
Top Ten Things To Try

When attempting to optimise an application

The most important thing in any optimisation is to understand the
properties of the application.

Use profiling tools to understand what dominates runtime and
where bottle necks exist.

• User functions?
• Libraries?
• MPI?
• Load imbalance?

Optimisation is an iterative process, target the longest running
parts first.

Make sure your test case is representative of what your actual run

Know how to check your results are correct.

1. Profile, profile, profile

Many of the libraries and software on the Cray XE6 can be
modified through the use of environment variables.

Significant amounts of MPI? Try adjusting the MPICH
environment variables.

Lots of information available in:

man mpi
man crayftn
man libsci

http://docs.cray.com

http://www.hector.ac.uk/support/documentation/

2. Adapt your environment

http://docs.cray.com/
http://www.hector.ac.uk/support/documentation/
http://www.hector.ac.uk/support/documentation/

Parallel performance can be strongly affected by the nature of the
decomposition.

If your application has flexibility in its decomposition try
experimenting with some different combinations.

Changing decompositions can affect the message sizes, vector
lengths , cache usage.

Is the assumed wisdom about decompositions (especially for
other HPC architectures) correct? It is often worth reassesing
when running new models or when porting architectures.

3. Consider how you distribute data

With multi-core architectures with different NUMA regions
placement of processes and threads on the node becomes
important.

Binding and placement is controlled by the aprun command.

By default, each processor or thread is bound to an individual
core, if you’re spawning lots of threads this may not be what you
want, try –cc numa_node or –cc none.

Perhaps experiment with using Interlagos in “core-pair” mode.
Bind to every other processor:
 aprun –n <nproc> -N <ntask> -d 2 <exe>

Consider under populating the node (cores are plentiful, perhaps
you can afford not to use them), allows core specialisation.

4. Be careful with your bindings

The Cray environment provides a rich assortment of libraries.
Much easier to use someone else’s work.

Each library is built specifically for the target architecture and is
included by the ftn and cc commands when the module is
loaded.

Some of the libraries have been modified by Cray to improve their
performance on the Cray, e.g. specifically targeting the network,
optimising for iterative refinement.

The scientific libraries are threaded, if your code makes
significant use of specialist calls then you can automatically go
multithreaded by setting OMP_NUM_THREADS.

5. Leverage the supplied libraries

Huge pages can optimise communication over the Gemini
interface.

They can also improve serial performance by reducing misses in
the TLB cache.

Adding support is very simple, just include any craype-hugepage
module while compiling, the load an individual module at run time
to set the default huge page size.

If you see a slow down when adding huge pages, please let us
know.

6. Consider using huge pages

Match you Lustre striping settings to your application’s I/O
pattern.

Make sure you include as much parallelism as possible (open
multiple files, use a parallel I/O layer like MPI-IO).

7. Tailor your I/O

Adding optimisation when compiling can significantly improve
the serial performance of an application.

Target files/routines which consume large amounts of I/O

Be aware that adding optimisation can affect the floating point
results.

The advantage of using an X86 architecture is there are a variety
of compilers available. Consider experimenting with other
compilers available on the system.

What was optimal 12 months ago, may not be so today.

8. Time for different flags, or even compiler?

Make good use of caches, cache reuse is one of the most
important optimisations on a modern HPC processor

Identify where there is poor cache utilisation (low reuse, hardware
counters etc). Try and identify ways to improve the usage
(process in smaller chunks, minimise the number of intermediate
temporary arrays).

Remember that the first thread to “touch” or “initialise” a
segment of memory will cause it to be bound to its local memory.
Make sure arrays are initialised by the threads that will be using
them most.

9. Remember the memory?

Consider aggregating communications (especially collectives)
into larger messages.

If your application can overlap communication and computation
consider using the async comms threads to improve overlap.

Otherwise, consider using post MPI_Isend and using MPI_Recv in
place of MPI_IRecv, MPI_Waitall

Consider using other parallel paradigms to avoid packing and
unpacking data (e.g. Fortran coarrays, transfer data directly
into/from arrays).
All parallel paradigms (MPI, SHMEM, UPC and Fortran Coarrays
can be used in the same program on the Cray XE6).

10. Minimise postage and packaging

