
Introduction to performance analysis

© Cray Inc 2013

Performance Analysis – Motivation (1)

Cray Inc.
2

Even the most reasonably priced supercomputer costs
money to buy and needs power to run (money)

Performance Analysis – Motivation (2)

Cray Inc.
3

We want to get the most
science and engineering
through the system as
possible.

The more efficient codes are
the more productive scientists
and engineers can be.

/
pi
1 9

e

3
9

CO2

Performance Analysis – Motivation (3)

Cray Inc.
4

To optimise code we must know what is taking the time

Application Inputs Output

Profile Data

Sampling and Event Tracing

.
5

● When we instrument a binary, we have to choose when we
will collect performance information:

1. Sampling
● By taking regular snapshots of the applications call stack we can

create a statistical profile of where the spends most time.
● Snapshots can be taken at regular intervals in time or when some

other external even occurs, like a hardware counter overflowing

2. Event Tracing
● Alternatively we can record performance information every time a

specific program event occurs, e.g. entering or exiting a function.
● We can get accurate information about specific areas of the code

every time the event occurs
● Event tracing code can be added automatically or included manually

through API calls.

● pat_build options define how binaries are instrumented,
for sampling or event tracing

6

Sampling

Advantages

• Only need to instrument

main routine

• Low Overhead – depends

only on sampling frequency

• Smaller volumes of data

produced

Disadvantages

• Only statistical averages

available

• Limited information from

performance counters

Event Tracing

Advantages

• More accurate and more detailed

information

• Data collected from every traced

function call not statistical averages

Disadvantages

• Increased overheads as number of

function calls increases

• Huge volumes of data generated

The best approach is guided tracing.

e.g. Only tracing functions that are not small (i.e. very few

lines of code) and contribute a lot to application’s run time.

APA is an automated way to do this.

CrayPAT’s Design Goals

.
7

● Assist the user with application performance analysis and
optimization
● Help user identify important and meaningful information from

potentially massive data sets

● Help user identify problem areas instead of just reporting data

● Bring optimization knowledge to a wider set of users

● Focus on ease of use and intuitive user interfaces
● Lightweight and automatic program instrumentation

● Automatic Profiling Analysis mode to bootstrap the process

● Target scalability issues in all areas of tool development
● Work on user codes at realistic core counts with thousands of

processes/threads

● Integrate into large codes with millions of lines of code

● Be a universal tool
● Basic functionality available to all compilers on the system

● Additional functionality available from the Cray compiler

The Three Stages of CrayPAT

.
8

● There are three fundamental stages with accompanying
tools

1. Instrumentation

● Use pat_build to apply instrumentation to program binaries

2. Data Collection

● Transparent collection via CrayPAT’s run-time library

3. Analysis

● Interpreting and visualizing collected data using a series of post-mortem
tools:

1. pat_report: a command line tool for generating text reports

2. Cray Apprentice2: a graphical performance analysis tool

3. Reveal: Graphical performance analysis and code restructuring tool

● Documentation is provided via
● The pat_help system

● And the traditional man craypat

Instrumentation

.
9

 All instrumentation is done by pat_build, a stand-alone utility that
automatically instruments an existing application for performance
collection

● Requires no source code or makefile modification by default
● Automatic instrumentation at group (function) level

● Example groups: mpi, io, heap, math SW, …

● Performs link-time instrumentation

● Requires object files to still exist, have been compiled with the
wrapper scripts while the perftools module was loaded

● Able to generates instrumentation on optimized code
● Creates a new stand-alone instrumented program
● Preserves original binary

● To use the tools perftools must be loaded during the compile ,
at linking and at instrumentation (but not runtime)
● module load perftools

Creating and running a sampling binary

Cray Inc.
10

● pat_build creates sampling binaries by default

● To build a binary with sampling instrumentation, run:

● pat_build <exe>

● This will create a new executable in the form.

● <exe>+pat

● Run this executable as normal in place of the original.

● Profiling data will be created in the form of

● *s*.xf files (s for sampling)

● Or a directory containing multiple *s*.xf files

Creating event tracing binaries

Cray Inc.

● Only true function calls can be traced
● Functions that are inlined by the compiler or that have local scope in a

compilation unit cannot be traced

● Enabled with pat_build –g, -u, -T, -t or –w options

● -w instructs pat_build to create trace points in the binary for user
functions (required if user functions need to be traced)

● -g enables tracing of system functions and system libraries, e.g. mpi,
blas, caf, upc, fftw

● -u creates instrumentation for ALL the user defined functions
● -T creates instrumentation for specific user function (may be defined

multiple times for different functions, or limited regular expressions)
● -t specifies a file containing a list of functions to create instrumentation

for.

● A new binary will be created which can be run in place of the
original.

● Data is output in *.t.xf file or files (t for tracing) in the run
directory

11

-g tracegroup (subset)

.
12

● blas Basic Linear Algebra subprograms
● CAF Co-Array Fortran (Cray CCE compiler only)
● HDF5 HDF5 I/O library
● heap dynamic heap
● io includes stdio and sysio groups
● lapack Linear Algebra Package
● math ANSI math
● mpi MPI
● omp OpenMP API
● omp-rtl OpenMP runtime library
● pthreads POSIX threads
● shmem SHMEM
● sysio I/O system calls
● system system calls
● upc Unified Parallel C (Cray CCE compiler only)

For a full list, please see man pat_build

Using pat_report

.
13

● Always need to run pat_report at least once to perform
data conversion
● Combines information from xf output (optimized for writing to disk)

and binary with raw performance data to produce ap2 file (optimized
for visualization analysis)

● Instrumented binary must still exist when data is converted!

● Resulting ap2 file is the input for subsequent pat_report calls and
Apprentice2

● xf and instrumented binary files can be removed once ap2 file is
generated.

● Generates a text report of performance results
● Data laid out in tables

● Many options for sorting, slicing or dicing data in the tables.
● pat_report –O <table option> *.ap2
● pat_report –O help (list of available profiles)

● Volume and type of information depends upon sampling vs tracing.

Why Should I generate an “.ap2” file?

.
14

● The “.ap2” file is a self contained compressed

performance file

● Normally it is about 5 times smaller than the “.xf” file

● Contains the information needed from the application

binary

● Can be reused, even if the application binary is no longer available or

if it was rebuilt

● Is independent on the version used to generate the ap2 file

● The xf files are very version depending

● It is the only input format accepted by Cray Apprentice2

● => Delete the xf files after you have the ap2 file

Some important options to pat_report -O

Cray Inc.
15

callers Profile by Function and Callers

callers+hwpc Profile by Function and Callers

callers+src Profile by Function and Callers, with Line Numbers

callers+src+hwpc Profile by Function and Callers, with Line Numbers

calltree Function Calltree View

heap_hiwater Heap Stats during Main Program

hwpc Program HW Performance Counter Data

load_balance_program+hwpc Load Balance across PEs

load_balance_sm Load Balance with MPI Sent Message Stats

loop_times Loop Stats by Function (from -hprofile_generate)

loops Loop Stats by Inclusive Time (from -hprofile_generate)

mpi_callers MPI Message Stats by Caller

profile Profile by Function Group and Function

profile+src+hwpc Profile by Group, Function, and Line

samp_profile Profile by Function

samp_profile+hwpc Profile by Function

samp_profile+src Profile by Group, Function, and Line

For a full list see pat_report –O help

Break

Cray Inc.
16

Automatic Profile Analysis

A two step process to create an guided
event trace binary.

Program Instrumentation - Automatic Profiling
Analysis

.
18

● Automatic profiling analysis (APA)

● Provides simple procedure to instrument and collect
performance data as a first step for novice and expert
users

● Identifies top time consuming routines

● Automatically creates instrumentation template
customized to application for future in-depth
measurement and analysis

Steps to Collecting Performance Data

.
19

● Access performance tools software

 % module load perftools

● Build application keeping .o files (CCE: -h keepfiles)

 % make clean
 % make

● Instrument application for automatic profiling analysis
● You should get an instrumented program a.out+pat

 % pat_build –O apa a.out

● Run application to get top time consuming routines
● You should get a performance file (“<sdatafile>.xf”) or

multiple files in a directory <sdatadir>

 % aprun … a.out+pat (or qsub <pat script>)

We are telling pat_build that the

output of this sample run will be

used in an APA run

Steps to Collecting Performance Data (2)

.
20

● Generate text report and an .apa instrumentation file

% pat_report –o my_sampling_report [<sdatafile>.xf |

<sdatadir>]

● Inspect .apa file and sampling report

● Verify if additional instrumentation is needed

Generating Event Traced Profile from APA

.
21

● Instrument application for further analysis (a.out+apa)

% pat_build –O <apafile>.apa

● Run application

% aprun … a.out+apa (or qsub <apa script>)

● Generate text report and visualization file (.ap2)

% pat_report –o my_text_report.txt [<datafile>.xf | <datadir>]

● View report in text and/or with Cray Apprentice2

% app2 <datafile>.ap2

Modifying CrayPAT’s collection
behaviour

Changing how and which data are collected
at runtime

Cray Inc.
22

Launching instrument variables

Cray Inc.
23

● Once a binary has been instrumented for either sampling
or tracing it should be run in place of the original binary.
● Always check that instrumenting the binary has not affected the run

time compared to the original binary

● Collecting event traces on large numbers of frequently called
functions, or setting the sampling interval very low can introduce a lot
of overhead.

● MUST run on Lustre
● Avoid running on the home directory, use a /wrk

● The runtime analysis can be modified through the use of
environment variables
● All runtime CrayPAT environment variables are of the form PAT_RT_*

Example Runtime Environment Variables

.
24

● Optional timeline view of program available
● export PAT_RT_SUMMARY=0
● View trace file with Cray Apprentice2

● Number of files used to store raw data:
● 1 file created for program with 1 – 256 processes

● √n files created for program with 257 – n processes

● Ability to customize with PAT_RT_EXPFILE_MAX

● Request hardware performance counter information:
● export PAT_RT_HWPC=<HWPC Group>
● Can specify events or predefined groups

API for controlling tracing

Cray Inc.

● #include <pat_api.h>
● int PAT_state (int state)

● State can have one of the following:
● PAT_STATE_ON
● PAT_STATE_OFF
● PAT_STATE_QUERY

● int PAT_record (int state)
● Controls the state for all threads on the executing PE. As a rule, use

PAT_record() unless there is a need for different behaviors for
sampling and tracing
● int PAT_sampling_state (int state)
● int PAT_tracing_state (int state)

● int PAT_trace_function (const void *addr, int
state)
● Activates or deactivates the tracing of the instrumented function

● int PAT_flush_buffer (void)

Fortran equivalents, like MPI, are subroutines with extra final
integer argument for return value

25

API for adding user instrumentation

Cray Inc.

● Users are able to define their own trace points via the
region API.

● #include <pat_api.h>
● int PAT_region_begin (int id, char *label)

● id is a unique identifier for the region,

● Label is the description that will appear in profiling output.

● int PAT_region_end (int id)
● id is a unique identifier for the region, must match begin call.

Fortran equivalents, like MPI, are subroutines with extra final
integer argument for return value

26

Trace On / Trace Off Example

 include "pat_apif.h“
 ! Turn data recording off at the beginning of execution.
 call PAT_record(PAT_STATE_OFF, istat)
 ...
 ! Turn data recording on for two regions of interest.
 call PAT_record(PAT_STATE_ON, istat)
 …
 call PAT_region_begin(1, "step 1", istat)
 ...
 call PAT_region_end(1, istat)
 …
 call PAT_region_begin(2, "step 2", istat)
 ...
 call PAT_region_end(2, istat)
 …
 ! Turn data recording off again.
 call PAT_record(PAT_STATE_OFF, istat)
 …

27

-DCRAYPAT defined by CCE compilers

