat_help
 - Interactive online help utility
- pat_report
 - Generate performance report in both text and for use with GUI
- hwpc(3)
 - describes predefined hardware performance counter groups
- papi_counters(5)
 - Lists PAPI event counters
 - Use papi_avail or papi_native_avail utilities to get list of events when running on a specific architecture

Cray Apprentic² Panel Help

14/09/2010

CrayPat/X: Version 5.0 Revision 2631 (xf 2571) 05/29/09 14:54:00

Number ofPEs (MPI ranks):48Number ofThreads per PE:1Number ofCores per Processor:4

Execution start time: Fri May 29 15:31:49 2009
System type and speed: x86_64 2200 MHz
Current path to data file:
 /lus/nid00008/homer/sweep3d/sweep3d.mpi+samp.rts.ap2 (RTS)

Notes:

Sampling interval was 10000 microseconds (100.0/sec) BSD timer type was ITIMER_PROF

Trace option suggestions have been generated into a separate file from the data in the next table. You can examine the file, edit it if desired, and use it to reinstrument the program like this:

pat_build -0 sweep3d.mpi+samp.rts.apa

pat_report -O -h

pat_report: Help for -0 option:

Available option values are in left column, a prefix can be specified:

ct	-0 calltree
defaults	Tables that would appear by default.
heap	-O heap_program,heap_hiwater,heap_leaks
io	-O read_stats,write_stats
lb	-0 load_balance
load_balance	-0 lb_program,lb_group,lb_function
mpi	-O mpi_callers
callers	Profile by Function and Callers
callers+hwpc	Profile by Function and Callers
callers+src	Profile by Function and Callers, with Line Numbers
callers+src+hwpc	Profile by Function and Callers, with Line Numbers
calltree	Function Calltree View
calltree+hwpc	Function Calltree View
calltree+src	Calltree View with Callsite Line Numbers
calltree+src+hwpc	Calltree View with Callsite Line Numbers

. . .

pat_help

- Interactive by default, or use trailing '.' to just print a topic:
- New FAQ craypat 5.0.0.
- Has counter and counter group information

% pat_help counters amd_fam10h groups .

```
pat help Example
    The top level CrayPat/X help topics are listed below.
    A good place to start is:
        overview
    If a topic has subtopics, they are displayed under the heading
    "Additional topics", as below. To view a subtopic, you need
    only enter as many initial letters as required to distinguish
    it from other items in the list. To see a table of contents
    including subtopics of those subtopics, etc., enter:
        toc
    To produce the full text corresponding to the table of contents,
    specify "all", but preferably in a non-interactive invocation:
        pat help all . > all pat help
        pat help report all . > all report help
  Additional topics:
    API
                            execute
    balance
                            experiment
    build
                           first example
    counters
                            overview
    demos
                            report
    environment
                            run
pat help (.=quit ,=back ^=up /=top ~=search)
=>
```

FAQ


```
% pat_help (.=quit ,=back ^=up /=top ~=search)
=> FAQ
```

```
Additional topics that may follow "FAQ":
```

Application Runtime Miscellaneous Availability and Module Environment Processing Data with pat_report Building Applications Visualizing Data with Apprentice2 Instrumenting with pat_build

FAQ Example

- % => 11. inclusive time of region recorded by CrayPat API
- % (.=quit ,=back ^=up /=top ~=search) => 11
- I cant find a way to make CrayPat report the inclusive time of a region recorded by the API. What can I do?

```
pat_help FAQ "Processing Data with pat_report"
 (.=quit ,=back ^=up /=top ~=search) =>
%
```


Documentation for the Cray Performance Toolset

Questions / Comments Thank You!