
Optimizing I/O on the Cray XE/XC

Agenda

● Scaling I/O

● Parallel Filesystems and Lustre

● I/O patterns

● Optimising I/O

Scaling I/O

● We tend to talk a lot about scaling application computation
● Nodes, network, software

● We need I/O to scale

● So let us now consider filesystems and storage…

Parallel Filesystem fundamentals

Single logical file

e.g.

/wrk/user/example

File automatically

divided into stripes

Stripes are written/read

from across multiple drives

To achieve fast bandwidth reading

or writing to disk....

Thursday, 27 June 2013
5

● A scalable cluster file system for Linux

● Developed by Cluster File Systems -> Sun -> Oracle.

● Name derives from “Linux Cluster”

● The Lustre file system consists of software subsystems, storage,
and an associated network

● MDS – metadata server
● Handles information about files and directories

● OSS – Object Storage Server

● The hardware entity

● The server node

● Support multiple OSTs
● OST – Object Storage Target

● The ‘software’ entity

● This is the software interface to the backend volume

Lustre

Client

Lustre

Client

Lustre

Client

Lustre

Client

Lustre

Client
Lustre

Client

Lustre

Client

Lustre

Client

Lustre

Client

Lustre

Client
Lustre

Client

Lustre

Client

Lustre

Client

Lustre

Client

Lustre

Client
Lustre

Client

Lustre

Client

Lustre

Client

Lustre

Client

Lustre

Client

Metadata

Server

(MDS)

Object Storage

Server (OSS) +

Object Storage

Target (OST)

Object Storage

Server (OSS) +

Object Storage

Target (OST)

Object Storage

Server (OSS) +

Object Storage

Target (OST)

Object Storage

Server (OSS) +

Object Storage

Target (OST)

name

permissions

attributes

location

Object Storage

Server (OSS) +

Object Storage

Target (OST)

High Performance Computing Interconnect

(Gemini)

Secondary Interconnect

(Inifiniband)

Multiple

OSSs and

OSTS

One MDS

per

filesystem

Lustre

Client

Object Storage

Server (OSS) +

Object Storage

Target (OST)

Object Storage

Server (OSS) +

Object Storage

Target (OST)

Open

name

permissions

attributes

location

Metadata

Server

(MDS)

OSTs

Lustre

Client

Read/write

Opening a file

The client sends a request to the MDS to

opening/acquiring information about the file

The MDS then passes back a list of OSTs

• For an existing file, these contain the

data stripes

• For a new files, these typically contain a

randomly assigned list of OSTs where

data is to be stored

Once a file has been opened no

further communication is required

between the client and the MDS

All transfer is directly between the

assigned OSTs and the client

File decomposition – 2 Megabyte stripes

3-0 5-0 7-0 11-0 3-1 5-1 7-1 11-1

11-0

7-0
3-0 5-0

2MB

2MB

2MB

2MB

2MB

2MB

2MB

2MB

3-1

OST 3

Lustre

Client

7-1

OST 5
OST 7

OST

11
5-1

11-1

CRAY I/O stack

HDF5

Application

NETCDF
MPI-IO

POSIX I/O

Lustre File System

I/O Patterns

I/O strategies: Spokesperson

● One process performs I/O

● Data Aggregation or Duplication

● Limited by single I/O process

● Easy to program

● Pattern does not scale

● Time increases linearly with
amount of data

● Time increases with number of
processes

● Care has to be taken when doing
the all-to-one kind of
communication at scale

● Can be used for a dedicated I/O
Server

Bottlenecks

Lustre clients

I/O strategies: Multiple Writers – Multiple Files

● All processes perform

I/O to individual files

● Limited by file system

● Easy to program

● Pattern does not scale

at large process

counts

● Number of files creates

bottleneck with metadata

operations

● Number of simultaneous

disk accesses creates

contention for file system

resources

I/O strategies: Multiple Writers – Single File

● Each process performs I/O
to a single file which is
shared.

● Performance

● Data layout within the
shared file is very
important.

● At large process counts
contention can build for
file system resources.

● Not all programming
languages support it

● C/C++ can work with
fseek

● No real Fortran
standard

I/O strategies: Collective IO to single or
multiple files

● Aggregation to a processor
in a group which processes
the data.

● Serializes I/O in group.

● I/O process may access
independent files.

● Limits the number of files
accessed.

● Group of processes
perform parallel I/O to a
shared file.

● Increases the number of
shares to increase file
system usage.

● Decreases number of
processes which access a
shared file to decrease file
system contention.

Special case : Standard output and error

● All STDIN, STDOUT, and

STDERR I/O streams

serialize through aprun

● Disable debugging

messages when running in

production mode.

● “Hello, I’m task 32,000!”

● “Task 64,000, made it

through loop.”

aprun

Rules for good application I/O performance

16

1. Use Parallel I/O

2. Try to hide I/O (asynchronous I/O)

3. Tune filesystem parameters

4. Use I/O buffering for all sequential I/O

I/O performance: to keep in mind

● There is no “One Size Fits All” solution to the I/O

problem

● Many I/O patterns work well for some range of

parameters

● Bottlenecks in performance can occur in many

locations (application and/or filesystem)

● Going to extremes with an I/O pattern will typically

lead to problems

● I/O is a shared resource: Expect timing variation

Asynchronous I/O

Compute I/O Compute I/O Compute I/O Compute I/O

Time

Standard Sequential I/O

Compute

I/O

Compute

I/O

Compute

I/O

Compute

I/O

Asynchronous I/O

Asynchronous I/O

● Majority of data is output

● Double buffer arrays to allow computation to continue
while data flushed to disk

1. Use asynchronous POSIX calls
● Only covers the I/O call itself, any packing/gathering/encoding still

has to be done by the compute processors

● Not currently supported by Lustre (calls become synchronous)

2. Use 3rd party libraries
● Typical examples are MPI I/O

● Again, packing/gathering/encoding still done by compute processors

3. Add I/O Servers to the application
● Add processors dedicated to performing time consuming operations

● More complicated to implement than other solutions

● Portable across platforms (works on any parallel platform)

I/O Servers

● Successful strategy deployed in multiple codes

● Strategy has become more successful as number of

nodes has increased

● Addition of extra nodes only cost 1-2% in resources

● Requires additional development that can pay off for

codes that generate large files

● Typically still only one or a small number of writers

performing I/O operations (not necessarily reaching

optimum bandwidth)

Naive I/O Server pseudo code

Compute Node

do i=1,time_steps
 compute(j)
 checkpoint(data)
end do

subroutine checkpoint(data)
 MPI_Wait(send_req)
 buffer = data
 MPI_Isend(IO_SERVER, buffer)
end subroutine

I/O Server

do i=1,time_steps
 do j=1,compute_nodes
 MPI_Recv(j, buffer)
 write(buffer)
 end do
end do

Controlling Lustre striping

● lfs is the Lustre utility for setting the stripe properties of new
files, or displaying the striping patterns of existing ones

● The most used options are

● setstripe – Set striping properties of a directory or new file

● getstripe – Return information on current striping settings

● osts – List the number of OSTs associated with this file system

● df – Show disk usage of this file system

● For help execute lfs without any arguments
 $ lfs

 lfs > help

 Available commands are:
 setstripe
 find
 getstripe
 check
 ...

lfs setstripe

23

● Sets the stripe for a file or a directory
● lfs setstripe <file|dir> <-s size> <-i start> <-c
count>
● size: Number of bytes on each OST (0 filesystem default)

● start: OST index of first stripe (-1 filesystem default)

● count: Number of OSTs to stripe over (0 default, -1 all)

● Comments
● Can use lfs to create an empty file with the stripes you want (like the

touch command)

● Can apply striping settings to a directory, any children will inherit
parent’s stripe settings on creation.

● The stripes of a file is given when the file is created. It is not possible
to change it afterwards.

● The start index is the only one you can specify, starting with the
second OST. In general you have no control over which one is used.

Select best Lustre striping values

● Selecting the striping values will have a large impact on

the I/O performance of your application

● Rule of thumb:

1. # files > # OSTs => Set stripe_count=1

You will reduce the lustre contention and OST file locking this way

and gain performance

2. #files==1 => Set stripe_count=#OSTs

Assuming you have more than 1 I/O client

3. #files<#OSTs => Select stripe_count so that you use all OSTs

Example : You have 8 OSTs and write 4 files at the same time, then

select stripe_count=2

● Always allow the system to choose OSTs at random!

Case Study 1: Spokesman

● 32 MB per OST (32 MB – 5 GB) and 32 MB Transfer Size
● Unable to take advantage of file system parallelism

● Access to multiple disks adds overhead which hurts performance

0

20

40

60

80

100

120

1 2 4 16 32 64 128160

W
ri

te
 (

M
B

/s
)

Stripe Count

Single Writer
Write Performance

1 MB Stripe

32 MB
Stripe

Lustre

Client

Case Study 2: Parallel I/O into a single file

● A particular code both reads and writes a 377 GB file.
Runs on 6000 cores.
● Total I/O volume (reads and writes) is 850 GB.

● Utilizes parallel HDF5

● Default Stripe settings:
count =4, size=1M, index =-1.
● 1800 s run time (~ 30 minutes)

● Stripe settings: count=-1, size=1M, index = –1.
● 625 s run time (~ 10 minutes)

● Results
● 66% decrease in run time.

Case Study 3: Single File Per Process

● 128 MB per file and a 32 MB Transfer size, each file has a
stripe_count of 1

0

2000

4000

6000

8000

10000

12000

0 2000 4000 6000 8000 10000

W
ri

te
 (

M
B

/s
)

Processes or Files

File Per Process
Write Performance

1 MB
Stripe

32 MB
Stripe

Lustre problem: “OST Sharing“

● A file is written by several tasks :

● The file is stored like this (one single stripe per OST for all
tasks) :

● => Performance Problem (like False Sharing in
thread progamming)

● Flock mount option needed. Only 1 task can write to
an OST any time

OST 2 OST 3 OST 1 OST 0

Task

1

Task

2

Task

3

Task

4

MPI I/O interaction with Lustre

● Included in the Cray MPT library

● Environmental variables used to help MPI-IO optimize

I/O performance

● MPICH_MPIIO_CB_ALIGN (Default 2) sets collective buffering

behavior

● MPICH_MPIIO_HINTS can set striping_factor and striping_unit

for files created with MPI I/O

● If writes and/or reads utilize collective calls, collective buffering

can be utilized (romio_cb_read/write) to approximately stripe align

I/O within Lustre

● HDF5 and NetCDF are both implemented on top of MPI

I/O and thus are also affected by these environment

variables

MPICH_MPIIO_CB_ALIGN

● If set to 2

● Divide the I/O workload into Lustre stripe-sized pieces and

assigns them to collective buffering nodes (aggregators), so that

each aggregator always accesses the same set of stripes and no

other aggregator accesses those stripes

● If the overhead associated with dividing the I/O workload can in

some cases exceed the time otherwise saved by using this

method

● If set to 1

● Take into account physical I/O boundaries and the size of I/O

requests in order to determine how to divide the I/O workload

when collective buffering is enabled

● Unlike mode 2, there is no fixed association between file stripe

and aggregator from one call to the next.

● If set to zero or defined but not assigned a value

● Divide the I/O workload equally amongst all aggregators without

regard to physical I/O boundaries or Lustre stripes

MPI I/O hints (part 1)

● MPICH_MPIIO_HINTS_DISPLAY – Rank 0 displays the
name and values of the MPI-IO hints

● MPICH_MPIO_HINTS – Sets the MPI-IO hints for files
opened with the MPI_File_Open routine
● Overrides any values set in the application by the MPI_Info_set

routine

● Following hints supported:

direct_io

romio_cb_read

romio_cb_write

cb_buffer_size

cb_nodes

cb_config_list

romio_no_indep_rw

romio_ds_read

romio_ds_write

ind_rd_buffer_size

Ind_wr_buffer_size

striping_factor

striping_unit

IOR benchmark 1,000,000 bytes

MPI-IO API , non-power-of-2 blocks and transfers, in this case blocks and

transfers both of 1M bytes and a strided access pattern. Tested on an

XT5 with 32 PEs, 8 cores/node, 16 stripes, 16 aggregators, 3220

segments, 96 GB file

0

200

400

600

800

1000

1200

1400

1600

1800

M
B

/S
e
c

HDF5 format dump file from all PEs

Total file size 6.4 GB. Mesh of 64M bytes 32M elements, with work divided

amongst all PEs. Original problem was very poor scaling. For example, without

collective buffering, 8000 PEs take over 5 minutes to dump.

Tested on an XT5, 8 stripes, 8 cb_nodes

S
e

c
o

n
d

s

PEs

1

10

100

1000

w/o CB

CB=0

CB=1

CB=2

IOBUF

● IOBUF is a library that intercepts standard I/O (stdio) and

enables asynchronous caching and prefetching of

sequential file access

● Should not be used for

● Hybrid programs that do I/O within a parallel region (not thread-safe)

● Many processes accessing the same file in a coordinated fashion

(MPI_File_write/read_all)

● No need to modify the source code but just

● Load the module iobuf

● Relink your application

● Set export IOBUF_PARAMS='*:verbose' in the batch script

● See the iobuf(3) manpage

MPI I/O

● Provides nice features to map data in many processes

into one or more files

● In addition you get the performance advantages we talked

about so far

Summary

● I/O is always a bottleneck
● Minimize it!

● You might have to change your I/O implementation when scaling
it up

● Take-home messages on I/O performance
● Performance is limited for single process I/O

● Parallel I/O utilizing a file-per-process or a single shared file is
limited at large scales

● Potential solution is to utilize multiple shared file or a subset of
processes which perform I/O

● A dedicated I/O Server process (or more) might also help

● Use MPI I/O and/or high-level libraries (HDF5)

● Lustre rules of thumb

● # files > # OSTs => Set stripe_count=1

● #files==1 => Set stripe_count=#OSTs

● #files<#OSTs => Select stripe_count so that you use all OSTs

References

● http://docs.cray.com
● Search for MPI-IO : “Getting started with MPI I/O“,

“Optimizing MPI-IO for Applications on CRAY XT Systems“

● Search for lustre (a lot for admins but not only)

● Message Passing Toolkit

● Man pages (man mpi, man <mpi_routine>, ...)

● mpich2 standard :
http://www.mcs.anl.gov/research/projects/mpich2/

http://docs.cray.com/
http://www.mcs.anl.gov/research/projects/mpich2/

