
Understanding MPI on Cray XE6 



MPICH2 and Cray MPT 

● Cray MPI uses MPICH2 distribution from Argonne 
● Provides  a good, robust and feature rich MPI 

● Cray provides enhancements on top of this: 
● low level communication libraries  

● Point to point tuning 

● Collective tuning 

● Shared memory device is built on top of Cray XPMEM 

 

● Many layers are straight from MPICH2  
● Error messages can be from MPICH2 or Cray Libraries. 
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The MPI API provides many 

functions that allow point-to-

point messages (and with MPI-

3, collectives) to be performed 

asynchronously. 

 

Ideally applications would be 

able to overlap communication 

and computation, hiding all data 

transfer behind useful 

computation. 

 

Unfortunately this is not 

always possible at the 

application and not always 

possible at the 

implementation level. 



What prevents Overlap? 

● Even though the library has asynchronous API calls, 
overlap of computation and communication is not always 
possible  

 

● This is usually because the sending process does not 
know where to put messages on the destination as this is 
part of the MPI_Recv, not MPI_Send. 

 

● Also on Gemini and Aries, complex tasks like matching 
message tags with the sender and receiver are performed 
by the host CPU. This means: 
+ Gemini and Aries chips can have higher clock speed and so lower 
latency and better bandwidth 

+ Message matching is always performed by a one fast CPU per rank. 

- Messages can usually only be “progressed” when the program is inside 
an MPI function or subroutine. 
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EAGER Messaging – Buffering Small Messages 
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Smaller messages can 

avoid this problem using the 

eager protocol. 

 

If the sender does not know 

where to put a message it 

can be buffered until the 

sender is ready to take it. 

 

When MPI Recv is called 

the library fetches the 

message data from the 

remote buffer and into the 

appropriate location (or 

potentially local buffer) 

 

Sender can proceed as 

soon as data has been 

copied to the buffer.  

 

Sender will block if there are 

no free buffers 
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buffer 
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EAGER potentially allows overlapping 
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Data is pushed into an empty 

buffer(s) on the remote 

processor.  

 

Data is copied from the buffer 

into the real receive destination 

when the wait or waitall is 

called. 

 

Involves an extra memcopy, but 

much greater opportunity for 

overlap of computation and 

communication. 
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RENDEZVOUS Messaging – Larger Messages 
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Larger messages (that 

are too big to fit in the 

buffers) are sent via the 

rendezvous protocol 

 

Messages cannot begin 

transfer until MPI_Recv 

called by the receiver.  

 

Data is pulled from the 

sender by the receiver.  

 

Sender must wait for data 

to be copied to reciever 

before continuing. 

 

Sender and Receiver 

block until communication 

is finished 

DATA 

DATA 

Data pulled 
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sender 
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RENDEZVOUS does not usually overlap 
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With rendezvous data transfer 

is often only occurs during the 

Wait or Waitall statement. 

 

When the message arrives at 

the destination, the host CPU is 

busy doing computation, so is 

unable to do any message 

matching. 

 

Control only returns to the 

library when MPI_Waitall occurs 

and does not return until all 

data is transferred.  

 

There has been no overlap of 

computation and 

communication. 
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Making more messages EAGER 

● One way to improve performance is to send more 
messages using the eager protocol.  

 

● This can be done by raising the value of the eager 
threshold, by setting environment variable: 
export MPICH_GNI_MAX_EAGER_MSG_SIZE=X 
 

● Values are in bytes, the default is 8192 bytes. Maximum 
size is 131072 bytes (128KB). 

 

● Try to post MPI_IRecv calls before the MPI_ISend call to 
avoid unecessary buffer copies. 



Consequences of more EAGER messages 

● Sending more messages via EAGER places more 
demands on buffers on receiver. 

 

● If the buffers are full, transfer will wait until space is 
available or until the Wait. 

 

● Buffer size can be increased using: 
export MPICH_GNI_NUM_BUFS=X 
 

● Buffers are 32KB each and default number is 64 (total of 
2MB).  

 

● Buffer memory space is competing with application 
memory, so we recommend only moderate increases. 
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Progress threads help overlap 
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Cray’s MPT library can spawn 

additional threads that allow 

progress of messages while 

computation occurs in the 

background. 

 

Thread performs message 

matching and intiatiates the 

transfer. 

 

Data has already arrived by the 

time Waitall is called, so overlap 

between compute and 

communication. 
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Avoiding OS Noise 

● The kernel on the compute nodes is designed to be low 
noise and high throughput 
● Only absolutely necessary daemons running on the nodes 

● Fewer interrupts and context switches means higher occupancy. 

 

● Inevitably, some kernel processes and user daemons will 
interrupt user processes 
● Handling hardware interrupts 

● Flushing I/O buffers 

● Node health heart beats 

 

● These are not synchronised across the nodes. 
● Effectively occurring randomly on each node 

● Can have a cumulative amplifying effect if applications synchronise at 
high frequency. 

 



Core Specialisation 

● Unavoidable OS noise can potentially degrade application 
scaling performance if it synchronises frequently. 
● Usually only visible at the largest scales 

 

● Solution, under-populate nodes slightly and move OS 
processes to unoccupied cores. 
● Technique called “Core Specialisation” by Cray 

 

● Requires additional arguments in aprun command line: 
● Add “-r <num cores>” to aprun command line 

● Total of –N and –r must not exceed available cores per node (32 for 
HECToR) 

E.g. aprun –n 1024 –N 30 –r 2 <exe> 
 

● May potentially require more nodes or fewer total ranks 
but overall performance improved 
 



Core Specialisation + 
Asynchronous Progress Engines 

● Problem: MPI requires heavyweight message matching  
● Task of matching messages with tags, order and processes on Gemini 

is performed by Opteron processor. 

● Positive: Message matching done by fast CPU, also scales with 
number of MPI ranks (e.g. not a single engine per node like Seastar). 

● Negatives: CPU has to be in an MPI library for calls to progress. 
Limited opportunities for Comms/Compute overlap 

 

● Solution: Spawn an additional thread on CPU to do 
message matching. 
● Allows message matching and transfer of RENDEZVOUS messages 

while main compute thread still working. 

● Much greater opportunity for Comms and Compute to overlap. 

 

● On Cray XE6 requires at least one dedicated core per node (via core 
specialisation). (Cray XC30 can use Intel Hyperthreads with almost no 
overhead). 

 

 



Asynchronous Progress Engines 

● Only useful if code using asynchronous MPI calls 
(includes MPI-3 async collectives). 

 

● Requires library to use “Thread Multiple” safety. 

 

export MPICH_NEMESIS_ASYNC_PROGRESS=1 

export MPICH_MAX_THREAD_SAFETY=multiple 

export MPICH_GNI_USE_UNASSIGNED_CPUS=enabled 

 

Run application:   aprun –r 1 –N 31 –n XX  a.out 



Other Techniques - Collectives   

● MPICH_COLL_OPT_OFF=<collective name> switches off 
the Cray optimized algorithm for a given collective and 
uses the original MPICH algorithm 
● E.g. MPICH_COLL_OPT_OFF=mpi_allgather 

● The algorithm selection for all-to-all routines (allgather(v), 
alltoall(v)) is based on the number of ranks on the calling 
communicator and the message sizes. 

● This can be adjusted with MPICH_XXXX_VSHORT_MSG 
environment variable, where XXXX=collective, e.g. 
ALLGATHER. 

 



Why use Huge Pages 

● The Aries performs better with HUGE pages than with 4K 
pages. The Aries can map more pages using fewer 
resources meaning communications may be faster. 

 

● Huge Pages will also affect TLB performance: 
● Your code may run with fewer TLB misses (hence faster) 

● However, your code may load extra data and so run slower 

● Only way to know is by experimentation. 

 
● Use modules to change default page sizes (man 
intro_hugepages): 
●  e.g. module load craype-hugepages# 

●  craype-hugepages128K 
●  craype-hugepages512K 

●  craype-hugepages2M 

●  craype-hugepages8M 

●  craype-hugepages16M 

●  craype-hugepages64M 

 

 

 

 

 

Most commonly successfully on 

Cray XE 



 MPICH_GNI_DYNAMIC_CONN 

● Enabled by default 

● Normally want to leave enabled so mailbox resources 
(memory, NIC resources) are allocated only when the 
application needs them 

● If application does all-to-all or many-to-one/few, may as 
well disable dynamic connections.  This will result in 
significant startup/shutdown costs though. 

● Syntax for disabling: 
 
export MPICH_GNI_DYNAMIC_CONN=disabled 

 


