
13 Oct 2010

Manchester

1Cray XT6 Workshop, Manchester, 13 October 2010

� Phase 2b – Cray XT6

� Microprocessor

� Interconnect

� Programming Environment

� Optimization Techniques

� OpenMP� OpenMP

� Environment Variables

� Placement

� Core Specialization

� ...others

Cray XT6 Workshop, Manchester, 13 October 2010 2

3Cray XT6 Workshop, Manchester, 13 October 2010

• Cray XT4 Compute Nodes

• 3072 x 2.3 GHz Quad Core Opteron Nodes

• 12,238 Cores

•24TB Memory

• 8GB per node – 2GB per Core

• Cray X2 Compute Nodes

• 28 x 4 Cray X2 Compute nodes

• 32 GB per node 8GB per Core

Cray XT6 Workshop, Manchester, 13 October 2010 4

• 32 GB per node 8GB per Core

• Cray XT6 Compute Nodes

• 1856 x 2.1 GHz Dual 12 Core Opteron

Nodes

• 44,544 Cores

• 59TB Memory

•32GB per node – 1.33 GB per Core

DDR3 Channel

DDR3 Channel

DDR3 Channel

DDR3 Channel

DDR3 Channel

DDR3 Channel 6MB L3
Cache

Greyhound

Greyhound

Greyhound

Greyhound

Greyhound

6MB L3
Cache

Greyhound

Greyhound

Greyhound

Greyhound

Greyhound

Greyhound

6MB L3
Cache

Greyhound

Greyhound

Greyhound

Greyhound

Greyhound

6MB L3
Cache

Greyhound

Greyhound

Greyhound

Greyhound

Greyhound

GreyhoundH
T

3

H
T

3

HT

3

HT3

HT3 DDR3 ChannelDDR3 Channel
Greyhound Greyhound

� 2 Multi-Chip Modules, 4 Opteron Dies

� 8 Channels of DDR3 Bandwidth to 8 DIMMs

� 24 (or 16) Computational Cores, 24 MB of L3 cache

� Dies are fully connected with HT3

� Snoop Filter Feature Allows 4 Die SMP to scale well

To Interconnect

HT3

HT1 / HT3

5Cray XT6 Workshop, Manchester, 13 October 2010

20032003 20052005 20072007 20082008 20092009 20102010

AMD
Opteron™

AMD
Opteron™

“Barcelona” “Shanghai” “Istanbul” “Magny-Cours”

Mfg.
Process

130nm SOI 90nm SOI 65nm SOI 45nm SOI 45nm SOI 45nm SOI

K8 K8 Greyhound Greyhound+ Greyhound+ Greyhound+

CPU Core

L2/L3 1MB/0 1MB/0 512kB/2MB 512kB/6MB 512kB/6MB 512kB/12MB

Hyper
Transport™
Technology

3x 1.6GT/.s 3x 1.6GT/.s 3x 2GT/s 3x 4.0GT/s 3x 4.8GT/s 4x 6.4GT/s

Memory 2x DDR1 300 2x DDR1 400 2x DDR2 667 2x DDR2 800 2x DDR2 800 4x DDR3 1333

6Cray XT6 Workshop, Manchester, 13 October 2010

Processor Cores Frequency Peak

(Gflops)

Bandwidth

(GB/sec)

Balance

(bytes/flop)

Barcelona

(XT4)
4 2.3 36.8 12.8 0.34

MC-12

(XT6)
12 2.1 100.8 42.6 0.42

7Cray XT6 Workshop, Manchester, 13 October 2010

6.4 GB/sec direct connect
HyperTransportCharacteristics

Number of Cores 24

Peak Performance

MC-12 (2.2)

211 Gflops/sec

Memory Size 32GB per node

Memory 83.5 GB/sec

Cray

SeaStar2+

Interconnect

83.5 GB/sec direct

connect memory

Memory

Bandwidth

83.5 GB/sec

Cray XT6 Workshop, Manchester, 13 October 2010 8

� Cray XT systems ship with the
SeaStar2+ interconnect

� Custom ASIC
HyperTransport

Interface
DMA

Engine
6-Port

� Custom ASIC

� Integrated NIC / Router

� MPI offload engine

� Connectionless Protocol

� Link Level Reliability

� Proven scalability to 225,000
cores

Memory

PowerPC

440 Processor

Engine
6-Port

Router

Blade
Control
Processor
Interface

9Cray XT6 Workshop, Manchester, 13 October 2010

GigE

10 GigE

GigE
SMW

X

Z
Y

RAID

Subsystem

Fibre

Channels

Compute node

Login node

Network node

Boot/Syslog/Database nodes

I/O and Metadata nodes 10Cray XT6 Workshop, Manchester, 13 October 2010

Cray XT6 Workshop, Manchester, 13 October 2010 11

� The use of the compiler drivers and the xtpe-mc12 module will allow

access to the fastest libraries.

� In particular this affects

� Compiler itself

� Libsci

� In general try the latest versions of software for improved stability and

performance

Cray XT6 Workshop, Manchester, 13 October 2010 12

module load xtpe-mc12

� The current performance toolset is available now under perftools.

� perftools should be loaded rather than CrayPAT and PAPI

� Invocation and instrumentation behaves much as before.

Cray XT6 Workshop, Manchester, 13 October 2010 13

� Libsci provides cray optimised versions of common libraries

� BLAS – Basic Linear Algebra Subroutines

� LAPACK – Linear Algebra Routines

� ScaLAPACK – Parallel Linear Algebra Routines

� BLACS – Basic Liner Algebra Communication Subprograms

� IRT – Iterative Refinement Toolkit� IRT – Iterative Refinement Toolkit

� SuperLU – Sparse Solver Routines

� CRAFFT – Cray Adaptive Fast Fourier Transform

� module load xt-libsci

� Load appropriate Opteron module

� xtpe-barcelona, xtpe-mc12

14Cray XT6 Workshop, Manchester, 13 October 2010

� Libsci uses OpenMP threads as of xt-libsci/10.4.2 and

asyncpe/3.9

� Can still be used for serial applications as default

OMP_NUM_THREADS=1

� Can be used inside parallel regions without spawning additional

threadsthreads

� Requires the appropriate xtpe-<barcelona|mc12> module to be

loaded

15Cray XT6 Workshop, Manchester, 13 October 2010

� As part of the XT6 installation CCE was made available on all systems

� Latest version is 7.2.7

� CCE can provide excellent on node performance compared to other

compilers.

CCE provides one of the most standard coherent compiling environments � CCE provides one of the most standard coherent compiling environments

available.

� Provides the ability to do PGAS languages.

� Very important as we look forward to the Gemini upgrade which will

provide hardware support for PGAS

Cray XT6 Workshop, Manchester, 13 October 2010 16

� Cray has a long tradition of high performance compilers

� Vectorization

� Parallelization

� Code transformation

� More…

� Began internal investigation leveraging an open source compiler called � Began internal investigation leveraging an open source compiler called

LLVM

� Initial results and progress better than expected

� Decided to move forward with Cray X86 compiler

� Initial x86 release, 7.0, in December 2008

� 7.2.7 is the latest release (many improvements to PGAS support)

17Cray XT6 Workshop, Manchester, 13 October 2010

� Fortran, C and C++ support

� Excellent Vectorization

� Vectorize more loops than other compilers

� OpenMP - 3.0 standard

� PGAS: Functional UPC and CAF available today.

� Excellent Cache optimizations

� Automatic Blocking

� Automatic Management of what stays in cache

� Prefetching, Interchange, Fusion, and much more…

18Cray XT6 Workshop, Manchester, 13 October 2010

� Enhanced C++ Front end

� More Automatic Parallelization

� Modernized version of Cray X1 streaming capability

� Interacts with OMP directives

� Optimized PGAS for Gemini

Improved Vectorization� Improved Vectorization

� Improve Cache optimizations

19Cray XT6 Workshop, Manchester, 13 October 2010

� Module available

module swap PrgEnv-pgi PrgEnv-cray

� Overall Options

� -ra creates a listing file with optimization info

� Preprocessor Options

� -eZ runs the preprocessor on Fortran files

� -F enables macro expansion throughout the source file

� Optimisation Options

� -O2 optimal flags [enabled by default]

� -O3 aggressive optimization

� -O ipa<n> inlining, n=0-5

20Cray XT6 Workshop, Manchester, 13 October 2010

� Language Options

� -f free process Fortran source using free form specifications

� -s real64 treat REAL variables as 64-bit

� -s integer64 treat INTEGER variables as 64-bit

� -hbyteswapio big-endian files in Fortran; XT4 is little endian

this is a link time optionthis is a link time option

� Parallelization Options

� -O omp Recognize OpenMP directives [enabled by default]

� -O thread<n> n=0-3, aggressive parallelization, default n=2

man pages: crayftn, intro_directives, intro_pragmas, assign
http://docs.cray.com/cgi-bin/craydoc.cgi?mode=View;id=S-3901-71;idx=books_search;this_sort=;q=3901;type=books;title=Cray%20Fortran%20Reference%20Manual

21Cray XT6 Workshop, Manchester, 13 October 2010

� Displays the explanation for an error message: compile, run time

� Compiler error

ftn-1615 crayftn: WARNING TEST, File = fail.F90, Line = 24, Column = 16

Procedure "ADD" is defined at line 1 (fail.F90). Dummy argument "B" is an array argument.
This argument is scalar.

>explain ftn-1615
Warning : Procedure "%s" is defined at line %s. Dummy argument "%s" is an

array argument. This argument is scalar.

The scope of a global name is the entire compilation, so a global (or

external) name must be defined and referenced consistently throughout the

compilation. The compiler has found that a reference or definition of this

global name differs with another reference or definition for this name.

The compiler is comparing two definitions or a definition and a reference to

the listed procedure. If the compiler is comparing two definitions, then the

compiler has found that in one definition, a dummy argument is an array

argument, but the corresponding dummy argument in the second definition is a

scalar argument. The arguments must be the same. If the compiler is

comparing a reference with its definition, then it has found an array dummy

argument associated with a scalar actual argument or vice versa. Again, the

arguments must either both be scalar or both be arrays. (Note: In a

reference, an array element is considered a scalar.)

22Cray XT6 Workshop, Manchester, 13 October 2010

� I/O runtime error

Open IOSTAT=5016

rosa> explain lib-5016

An EOF or EOD has been encountered unexpectedly.

The file terminated unexpectedly, perhaps without the proper end-of-file

record or end-of-data control information. The file specification may berecord or end-of-data control information. The file specification may be

incorrect, or the file may be corrupted.

Ensure that the file specification is correct. If the file is corrupted,

create the data again, if possible.

See the man pages for assign(1) and asgcmd(1).

The error class is UNRECOVERABLE (issued by the run time library).

23Cray XT6 Workshop, Manchester, 13 October 2010

Cray XT6 Workshop, Manchester, 13 October 2010 24

And try every available compiler!

25Cray XT6 Workshop, Manchester, 13 October 2010

:) module show xtpe-istanbul

--

/opt/cray/xt-asyncpe/3.7/modulefiles/xtpe-istanbul:

conflict xtpe-barcelona

conflict xtpe-quadcore

conflict xtpe-shanghai

It’d probably be a really bad

idea to load two architectures

at once.

conflict xtpe-mc8

conflict xtpe-mc12

prepend-path PE_PRODUCT_LIST XTPE_ISTANBUL

setenv XTPE_ISTANBUL_ENABLED ON

setenv INTEL_PRE_COMPILE_OPTS -msse3

setenv PATHSCALE_PRE_COMPILE_OPTS -
march=barcelona

setenv GNU_PRE_COMPILE_OPTS -march=amdfam10

--

I should build for the right

compute-node architecture.

Oh yeah, let’s link in the tuned math libraries for this architecture too.

26Cray XT6 Workshop, Manchester, 13 October 2010

� PGI

� -fast –Mipa=fast(,safe)

� If you can be flexible with precision, also try -Mfprelaxed

� Compiler feedback: -Minfo=all -Mneginfo

� man pgf90; man pgcc; man pgCC; or pgf90 -help

� Cray

� <none, turned on by default>

� Compiler feedback: -rm (Fortran) -hlist=m (C)

� If you know you don’t want OpenMP: - xomp or - Othread0� If you know you don’t want OpenMP: - xomp or - Othread0

� man crayftn; man craycc ; man crayCC

� Pathscale

� -Ofast Note: this is a little looser with precision than other compilers

� Compiler feedback: -LNO:simd_verbose=ON

� man eko (“Every Known Optimization”)

� GNU

� -O2 / -O3

� Compiler feedback: good luck

� man gfortran; man gcc; man g++

27Cray XT6 Workshop, Manchester, 13 October 2010

28Cray XT6 Workshop, Manchester, 13 October 2010

� If set => Disables Portals matching

� Matching happens on the Opteron

� Requires extra copy for EAGER protocol

� Reduces MPI_Recv Overhead

� Helpful for latency-sensitive application� Helpful for latency-sensitive application

� Large # of small messages

� Small message collectives (<1024 bytes)

� When can this be slower?

� When extra copy time longer than post-to-Portals time

� Lots of pre-posted Receives can slow it down

� For medium to larger messages (16k-128k range)

29Cray XT6 Workshop, Manchester, 13 October 2010

30Cray XT6 Workshop, Manchester, 13 October 2010

� If set, enables an optimized memcpy routine in MPI. The optimized routine

is used for local memory copies in the point-to-point and collective MPI

operations.

� This can help performance of some collectives that send large (256K

and greater) messages.

� Collectives are almost always faster� Collectives are almost always faster

� Speedup varies by message size

� Example: If message sizes are known to be greater than 1 megabyte,

then an optimized memcpy can be used that works well for larges

sizes, but may not work well for smaller sizes.

� Default is not enabled (because there are a few cases that experience

performance degradation)

� Ex: PHASTA at 2048 processes: reduction from 262s to 195s

31Cray XT6 Workshop, Manchester, 13 October 2010

32Cray XT6 Workshop, Manchester, 13 October 2010

� Short Message Eager Protocol

� The sending rank “pushes” the message to the receiving rank

� Used for messages MPICH_MAX_SHORT_MSG_SIZE bytes or less

� Sender assumes that receiver can handle the message
� Matching receive is posted - or -

� Has available event queue entries (MPICH_PTL_UNEX_EVENTS) and buffer space

(MPICH_UNEX_BUFFER_SIZE) to store the message

� Long Message Rendezvous Protocol

� Messages are “pulled” by the receiving rank

� Used for messages greater than MPICH_MAX_SHORT_MSG_SIZE bytes

� Sender sends small header packet with information for the receiver to pull

over the data

� Data is sent only after matching receive is posted by receiving rank

33Cray XT6 Workshop, Manchester, 13 October 2010

MPI
Unexpected

Buffers

Sender

RANK 0

Receiver

RANK 1

Eager
Short Msg ME

Incoming Msg

Rendezvous
Long Msg ME

App ME

Match Entries Posted by MPI
to handle Unexpected Msgs

STEP 2
MPI_SEND call

STEP 1
MPI_RECV call

Post ME to Portals

S

E

A

S

T

A

R

MPI_RECV is posted prior to MPI_SEND call

Unexpected
Msg Queue

Unexpected
Event Queue

STEP 3
Portals DMA PUT

(MPICH_PTL_UNEX_EVENTS)

Other Event Queue
(MPICH_PTL_OTHER_EVENTS)

(MPICH_UNEX_BUFFER_SIZE)

34Cray XT6 Workshop, Manchester, 13 October 2010

MPT Eager Protocol
Data “pushed” to the receiver
(MPICH_MAX_SHORT_MSG_SIZE bytes or less)

MPI
Unexpected

Buffers

Sender

RANK 0

Receiver

RANK 1

Eager
Short Msg ME

Incoming Msg

Rendezvous
Long Msg ME

Match Entries Posted by MPI
to handle Unexpected Msgs

STEP 1
MPI_SEND call

STEP 3
MPI_RECV call
No Portals ME

S

E

A

S

T

A

R

MPI_RECV is not posted prior to MPI_SEND call

Unexpected
Msg Queue

Unexpected
Event Queue

STEP 2
Portals DMA PUT

STEP 4
Memcpy of data

(MPICH_UNEX_BUFFER_SIZE)

(MPICH_PTL_UNEX_EVENTS)

35Cray XT6 Workshop, Manchester, 13 October 2010

MPI
Unexpected

Buffers

Sender

RANK 0

Receiver

RANK 1

Eager
Short Msg ME

Incoming Msg

Rendezvous
Long Msg ME

App ME

STEP 2
Portals DMA PUT

of Header

Match Entries Posted by MPI
to handle Unexpected Msgs

STEP 1
MPI_SEND call

Portals ME created

STEP 3
MPI_RECV call

Triggers GET request

S

E

A

S

T

A

R

Data is not sent until MPI_RECV is issued

Unexpected
Msg Queue

Unexpected
Event Queue

STEP 4
Receiver issues
GET request to

match Sender ME

STEP 5
Portals DMA of Data

36Cray XT6 Workshop, Manchester, 13 October 2010

37Cray XT6 Workshop, Manchester, 13 October 2010

� Controls message sending protocol

� Message sizes <= MSG_SIZE: Use EAGER

� Message sizes > MSG_SIZE: Use RENDEZVOUS

� Increasing this variable may require that MPICH_UNEX_BUFFER_SIZE

be increased

� Increase MPICH_MAX_SHORT_MSG_SIZE if App sends large messages and � Increase MPICH_MAX_SHORT_MSG_SIZE if App sends large messages and

receives are pre-posted

� Can reduce messaging overhead via EAGER protocol

� Can reduce network contention

� Can speed up the application

� Decrease MPICH_MAX_SHORT_MSG_SIZE if:

� App sends lots of smaller messages and receives not pre-posted,

exhausting unexpected buffer space

38Cray XT6 Workshop, Manchester, 13 October 2010

39Cray XT6 Workshop, Manchester, 13 October 2010

� The current XT4 has 72 OSTs

� The current XT6 has 12 OSTs

� esFS will have 84 OSTs so more parallelism

� It can be quite simple to get some significant performance benefits.

Cray XT6 Workshop, Manchester, 13 October 2010 40

� 32 MB per OST (32 MB – 5 GB) and 32 MB Transfer Size

� Unable to take advantage of file system parallelism

� Access to multiple disks adds overhead which hurts performance

120

Single Writer

Write Performance

Lustre

0

20

40

60

80

100

1 2 4 16 32 64 128 160

W
ri

te
 (

M
B

/s
)

Stripe Count

1 MB Stripe

32 MB Stripe

41Cray XT6 Workshop, Manchester, 13 October 2010

42Cray XT6 Workshop, Manchester, 13 October 2010

� Use the lfs command, libLUT, or MPIIO hints to adjust your stripe count and

possibly size

� lfs setstripe -c -1 -s 4M <file or directory> (160 OSTs, 4MB stripe)

� lfs setstripe -c 1 -s 16M <file or directory> (1 OST, 16M stripe)

� export MPICH_MPIIO_HINTS=‘*: striping_factor=160’

� Files inherit striping information from the parent directory, this cannot be � Files inherit striping information from the parent directory, this cannot be

changed once the file is written

� Set the striping before copying in files

43Cray XT6 Workshop, Manchester, 13 October 2010

� Standard Output and Error streams

are effectively serial I/O.

� All STDIN, STDOUT, and STDERR I/O

serialize through aprun

� Disable debugging messages when

running in production mode.running in production mode.

� “Hello, I’m task 32000!”

� “Task 64000, made it through

loop.”

Lustre

44Cray XT6 Workshop, Manchester, 13 October 2010

45Cray XT6 Workshop, Manchester, 13 October 2010

� GNU malloc library
� malloc, calloc, realloc, free calls

� Fortran dynamic variables

� Malloc library system calls
� Mmap, munmap =>for larger allocations� Mmap, munmap =>for larger allocations
� Brk, sbrk => increase/decrease heap

� Malloc library optimized for low system memory use
� Can result in system calls/minor page faults

46Cray XT6 Workshop, Manchester, 13 October 2010

� Detecting “bad” malloc behavior
� Profile data => “excessive system time”

� Correcting “bad” malloc behavior
� Eliminate mmap use by malloc
� Increase threshold to release heap memory

� Use environment variables to alter malloc
� MALLOC_MMAP_MAX_ = 0� MALLOC_MMAP_MAX_ = 0
� MALLOC_TRIM_THRESHOLD_ = 536870912

� Possible downsides
� Heap fragmentation
� User process may call mmap directly
� User process may launch other processes

� PGI’s –Msmartalloc does something similar for you at compile
time

47Cray XT6 Workshop, Manchester, 13 October 2010

48Cray XT6 Workshop, Manchester, 13 October 2010

Either as an extra level or replacement level of parallelism

49Cray XT6 Workshop, Manchester, 13 October 2010

� OpenMP can be used to better exploit the power of the Magny-Cours

processor.

� It can be beneficial in a number of situations:

� Where the code is limited in parallelism, i.e., a 3rd dimension could be

parallelised with OpenMPparallelised with OpenMP

� It may be simpler and more efficient to parallelise a certain algorithm

with OpenMP compared to MPI

� Where MPI begins to dominate the runtime.

� Use of available OpenMP libraries

Cray XT6 Workshop, Manchester, 13 October 2010 50

� The processes avoid the overhead of MPI for communication

� It is important that a big enough problem is available on node

� Enough iterations for OpenMP to parallelise.

� Enough work for each thread to continue to get high use of

vectorizationvectorization

� It is best to produce OpenMP directives at a high level with sufficient

granularity for good performance

� Castep is a great example where swapping OpenMP for MPI can produce

great performance wins

� See Chris Armstrong’s talk.

Cray XT6 Workshop, Manchester, 13 October 2010 51

� OpenMP can only improve the computational aspects if the code is

communication bound then there will be little improvement.

� If a code takes 100 seconds of which only 20 seconds can be sped up

using OpenMP then the best you can achieve on 24 threads is 80.83s

� If when run on fewer cores (by a factor of 24 so 1 MPI rank per node)

the code takes much less time in MPI. In this case 500 seconds maybe the code takes much less time in MPI. In this case 500 seconds maybe

realistic , of which perhaps 480 seconds can be attacked with OpenMP.

Performance will now be 40 seconds!

� Need also to be aware of locality (see next optimization), if you are using

OpenMP within libraries then your application may control data

placement.

Cray XT6 Workshop, Manchester, 13 October 2010 52

DDR3 Channel

DDR3 Channel

DDR3 Channel

DDR3 Channel

DDR3 Channel

DDR3 Channel 6MB L3
Cache

Greyhound

Greyhound

Greyhound

Greyhound

Greyhound

6MB L3
Cache

Greyhound

Greyhound

Greyhound

Greyhound

Greyhound

Greyhound

6MB L3
Cache

Greyhound

Greyhound

Greyhound

Greyhound

Greyhound

6MB L3
Cache

Greyhound

Greyhound

Greyhound

Greyhound

Greyhound

GreyhoundH
T

3

H
T

3

HT

3

HT3

HT3 DDR3 ChannelDDR3 Channel
Greyhound Greyhound

� Memory bandwidth is distributed

� If all data lies in the first dies memory then memory bandwidth is limited

that available on the first die (two DDR3 links)

� Instant 4x hit in available memory bandwidth!!

To Interconnect

HT3

HT1 / HT3

Cray XT6 Workshop, Manchester, 13 October 2010 53

54Cray XT6 Workshop, Manchester, 13 October 2010

� Linux has a “first touch policy” for memory allocation

� *alloc functions don’t actually allocate your memory

� Memory gets allocated when “touched”

� Problem: A code can allocate more memory than available

� Linux assumed “swap space,” we don’t have any

� Applications won’t fail from over-allocation until the memory is finally

touched

� Problem: Memory will be put on the core of the “touching” thread

� Only a problem if thread 0 allocates all memory for a node

� Solution: Always initialize your memory immediately after allocating it

� If you over-allocate, it will fail immediately, rather than a strange place

in your code

� If every thread touches its own memory, it will be allocated on the

proper socket

55Cray XT6 Workshop, Manchester, 13 October 2010

56Cray XT6 Workshop, Manchester, 13 October 2010

� The default ordering can be changed using the following environment variable:

MPICH_RANK_REORDER_METHOD

� These are the different values that you can set it to:

0: Round-robin placement – Sequential ranks are placed on the next node in the

list. Placement starts over with the first node upon reaching the end of the list.

1: SMP-style placement – Sequential ranks fill up each node before moving to the

next.

2: Folded rank placement – Similar to round-robin placement except that each pass 2: Folded rank placement – Similar to round-robin placement except that each pass

over the node list is in the opposite direction of the previous pass.

3: Custom ordering. The ordering is specified in a file named

MPICH_RANK_ORDER.

� When is this useful?

� Point-to-point communication consumes a significant fraction of program time and a

load imbalance detected

� Also shown to help for collectives (alltoall) on subcommunicators (GYRO)

� Spread out IO across nodes (POP)

57Cray XT6 Workshop, Manchester, 13 October 2010

� GYRO 8.0

� B3-GTC problem with 1024 processes

� Run with alternate MPI orderings

� Custom: profiled with with –O apa and used reordering file

MPICH_RANK_REORDER.

Reorder method Comm. time

Default 11.26s

0 – round-robin 6.94s

2 – folded-rank 6.68s

d-custom from apa 8.03s

CrayPAT

suggestion

almost right!

58Cray XT6 Workshop, Manchester, 13 October 2010

� TGYRO 1.0

� Steady state turbulent transport code using GYRO, NEO, TGLF

components

� ASTRA test case

� Tested MPI orderings at large scale

� Originally testing weak-scaling, but found reordering very � Originally testing weak-scaling, but found reordering very

useful

Reorder

method

TGYRO wall time (min)

20480 40960 81920

Default 99m 104m 105m

Round-robin 66m 63m 72m

Huge win!

59Cray XT6 Workshop, Manchester, 13 October 2010

Application data is in

a 3D space, X x Y x Z.

Communication is

nearest-neighbor.

Default ordering

results in 12x1x1

Rank Reordering
Case Study

block on each node.

A custom reordering

is now generated:

3x2x2 blocks per

node, resulting in

more on-node

communication

60Cray XT6 Workshop, Manchester, 13 October 2010

X X o o

X X o o

o o o o

o o o o

� Nodes marked X heavily use a shared

resource

� If memory bandwidth, scatter the X's

� If network bandwidth to others, again

scatter

� If network bandwidth among � If network bandwidth among

themselves, concentrate

� Check out pat_report, grid_order, and mgrid_order for

generating custom rank orders based on:

� Measured data

� Communication patterns

� Data decomposition

61Cray XT6 Workshop, Manchester, 13 October 2010

� Default Placement � Custom Placement

� 7.15 seconds per iteration � 5.58 seconds

Cray XT6 Workshop, Manchester, 13 October 2010 62

22% Improvement

12000

14000

16000

18000

Scalability Improvements Achieved with Process Placement

Cray XT6 Workshop, Manchester, 13 October 2010 63

0

2000

4000

6000

8000

10000

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

S
ca

la
b

il
it

y

Process Count

Standard Placement

Optimized

Ideal

Cray XT6 Workshop, Manchester, 13 October 2010 64

� This is still important and has been stressed before.

� If you can vectorize your code you can double the performance.

� If you can halve the precision for some solvers (and the solver vectorizes)

you can double the performance.you can double the performance.

� The SSE instruction can perform two 64 bit calculations simultaneously

� It can perform four 32 bit calculations.

� This reduction in precision of the real can be done within some Lapack

routines with the use of IRT.

Cray XT6 Workshop, Manchester, 13 October 2010 65

66Cray XT6 Workshop, Manchester, 13 October 2010

� Questions?

� Kevin Roy: kroy@cray.com

� Jason Beech-Brandt: jason@cray.com

� Tom Edwards: tedwards@cray.com

Cray XT6 Workshop, Manchester, 13 October 2010 67

