The Cray Programming
Environment

An Introduction

© Cray Inc 2013

.. CRANY |
Vision \
® \

\

e Cray systems are designed to be High Productivity as well
as High Performance Computers \

e The Cray Programming Environment (PE) provides a
simple consistent interface to users and developers.
e Focus on improving scalability and reducing complexity

e The default Programming Environment provides:
e the highest levels of application performance
e arich variety of commonly used tools and libraries
e a consistent interface to multiple compilers and libraries
e an increased automation of routine tasks

e Cray continues to develop and refine the PE
e Frequent communication and feedback to/from users
e Strong collaborations with third-party developers

Programming Programming

Languages models
Distributed
Fortran (l\é?g]yolr\/IyPT)
L y * MPI
o = * SHMEM
C
L) Shared Memory
Z " * OpenMP
* OpenACC
C++
PGAS & Global
» o View
() » UPC (CCE)
Python » CAF (CCE)
* Chapel
. S

Cray developed
Licensed ISV SW
3d party packaging
Cray added value to 3" party

Compilers

Cray Compiling
Environment
(CCE)

3rd Party
Compilers

* Intel
Composer

* PGI

Tools

Environment setup

Debuggers

ToTALVIEW

TEEMMESLEEIE

Allinea (DDT)

Debugging Support
Tools

*Abnormal
Termination
Processing

STAT

Performance Analysis

«CrayPat

* Cray
Apprentice?

Scoping Analysis

Optimized Scientific

Libraries

LAPACK

ScaLAPACK

BLAS (libgoto)

Iterative
Refinement
Toolkit

Cray Adaptive
FFTs (CRAFFT)

I/O Libraries

NetCDF

FFTW

Cray PETSc
(with CASK)

Cray Trilinos
(with CASK)

N\

|

The Cray Compilation Environment (CCE) R

° \
\

e The default compiler on XE and XC systems
e Specifically designed for HPC applications

e Takes advantage of Cray’s experience with automatic vectorization and :
and shared memory paralleization

e Excellent standards support for multiple languages and
programming models

Fortran 2008 standards compliant

C++98/2003 compliant (working on C++11)

OpenMP 3.1 compliant, working on OpenMP 4.0

OpenACC 1.0 compliant (working on OpenACC 2.0)

e Full integrated and optimised support for PGAS languages
e UPC 1.3 and Fortran 2008 coarray support
e NoO preprocessor involved
e Full debugger support (With Allinea DDT)

e OpenMP and automatic multithreading fully integrated
e Share the same runtime and resource pool

e Aggressive loop restructuring and scalar optimization done in the
presence of OpenMP

e Consistent interface for managing OpenMP and automatic multithreading

®

Cray MPI & SHMEM

e Cray MPI \

e Implementation based on MPICH2 from ANL
e Includes many improved algorithms and tweaks for Cray hardware

e Improved algorithms for many collectives

e Asynchronous progress engine allows overlap of computation and comms
e Customizable collective buffering when using MPI-10
[

Optimized Remote Memory Access (one-sided) fully supported including
passive RMA

e Full MPI-2 support with the exception of
e Dynamic process management (MPI_Comm_spawn)
e Much of MPI-3 supported

e Cray SHMEM

e Fully optimized Cray SHMEM library supported
e Fully compliant with OpenSHMEM v1.0
e Cray XE and XC implementation close to the T3E model

L W}
cCRANY
\

° \
\

Cray Scientific Libraries

Dense Sparse

BLAS

CASK
LAPACK

ScaLAPACK

IRT

P-CRAFFT Trilinos

CASE

IRT — Iterative Refinement Toolkit

CASK - Cray Adaptive Sparse Kernels
CRAFFT - Cray Adaptive FFT

CASE - Cray Adaptive Simplified Eigensolver

L W}
cCRANY
\

° \
\

Cray Performance Analysis Tools (PAT)

e From performance measurement to performance analysis

e Assist the user with application performance analysis and
optimization
e Help user identify important and meaningful information from
potentially massive data sets
e Help user identify problem areas instead of just reporting data
e Bring optimization knowledge to a wider set of users

e Focus on ease of use and intuitive user interfaces
e Automatic program instrumentation
e Automatic analysis

e Target scalability issues in all areas of tool development

e °
e — P-C
\

® \
\

Debuggers on Cray Systems

e Systems with hundreds of thousands of threads of :
execution need a new debugging paradigm

e Innovative techniques for productivity and scalability
e Scalable Solutions based on MRNet from University of Wisconsin
e STAT - Stack Trace Analysis Tool
e Scalable generation of a single, merged, stack backtrace tree
e running at 216K back-end processes
e ATP - Abnormal Termination Processing

e Scalable analysis of a sick application, delivering a STAT tree and a minimal,
comprehensive, core file set.

e Fast Track Debugging
e Debugging optimized applications
e Added to Allinea's DDT 2.6 (June 2010)

e Comparative debugging
e A data-centric paradigm instead of the traditional control-centric paradigm
e Collaboration with Monash University and University of Wisconsin for scalability
e Support for traditional debugging mechanism
e TotalView, DDT, and gdb

An Iintroduction to modules

Environment Setup A

* \
\

e Cray systems use modules in the user environment to \
support multiple software versions and to create
Integrated software packages

e As new versions of the supported software and associated man pages
become available, they are added automatically to the Programming
Environment as a new version, while earlier versions are retained to
support legacy applications

e You can use the default version of an application, or you can choose
another version by using Modules system commands

L W}
cCRANY
\

* \
\

The module tool on the Cray XE

e How can we get appropriate Compiler, Tools, and
Libraries?
e The modules tool is used to handle different versions of packages

e e€.g.. module load compiler_v1
e €.g.: module swap compiler_v1 compiler_v2
e e.g..: module load perftools

e Taking care of changing of PATH, MANPATH,
LM _LICENSE_FILE,.... environment

e Modules also provide a simple mechanism for uEIdatin certain
environment variables, such as PATH, MANPATH, an
LD LIBRARY_PATH

e In general, you should make use of the modules system rather than
embedding specific directory paths into your startup files, makefiles,
and scripts.

e It is also easy to setup your own modules for your own
software

Useful module commands

e Which modules are available?
e module avail, module avail cce

e Which modules are loaded?
e module list

e | oad software
e module load perftools

e Change programming environment
e module swap PrgEnv-cray PrgEnv-gnu

e Change software version
e module swap cce/8.0.2 cce/7.4.4

e Display module help/release notes
e module help cce

e Show module environment variables
e module show cce

Which SW Products and Versions Are Available & "+

® \
\

e avail [avail-options] [path...]
e List all available modulefiles in the current MODULEPATH

e Useful options for filtering
e -U, --usermodules
e List all modulefiles of interest to a typical user

e -D, --defaultversions
e List only default versions of modulefiles with multiple available versions

e -P, --prgenvmodules
e List all PrgEnv modulefiles

e -T, --toolmodules
e List all tool modulefiles

e -L, --librarymodules
e List all library modulefiles

e % module avail <product>
e List all <product> versions available

