
Understanding MPI on Cray XE6

MPICH2 and Cray MPT

● Cray MPI uses MPICH2 distribution from Argonne
● Provides a good, robust and feature rich MPI

● Cray provides enhancements on top of this:
● low level communication libraries

● Point to point tuning

● Collective tuning

● Shared memory device is built on top of Cray XPMEM

● Many layers are straight from MPICH2
● Error messages can be from MPICH2 or Cray Libraries.

Rank A

Overlapping Communication and Computation

Compute

MPI_ISend

Compute T
im

e

MPI_Waitall

MPI_IRecv

Compute

Rank B

Compute

MPI_ISend

Compute

MPI_Waitall

MPI_IRecv

Compute

Data

Transferred

in

Background

The MPI API provides many

functions that allow point-to-

point messages (and with MPI-

3, collectives) to be performed

asynchronously.

Ideally applications would be

able to overlap communication

and computation, hiding all data

transfer behind useful

computation.

Unfortunately this is not

always possible at the

application and not always

possible at the

implementation level.

What prevents Overlap?

● Even though the library has asynchronous API calls,
overlap of computation and communication is not always
possible

● This is usually because the sending process does not
know where to put messages on the destination as this is
part of the MPI_Recv, not MPI_Send.

● Also on Gemini and Aries, complex tasks like matching
message tags with the sender and receiver are performed
by the host CPU. This means:
+ Gemini and Aries chips can have higher clock speed and so lower
latency and better bandwidth

+ Message matching is always performed by a one fast CPU per rank.

- Messages can usually only be “progressed” when the program is inside
an MPI function or subroutine.

Receiver Sender

EAGER Messaging – Buffering Small Messages

MPI_Send

Compute

Compute

MPI_Recv

Compute

MPI

Buffers

T
im

e

Smaller messages can

avoid this problem using the

eager protocol.

If the sender does not know

where to put a message it

can be buffered until the

sender is ready to take it.

When MPI Recv is called

the library fetches the

message data from the

remote buffer and into the

appropriate location (or

potentially local buffer)

Sender can proceed as

soon as data has been

copied to the buffer.

Sender will block if there are

no free buffers

Data

pushed to

receiver’s

buffer

MPI

Buffers

Rank A

EAGER potentially allows overlapping

Compute

MPI_ISend

Compute T
im

e

MPI_Waitall

MPI_IRecv

Compute

Rank B

Compute

MPI_ISend

Compute

MPI_Waitall

MPI_IRecv

Compute

Data is pushed into an empty

buffer(s) on the remote

processor.

Data is copied from the buffer

into the real receive destination

when the wait or waitall is

called.

Involves an extra memcopy, but

much greater opportunity for

overlap of computation and

communication.

Receiver Sender

RENDEZVOUS Messaging – Larger Messages

MPI_Send

Compute

Compute

MPI_Recv

Compute

DATA
MPI

Buffers

T
im

e

Larger messages (that

are too big to fit in the

buffers) are sent via the

rendezvous protocol

Messages cannot begin

transfer until MPI_Recv

called by the receiver.

Data is pulled from the

sender by the receiver.

Sender must wait for data

to be copied to reciever

before continuing.

Sender and Receiver

block until communication

is finished

DATA

DATA

Data pulled

from the

sender

Rank A

RENDEZVOUS does not usually overlap

Compute

MPI_ISend

Compute T
im

e

MPI_Waitall

MPI_IRecv

Rank B

Compute

MPI_ISend

Compute

MPI_Waitall

MPI_IRecv

With rendezvous data transfer

is often only occurs during the

Wait or Waitall statement.

When the message arrives at

the destination, the host CPU is

busy doing computation, so is

unable to do any message

matching.

Control only returns to the

library when MPI_Waitall occurs

and does not return until all

data is transferred.

There has been no overlap of

computation and

communication.

DATA DATA

DATA DATA

Making more messages EAGER

● One way to improve performance is to send more
messages using the eager protocol.

● This can be done by raising the value of the eager
threshold, by setting environment variable:
export MPICH_GNI_MAX_EAGER_MSG_SIZE=X

● Values are in bytes, the default is 8192 bytes. Maximum
size is 131072 bytes (128KB).

● Try to post MPI_IRecv calls before the MPI_ISend call to
avoid unecessary buffer copies.

Consequences of more EAGER messages

● Sending more messages via EAGER places more
demands on buffers on receiver.

● If the buffers are full, transfer will wait until space is
available or until the Wait.

● Buffer size can be increased using:
export MPICH_GNI_NUM_BUFS=X

● Buffers are 32KB each and default number is 64 (total of
2MB).

● Buffer memory space is competing with application
memory, so we recommend only moderate increases.

T
h
re

a
d
 B

T
h
re

a
d
 A

Rank A

Progress threads help overlap

Compute

MPI_ISend

Compute T
im

e

MPI_Waitall

MPI_IRecv

Rank B

Compute

MPI_ISend

Compute

MPI_IRecv

Cray’s MPT library can spawn

additional threads that allow

progress of messages while

computation occurs in the

background.

Thread performs message

matching and intiatiates the

transfer.

Data has already arrived by the

time Waitall is called, so overlap

between compute and

communication.

DATA DATA

Compute

DATA

MPI_Waitall

Compute

DATA

Avoiding OS Noise

● The kernel on the compute nodes is designed to be low
noise and high throughput
● Only absolutely necessary daemons running on the nodes

● Fewer interrupts and context switches means higher occupancy.

● Inevitably, some kernel processes and user daemons will
interrupt user processes
● Handling hardware interrupts

● Flushing I/O buffers

● Node health heart beats

● These are not synchronised across the nodes.
● Effectively occurring randomly on each node

● Can have a cumulative amplifying effect if applications synchronise at
high frequency.

Core Specialisation

● Unavoidable OS noise can potentially degrade application
scaling performance if it synchronises frequently.
● Usually only visible at the largest scales

● Solution, under-populate nodes slightly and move OS
processes to unoccupied cores.
● Technique called “Core Specialisation” by Cray

● Requires additional arguments in aprun command line:
● Add “-r <num cores>” to aprun command line

● Total of –N and –r must not exceed available cores per node (32 for
HECToR)

E.g. aprun –n 1024 –N 30 –r 2 <exe>

● May potentially require more nodes or fewer total ranks
but overall performance improved

Core Specialisation +
Asynchronous Progress Engines

● Problem: MPI requires heavyweight message matching
● Task of matching messages with tags, order and processes on Gemini

is performed by Opteron processor.

● Positive: Message matching done by fast CPU, also scales with
number of MPI ranks (e.g. not a single engine per node like Seastar).

● Negatives: CPU has to be in an MPI library for calls to progress.
Limited opportunities for Comms/Compute overlap

● Solution: Spawn an additional thread on CPU to do
message matching.
● Allows message matching and transfer of RENDEZVOUS messages

while main compute thread still working.

● Much greater opportunity for Comms and Compute to overlap.

● On Cray XE6 requires at least one dedicated core per node (via core
specialisation). (Cray XC30 can use Intel Hyperthreads with almost no
overhead).

Asynchronous Progress Engines

● Only useful if code using asynchronous MPI calls
(includes MPI-3 async collectives).

● Requires library to use “Thread Multiple” safety.

export MPICH_NEMESIS_ASYNC_PROGRESS=1

export MPICH_MAX_THREAD_SAFETY=multiple

export MPICH_GNI_USE_UNASSIGNED_CPUS=enabled

Run application: aprun –r 1 –N 31 –n XX a.out

Other Techniques - Collectives

● MPICH_COLL_OPT_OFF=<collective name> switches off
the Cray optimized algorithm for a given collective and
uses the original MPICH algorithm
● E.g. MPICH_COLL_OPT_OFF=mpi_allgather

● The algorithm selection for all-to-all routines (allgather(v),
alltoall(v)) is based on the number of ranks on the calling
communicator and the message sizes.

● This can be adjusted with MPICH_XXXX_VSHORT_MSG
environment variable, where XXXX=collective, e.g.
ALLGATHER.

Why use Huge Pages

● The Aries performs better with HUGE pages than with 4K
pages. The Aries can map more pages using fewer
resources meaning communications may be faster.

● Huge Pages will also affect TLB performance:
● Your code may run with fewer TLB misses (hence faster)

● However, your code may load extra data and so run slower

● Only way to know is by experimentation.

● Use modules to change default page sizes (man
intro_hugepages):
● e.g. module load craype-hugepages#

● craype-hugepages128K
● craype-hugepages512K

● craype-hugepages2M

● craype-hugepages8M

● craype-hugepages16M

● craype-hugepages64M

Most commonly successfully on

Cray XE

 MPICH_GNI_DYNAMIC_CONN

● Enabled by default

● Normally want to leave enabled so mailbox resources
(memory, NIC resources) are allocated only when the
application needs them

● If application does all-to-all or many-to-one/few, may as
well disable dynamic connections. This will result in
significant startup/shutdown costs though.

● Syntax for disabling:

export MPICH_GNI_DYNAMIC_CONN=disabled

