
Using Compilers

© Cray Inc 2013

Never forget

● Always use the ftn, cc, and CC wrappers
● The wrappers uses your module environment to get all libraries and

include directories for you. You don’t have to know their real location.

● You select the your environment by selecting one of the
programming environments PrgEnv-X with
X=[cray|pgi|gnu]
“module swap PrgEnv-cray PrgEnv-gnu”

● Use aprun to start your application on the compute nodes

2

Compiler man pages

● The cc(1), CC(1), and ftn(1) man pages contain information
about the compiler driver commands

● Cray compiler: man craycc(1), crayCC(1), and crayftn(1)

● GNU compiler: gcc(1), g++(1), and gfortran(1)
● PGI compiler: pgf90(1),pgcc(1)

● To verify that you are using the correct version of a
compiler, use:
● -V option on a cc, CC, or ftn command with CCE

● --version option on a cc, CC, or ftn command with GNU

Loopmark: Compiler feedback

● Compilers can generate annotated listing of your source
code indicating important optimizations

● CCE
● ftn -rm
● cc -hlist=a

● PGI
● ftn/cc -Mlist
● See pgcc manpage for more details

● GNU
● -ftree-vectorizer-verbose=9

Loopmark: Compiler feedback

● For example, with the Cray compiler

%%% L o o p m a r k L e g e n d %%%
Primary Loop Type Modifiers
------- ---- ---- ---------
 a - vector atomic memory operation
A - Pattern matched b – blocked
C - Collapsed f – fused
D - Deleted i – interchanged
E - Cloned m - streamed but not partitioned
I - Inlined p - conditional, partial and/or computed
M - Multithreaded r – unrolled
P - Parallel/Tasked s – shortloop
V - Vectorized t - array syntax temp used
W - Unwound w - unwound

Loopmark: Compiler feedback

29. b-------< do i3=2,n3-1
30. b b-----< do i2=2,n2-1
31. b b Vr--< do i1=1,n1
32. b b Vr u1(i1) = u(i1,i2-1,i3) + u(i1,i2+1,i3)
33. b b Vr * + u(i1,i2,i3-1) + u(i1,i2,i3+1)
34. b b Vr u2(i1) = u(i1,i2-1,i3-1) + u(i1,i2+1,i3-1)
35. b b Vr * + u(i1,i2-1,i3+1) + u(i1,i2+1,i3+1)
36. b b Vr--> enddo
37. b b Vr--< do i1=2,n1-1
38. b b Vr r(i1,i2,i3) = v(i1,i2,i3)
39. b b Vr * - a(0) * u(i1,i2,i3)
40. b b Vr * - a(2) * (u2(i1) + u1(i1-1) + u1(i1+1))
41. b b Vr * - a(3) * (u2(i1-1) + u2(i1+1))
42. b b Vr--> enddo
43. b b-----> enddo
44. b-------> enddo

Loopmark: Compiler Feedback

 ftn-6289 ftn: VECTOR File = resid.f, Line = 29
 A loop starting at line 29 was not vectorized because a
recurrence was found on "U1" between lines 32 and 38.
ftn-6049 ftn: SCALAR File = resid.f, Line = 29
 A loop starting at line 29 was blocked with block size 4.
ftn-6289 ftn: VECTOR File = resid.f, Line = 30
 A loop starting at line 30 was not vectorized because a
recurrence was found on "U1" between lines 32 and 38.
ftn-6049 ftn: SCALAR File = resid.f, Line = 30
 A loop starting at line 30 was blocked with block size 4.
ftn-6005 ftn: SCALAR File = resid.f, Line = 31
 A loop starting at line 31 was unrolled 4 times.
ftn-6204 ftn: VECTOR File = resid.f, Line = 31
 A loop starting at line 31 was vectorized.
ftn-6005 ftn: SCALAR File = resid.f, Line = 37
 A loop starting at line 37 was unrolled 4 times.
ftn-6204 ftn: VECTOR File = resid.f, Line = 37
 A loop starting at line 37 was vectorized.

Recommended compiler optimization levels

● Cray compiler
● The default optimization level

(i.e. no flags) is equivalent of
–O3 of most other compilers
● CCE optimizes rather

aggressively by default, but this
is also most thoroughly tested
configuration

● Try with –O3 –hfp3
● We also test this thoroughly

● -hfp3 gives you a lot more
floating point optimization, esp.
32-bit

● In case of precision errors, try a
lower –hfp number (–hfp1 first,
only –hfp0 if absolutely
necessary)

● PGI compiler
● The default optimization level

(equal to -O2) is safe and
gives usually good
performance

● Try with –fast

● If that works still, you may try
with -fast, -Mipa=fast,inline

● GNU compiler
● Almost all HPC applications

compile correctly with using
-O3, so do that instead of the
cautious default

● -ffast-math may give some
extra performance

Loop transformations

● Cray compiler
● Most useful techniques in their

aggressive state already by
default

● One may try to improve loop
restructuration for better
vectorization with -h vector3

● PGI compiler
● Loop unrolling

-Munroll

● GNU compiler
● Loop blocking (aka tiling)

-floop-block
● Loop unrolling -funroll-

loops or -funroll-all-
loops

Inlining & inter-procedural optimization

● Cray compiler
● Inlining within a file is enabled

by default

● Command line options –OipaN
(ftn) and –hipaN (cc/CC)
where N=0..4, provides a set
of choices for inlining behavior
● 0 disables inlining, 3 is the

default, 4 is even more
elaborate

● The –Oipafrom= (ftn) or
–hipafrom= (cc/CC) option
instructs the compiler to look
for inlining candidates from
other source files, or a
directory of source files

● Intel compiler
● Inlining within a file is enabled

by default

● Multi-file inlining –Mipa=inline

● GNU compiler
● Quite elaborate inlining

enabled by -O3

CCE Directives

● Cray compiler supports a full and growing set of directives
and pragmas, e.g.

● !dir$ concurrent

● !dir$ ivdep

● !dir$ interchange

● !dir$ unroll

● !dir$ loop_info
[max_trips] [cache_na]

● !dir$ blockable

● man directives

● man loop_info

!dir$ blockable(j,k)
!dir$ blockingsize(16)
 do k = 6, nz-5
 do j = 6, ny-5
 do i = 6, nx-5
 ! stencil
 end do
 end do
 end do

Summary

● Three compiler environments available on HECToR: Cray,
PGI, GNU
● All of them accessed through the wrappers ftn, cc and CC – just do

module swap to change a compiler!

● There is no universally fastest compiler – but performance
depends on the application, even input
● We try however to excel with the Cray Compiler Environment

● If you see a case where some other compiler yields better
performance, let us know!

● Compiler flags do matter – be ready to spend some effort
for finding the best ones for your application

