

The Cray Programming

Environment

An Introduction

© Cray Inc 2013

Vision

2

● Cray systems are designed to be High Productivity as well
as High Performance Computers

● The Cray Programming Environment (PE) provides a
simple consistent interface to users and developers.
● Focus on improving scalability and reducing complexity

● The default Programming Environment provides:
● the highest levels of application performance

● a rich variety of commonly used tools and libraries

● a consistent interface to multiple compilers and libraries

● an increased automation of routine tasks

● Cray continues to develop and refine the PE
● Frequent communication and feedback to/from users

● Strong collaborations with third-party developers

Cray’s Supported Programming Environment

3

Programming
Languages

Fortran

C

C++

I/O Libraries

NetCDF

HDF5

Optimized Scientific

Libraries

LAPACK

ScaLAPACK

BLAS (libgoto)

Iterative
Refinement

Toolkit

Cray Adaptive
FFTs (CRAFFT)

FFTW

Cray PETSc
 (with CASK)

Cray Trilinos
 (with CASK)

Cray developed

Licensed ISV SW

3rd party packaging

Cray added value to 3rd party

3rd Party
Compilers

• Intel
Composer

• PGI

GNU

Compilers

Cray Compiling
Environment

(CCE)

Programming

models

Distributed
Memory
(Cray MPT)

• MPI

• SHMEM

PGAS & Global
View

• UPC (CCE)

• CAF (CCE)

• Chapel

Shared Memory

• OpenMP

• OpenACC

Python

•CrayPat

• Cray
Apprentice2

Tools

Environment setup

Debuggers

Modules

Allinea (DDT)

lgdb

Modules

Debugging Support

Tools

•Abnormal
Termination
Processing

Performance Analysis

STAT

Scoping Analysis

Reveal

The Cray Compilation Environment (CCE)

4

● The default compiler on XE and XC systems
● Specifically designed for HPC applications
● Takes advantage of Cray’s experience with automatic vectorization and

and shared memory paralleization

● Excellent standards support for multiple languages and
programming models
● Fortran 2008 standards compliant
● C++98/2003 compliant (working on C++11)
● OpenMP 3.1 compliant, working on OpenMP 4.0
● OpenACC 1.0 compliant (working on OpenACC 2.0)

● Full integrated and optimised support for PGAS languages

● UPC 1.3 and Fortran 2008 coarray support
● No preprocessor involved
● Full debugger support (With Allinea DDT)

● OpenMP and automatic multithreading fully integrated

● Share the same runtime and resource pool
● Aggressive loop restructuring and scalar optimization done in the

presence of OpenMP
● Consistent interface for managing OpenMP and automatic multithreading

Cray MPI & SHMEM

5

● Cray MPI
● Implementation based on MPICH2 from ANL

● Includes many improved algorithms and tweaks for Cray hardware
● Improved algorithms for many collectives

● Asynchronous progress engine allows overlap of computation and comms

● Customizable collective buffering when using MPI-IO

● Optimized Remote Memory Access (one-sided) fully supported including
passive RMA

● Full MPI-2 support with the exception of
● Dynamic process management (MPI_Comm_spawn)

● Much of MPI-3 supported

● Cray SHMEM
● Fully optimized Cray SHMEM library supported

● Fully compliant with OpenSHMEM v1.0

● Cray XE and XC implementation close to the T3E model

Cray Scientific Libraries

6

FFT

CRAFFT

FFTW

P-CRAFFT

Dense

BLAS

LAPACK

ScaLAPACK

IRT

CASE

Sparse

CASK

PETSc

Trilinos

IRT – Iterative Refinement Toolkit

CASK – Cray Adaptive Sparse Kernels

CRAFFT – Cray Adaptive FFT

CASE – Cray Adaptive Simplified Eigensolver

Cray Performance Analysis Tools (PAT)

7

● From performance measurement to performance analysis

● Assist the user with application performance analysis and
optimization
● Help user identify important and meaningful information from

potentially massive data sets

● Help user identify problem areas instead of just reporting data

● Bring optimization knowledge to a wider set of users

● Focus on ease of use and intuitive user interfaces
● Automatic program instrumentation

● Automatic analysis

● Target scalability issues in all areas of tool development

Debuggers on Cray Systems

8

● Systems with hundreds of thousands of threads of
execution need a new debugging paradigm
● Innovative techniques for productivity and scalability

● Scalable Solutions based on MRNet from University of Wisconsin
● STAT - Stack Trace Analysis Tool

● Scalable generation of a single, merged, stack backtrace tree
● running at 216K back-end processes

● ATP - Abnormal Termination Processing
● Scalable analysis of a sick application, delivering a STAT tree and a minimal,

comprehensive, core file set.

● Fast Track Debugging

● Debugging optimized applications
● Added to Allinea's DDT 2.6 (June 2010)

● Comparative debugging

● A data-centric paradigm instead of the traditional control-centric paradigm
● Collaboration with Monash University and University of Wisconsin for scalability

● Support for traditional debugging mechanism
● TotalView, DDT, and gdb

An introduction to modules

9

Environment Setup

10

● Cray systems use modules in the user environment to
support multiple software versions and to create
integrated software packages

● As new versions of the supported software and associated man pages
become available, they are added automatically to the Programming
Environment as a new version, while earlier versions are retained to
support legacy applications

● You can use the default version of an application, or you can choose
another version by using Modules system commands

The module tool on the Cray XE

11

● How can we get appropriate Compiler, Tools, and
Libraries?
● The modules tool is used to handle different versions of packages

● e.g.: module load compiler_v1
● e.g.: module swap compiler_v1 compiler_v2
● e.g.: module load perftools

● Taking care of changing of PATH, MANPATH,

LM_LICENSE_FILE,.... environment
● Modules also provide a simple mechanism for updating certain

environment variables, such as PATH, MANPATH, and
LD_LIBRARY_PATH

● In general, you should make use of the modules system rather than
embedding specific directory paths into your startup files, makefiles,
and scripts.

● It is also easy to setup your own modules for your own

software

Useful module commands

12

● Which modules are available?
● module avail, module avail cce

● Which modules are loaded?
● module list

● Load software
● module load perftools

● Change programming environment
● module swap PrgEnv-cray PrgEnv-gnu

● Change software version
● module swap cce/8.0.2 cce/7.4.4

● Display module help/release notes
● module help cce

● Show module environment variables
● module show cce

Which SW Products and Versions Are Available

13

● avail [avail-options] [path...]
● List all available modulefiles in the current MODULEPATH

● Useful options for filtering

● -U, --usermodules
● List all modulefiles of interest to a typical user

● -D, --defaultversions

● List only default versions of modulefiles with multiple available versions

● -P, --prgenvmodules
● List all PrgEnv modulefiles

● -T, --toolmodules

● List all tool modulefiles

● -L, --librarymodules
● List all library modulefiles

● % module avail <product>

● List all <product> versions available

