
Load balance & rank placement

© Cray Inc 2013

Motivation for load imbalance analysis

● Increasing system software and architecture complexity
● Current trend in high end computing is to have systems with tens of

thousands of processors
● This is being accentuated with multi-core processors

● Applications have to be very well balanced In order to
perform at scale on these MPP systems
● Efficient application scaling includes a balanced use of requested

computing resources

● Desire to minimize computing resource “waste”
● Identify slower paths through code

● Identify inefficient “stalls” within an application

Example load distribution

-1, +1

Std Dev

marks

Min, Avg, and Max

Values

Imbalance time

● Metric based on execution time

● It is dependent on the type of activity:
● User functions

Imbalance time = Maximum time – Average time

● Synchronization (Collective communication and barriers)
Imbalance time = Average time – Minimum time

● Identifies computational code regions and
synchronization calls that could benefit most from load
balance optimization

● Estimates how much overall program time could be saved
if corresponding section of code had a perfect balance
● Represents upper bound on “potential savings”

● Assumes other processes are waiting, not doing useful work while
slowest member finishes

Imbalance %

● Represents % of resources available for parallelism that is
“wasted”

● Corresponds to % of time that rest of team is not engaged
in useful work on the given function

● Perfectly balanced code segment has imbalance of 0%

● Serial code segment has imbalance of 100%

Imbalance% =
Imbalance time

Max Time
X

N - 1

N
100 X

MPI sync time

● Measure load imbalance in programs instrumented to
trace MPI functions to determine if MPI ranks arrive at
collectives together

● Separates potential load imbalance from data transfer

● Sync times reported by default if MPI functions traced

● If desired, PAT_RT_MPI_SYNC=0 deactivates this feature

Causes and hints

● Need CrayPAT reports: What is causing the load
imbalance?

● Computation
● Is decomposition appropriate?

● Would reordering ranks help?

● Communication
● Is decomposition appropriate?

● Would reordering ranks help?

● Are receives pre-posted?

● Any All-to-1 communication?

● I/O – synchronous single-writer I/O will cause significant
load imbalance already with a couple of MPI tasks

● The default ordering can be changed using the
following environment variable:
● MPICH_RANK_REORDER_METHOD=n

● These are the different values that you can set it to:
● 0: Round-robin placement – Sequential ranks are placed on the

next node in the list. Placement starts over with the first node
upon reaching the end of the list.

● 1: (DEFAULT) SMP-style placement – Sequential ranks fill up
each node before moving to the next.

● 2: Folded rank placement – Similar to round-robin placement
except that each pass over the node list is in the opposite
direction of the previous pass.

● 3: Custom ordering. The ordering is specified in a file named
MPICH_RANK_ORDER.

Rank Placement

● When is this useful?
● Point-to-point communication consumes a significant fraction of

program time and a load imbalance detected

● Also shown to help for collectives (alltoall) on subcommunicators

● Spread out IO across nodes

Rank Placement

0: Round Robin Placement

Node 0

0 12

24 36

Node 1

1 13

25 37

Node 2

2 14

26 38

Node 3

3 15

27 39

Node 4

4 16

28 40

Node 5

5 17

29 41

Node 6

6 18

30 42

Node 7

7 19

31 43

Node 8

8 20

32 44

Node 9

9 21

33 45

Node 10

10 22

34 46

Node 11

11 23

35 47

Node 7

Node 8 Node 9 Node 10 Node 11

Node 6

Node 3

1: SMP Placement (default)

Node 0

0 12

24

36

Node 1

1

13

25

37

Node 2

2

14

26

38

3 15

27

39

Node 4

4

16 28

40

Node 5

5

17 29

41

6

18 30

42

7

19 31

43

8

20

32 44

9

21

33 45

10

22

34 46

11

23

35 47

Node 10 Node 11

2: Folded Placement

Node 0

0

12

24

Node 1

1

13

25

Node 2

2

26

Node 3

3

27

Node 4

4

28

Node 5

5

29

Node 6

6

30

Node 7

7

31

Node 8

8

32

Node 9

9

33

10

34

11

35

14 15

36

16

40

17 18

42

20 21 22

41

44 45 46

23

47

37 38 39

19

43

● From the man page: The grid_order utility is used to
generate a rank order list for use by an MPI application
that uses communication between nearest neighbors
in a grid. When executed with the desired arguments,
grid_order generates rank order information in the
appropriate format and writes it to stdout. This output
can then be copied or written into a file named
MPICH_RANK_ORDER and used with the

MPICH_RANK_REORDER_METHOD=3

environment variable to override the default MPI rank
placement scheme and specify a custom rank
placement.

● Craypat will also make suggestions

Rank Placement

June 20,

2011

Cray Proprietary

13

Rank placement

● So easy to experiment with that it should be tested with
every application…

● When is this a priori useful?
● Point-to-point communication consumes a significant fraction of

program time and a load imbalance detected

● Also shown to help for collectives (alltoall) on subcommunicators

● Spread out I/O servers across nodes

Hybrid MPI + OpenMP?

● OpenMP may help
● Able to spread workload with less overhead

● Large amount of work to go from all-MPI to (better performing) hybrid -
must accept challenge to hybridize large amount of code

● When does it pay to add OpenMP to my MPI code?
● Add OpenMP when code is network bound

● Adding OpenMP to memory bound codes may aggravate memory
bandwidth issues, but you have more control when optimizing for
cache

● Look at collective time, excluding sync time: this goes up as network
becomes a problem

● Look at point-to-point wait times: if these go up, network may be a
problem

● If an all-to-all communication pattern becomes a bottleneck,
hybridization often overcomes this

● Hybridization can be used to avoid replicated data

OpenMP thread placement

● When running a hybrid MPI+OpenMP application, the
optimal number of threads/MPI task depends on the
application and even input
● On the XE, one should try at least with 32x1, 16x2, perhaps also with

8x4, even 4x8 (MPI tasks x OpenMP threads per node)

● The XE system is able to place OpenMP threads
appropriately when the code is compiled with the Cray,
PGI or GNU compiler
● Just do e.g. ”aprun -n 64 -d 32 -N 1 ./a.out” (for a 64x32=2048 core

job)

● You can use the aprun switch -S to force a certain number of MPI
tasks per a numa node (=CPU) and -ss to have the threads to allocate
memory only in the local numa node

Summary

● Load imbalance is very often the very reason for non-
scalability of an application

● It can be due to imbalanced computation or
communication, with the usual suspects being
● Bad decomposition

● All-to-one communication patterns

● Single-writer I/O

● Usually needs fixing at the source code level

● Some things for non-severe load imbalances can be done
on the environment level: try to adjust the rank placement

● Hybrid MPI+OpenMP approach often useful for
overcoming load balance problems
● Mind the thread placement when using hybrid codes!

