
Exercise: Running a Simple Multicore Program

David Henty

1 Introduction

The basic aim of this exercise is to familiarise you with compiling and running parallel programs on
HECToR. The program performs a simple form of image processing to try and sharpen up a fuzzy picture.
You will be able to measure the time taken by the code on different numbers of cores to check that the
execution time decreases with processor count as expected.

2 Compiling the code

On HECToR, you should do all the exercises in thework subdirectory of your home directory. All codes
are supplied in a single compressed tar file calledXE6workshop.tar.gz .

user@hector> cd work
user@hector> cp /home/d26/d26/guestadm/XE6workshop.tar.gz .
user@hector> tar xvf XE6workshop.tar.gz

In the sharpen directory, you will see six subdirectories containing versions of the code in C and
Fortran, each parallelised with MPI, OpenMP and a hybrid of MPI and OpenMP. You can opt to work
with whichever language you are most familiar with.

The following text examples assume you are using the OpenMP version of the code written in C. You
will see similar (but not identical) output if you are using one of the other versions.

Now just change directory and usemake:

user@hector> cd sharpen
user@hector> cd C-OMP
user@hector> make

which creates the executable programsharpen .

You can look at the input file using thedisplay program, but you will have to update yourPATHfirst:

user@hector> export PATH=$PATH:/work/d26/d26/guestadm/bin
user@hector> display fuzzy.pgm

and typeq anywhere in the display window to quitdisplay .

3 Running the Code

You cannot run jobs interactively on HECToR – you must submit jobs to the PBS batch system.

user@hector> qsub submit.sh

1

When the code has completed running it will produce an output imagesharp.pgm and a log file
submit.sh.oXXXXX which contains, among other things, information about the execution time (where
XXXXX will be the job number assigned by PBS). Compare the sharpened image to the original fuzzy
image: does it look any sharper?

You can control how many OpenMP threads (and MPI processes) are used by altering the following
parameters insubmit.sh :

OpenMP mppdepth controls the number of OpenMP threads.

MPI mppwidth controls the number of MPI processes;mppnppn controls the number of processes
per node, which is normally set to 32 for pure MPI programs.

Hybrid Here you must set the three variables above as appropriate to select how many processes you
want per node and how many threads per process. Normally, you would aim for 32 threads per
node so every core is used.

4 Parallel Performance

If you examine the log file you will see that it contains two timings: the total time taken by the entire
program (including IO) and the time taken solely by the calculation. The image input and output is not
parallelised so this is a serial overhead, performed by a single processor. The calculation part is, in theory,
perfectly parallel (each processor operates on different parts of the image) so this should get faster on
more cores.

You should do a number of runs and fill in Table 1: the IO time is the difference between the calculation
time and the overall run time; the total CPU time is the calculation time multiplied by the number of
cores.

Look at your results – do they make sense? Given the structure of the code, you would expect the IO
time to be roughly constant, and the performance of the calculation to increase linearly with the number
of cores: this would give a roughly constant figure for the total CPU time. Is this what you observe?

Cores Overall run time Calculation time IO time Total CPU time

1
2
4
7
10

Table 1: Time taken by parallel image processing code

The parallel speedup should closely follow Amdahl’s law as the calculation splits cleanly into a purely
serial phase (IO) and a perfectly parallel phase (calculation).

2

