Cray Scientific Libraries:

Overview and Performance

Cray XE6 Performance Workshop
University of Reading

20-22 Nov 2012

Contents

e LibSci overview and usage
e BFRAME / CrayBLAS

e LAPACK

e ScaLAPACK

e FFTW /CRAFFT

e CASK

e LibSci for Accelerators

11/22/2012

What are libraries for?

e Building blocks for writing scientific applications

e Historically — allowed the first forms of code re-use

e Later — became ways of running optimized code

e These days the complexity of the hardware is very high

e Cray PE insulates the user from that complexity

e Cray module environment

e CCE

e Performance tools

e Tuned MPI libraries (+PGAS)

e Optimized Scientific libraries
Cray scientific libraries are designed to give maximum
possible performance from Cray systems with

minimum effort

What makes Cray libraries special

1. Node performance
e Highly tune BLAS etc at the low-level

2. Network performance
e Optimize for network performance
e Overlap between communication and computation
e Use the best available low-level mechanism
e Use adaptive parallel algorithms
3. Highly adaptive software

e Using auto-tuning and adaptation, give the user the known best
(or very good) codes at runtime

4. Productivity features
e Simpler interfaces into complex software

Scientific libraries — functional view '

&

\
\

FFT Sparse Dense

FFTW

Trilinos BLAS

LAPACK
PETSC

ScaLAPACK
CASK

IRT

CRAFFT

Libsci Usage all fits on one slide

e LIbSci :

e The drivers should do it all for you. Don’t explicitly link.

e [or threads, set OMP_NUM_THREADS
e Threading is used within libsci.
e If you call within parallel region, single thread used
e -WI, -ydgemm_ reveals where the link was resolved

o FFTW
e Module load fftw (there are also wisdom files you can pick up)

e PETSC
e Module load petsc (or module load petsc-complex)
e Use as you would your normal petsc build

e Trilinos
e Module load trilinos

e CASK —no need to do anything you get optimizations free

11/22/2012 @

Your friends

/" TUNER/STUNER> module avail PrgEnv

R ANY
\

e module command
(module --help)

e PrgEnv modules :

®

Component modules

csmlversion (tool)

PrgEnv-cray/3.1.35
pathscale/3.1.37G
PrgEnv-cray/3.1.37AA
pathscale/3.1.49A
PrgEnv-cray/3.1.37C
pathscale/3.1.61
PrgEnv-cray/3.1.37E
pathscale/4.0.12A
PrgEnv-cray/3.1.37G
pathscale/4.0.26A
PrgEnv-cray/3.1.49A
pathscale/4.0.36(default)
PrgEnv-cray/3.1.61
PrgEnv-cray/4.0.12A
pgi/3.1.37AA
PrgEnv-cray/4.0.26A
PrgEnv-cray/4.0.36(default)
pgi/3.1.37E
PrgEnv-gnu/3.1.35
PrgEnv-gnu/3.1.37AA
pgi/3.1.49A
PrgEnv-gnu/3.1.37C
pgi/3.1.61
PrgEnv-gnu/3.1.37E
pgi/4.0.12A
PrgEnv-gnu/3.1.37G
pgi/4.0.26A
PrgEnv-gnu/3.1.49A

pgi/4.0.36(default)
\Prg Env-gnu/3.1.61

\
PrgEnv-gnu/4.0.12A PrgEnv-
PrgEnv-gnu/4.0.26A PrgEnv-
PrgEnv-gnu/4.0.36(default) PrgEnv-
PrgEnv-intel/3.1.35 PrgEnv-
PrgEnv-intel/3.1.37AA PrgEnv-
PrgEnv-intel/3.1.37C PrgEnv-

PrgEnv-intel/3.1.37E
PrgEnv-intel/3.1.37G

PrgEnv-intel/3.1.49A
PrgEnv-intel/3.1.61

PrgEnv-intel/4.0.12A
PrgEnv-intel/4.0.26A

PrgEnv-intel/4.0.36(default)
PrgEnv-pathscale/3.1.35
PrgEnv-pathscale/3.1.37AA
PrgEnv-pathscale/3.1.37C

PrgEnv-pathscale/3.1.37E

PrgEnv-pgi/3.1.35

PrgEnv-

PrgEnv-pgi/3.1.37C
PrgEnv-

PrgEnv-pgi/3.1.37G
PrgEnv-

PrgEnv-
PrgEnv-
PrgEnv-

PrgEnv-

e Cray driver scripts ftn, cc, CC

xt-libsci/10.5.02
xt-libsci/11.0.03

xt-libsci/11.0.04
xt-libsci/11.0.04.8

lopt/cray/modulefiles

xt-libsci/11.0.05.1
xt-libsci/11.0.05.2(default)

Check you got the right library! RS

® \
\

e Add options to the linker to make sure you have the
correct library loaded.

e -WI adds a command to the linker from the driver

e You can ask for the linker to tell you where an object
was resolved from using the -y option.

e E.g.—-WI, -ydgemm _

.//main.o: reference to dgemm _
/opt/xt-1ibsci/11.0.05.2/cray/73/mcl2/1ib/libsci_cray mp.a(dgemm.o) :

definition of dgemm

Note : explicitly linking “-Isci” is bad! This won’t be found from
libsci 11+ (and means single core library for 10.x!)

Threading

e LibSci is compatible with OpenMP \
e Control the number of threads to be used in your program using
OMP_NUM_THREADS
e.g. in job script
setenv OMP_NUM_THREADS 16
e Then run with aprun —n1 —-d16

e What behavior you get from the library depends on
your code
1. No threading in code
e The BLAS call will use OMP_NUM_THREADS threads

2. Threaded code, outside parallel region
e The BLAS call will use OMP_NUM_THREADS threads

3. Threaded code, inside parallel region
e The BLAS call will use a single thread

Emphasis
e A large subset of HPC customers care very deeply about each

of the following

e BLAS — explicit calls in their code
e LAPACK - linear solvers

e LAPACK - eigensolvers

e ScalLAPACK

e Serial FFT

e Our job is to make them work at extreme performance on Cray
hardware

e A flaming-hot GEMM library can support wide usage

11/22/2012

But that is very hard Ry

e Vendor libraries can be very heavily tuned for a specific problem.
e Tunings are not general, unfortunately.

e Your library is probably tuned for this

But matrices in science do not look like those. They look like this :

small M small N small K

11/22/2012

BFRAME / CrayBLAS

e Goal

e Entire auto-tuning framework for BLAS on CPUS & GPUS

e Must provide better performance than alternatives for “real’
matrices

e Improve threaded performance for any problem size on any
number of threads

e Encapsulate all tunings into a run-time performance model

e Design :
1. Generalized GEMM implementation
2. Offline Auto tuning

3. Runtime performance modeling

11/22/2012 @

BFRAME infrastructure

Generalized
GEMM

11/22/2012

BFRAME
GEMM

BFRAME
GEMM

LibCrayBLAS

LibSci

Simple
Database

Runtime
Performance
Model

250

200

150

GFLOPS

100

50

June 12, 2012

CrayBLAS DGEMM : ST
AMD Bulldozer 2.1 GHz . \
Large Square Matrices ;s
\
@)
@)
@)
' 4 «=ACML 1 thread =msLibsci 1 thread
O aiwACML 16 threads =] jbsci 16 threads
O"ACML 32 threads ==L ibsci 32 threads
i s s i s g s e i S— | s—
2000 4000 6000 8000 10000

CrayBLAS DGEMM :
AMD Bulldozer 2.1 GHz K

O
o
-

Small Square Matrices
80
<ACML 1 thread
=70 o
2 «w=_ibsci 1 thread
S 60
P ==ACML 16 threads
E 50 ==|_jbsci 16 threads 40Gflops!
L=l
< 40 ol
N
S 30
—
LL
M 20
10
0
0 100 200 300 400 500 600

M=N=K

June 12, 2012 @

CrayBLAS DGEMM : SO

AMD Bulldozer 2.1 GHzM : ST
Varying K dimension % \
25 ;
\
20
n 15
al
@)
|
LL
O 10
5 : «+=ACML 1 thread <=L ibsci 1 thread
wi»ACML 16 threads =s=| bsci 16 threads
0
0 2000 4000 6000 8000 10000
K

June 12, 2012

CRAaNyY”

DGEMM Performance across Matrix classes

CLASS3M =64 CLASS4M\N =
64

CLASS 2N =64

CLASS 1K =64

4 threads
Interlagos

3.0

beta

122
1108
102t
© 925(
~ 825(
725
 625(
 525(
425
325(
~ 225(
125
1208
S 1108
| 102t
-~ 925(
~ 825(
_ 725(
 625(
 525(
- 425(
~ 325(
- 225(
125
1208
S 1108
102t
~ 925(
~ 825(
725
 625(
 525(
- 425(
325(
~ 225(
-~ 125(
1208
1108
102t
~ 925(
~ 825(
725
 625(
 525(
- 425(
~ 325(
225

CLAS

CLASS2N =64 " °

=64 °

CLASS 1K

64 - ° CLASS4MN =~°°

64

16 threads
Interlagos

=3.0
essw| ibscill.0.06
esmw|ibscill.1.0

Beta

30

Lo
N

o
N

Lo
-

S/SdO149

o
-

1258,
S

80.00
70.00
60.00

30.00
20.00
10.00

0.00

[0szzT
- 052TT
- 0520T
0526
- 0528
- 0szL

0S¢9

052§

0Scy

0sze

0S¢e

0seT
0szzT

0S¢TT
0S¢0T
0S¢6
0S¢8
0S¢L
0S¢9
05¢S
0S¢y
0Sce
0S¢e

0seT

0G¢et

| 092TT

0S¢0T

| 0526

05¢8

052L

0S¢9

| 0s2s
o sTa7
| 0see
- 05ee

0S¢t

oszeT

0ScTT

- 0520T

0S¢6

- 0528
- 052L

0529
0525
0szy

0G¢e

- 0s2e

0S¢t

Larger matrix dimension

11/22/2012

Tuning requests

e CrayBLAS is an auto-tuned library

e Generally, excellent performance is possible for all shapes and sizes

e However, even the adaptive CrayBLAS can be improved by
tuning for exact sizes and shapes

e Send your specific tuning requirements to

crayblas@cray.com

e Just send the routine name, and the list of calling sequences

11/22/2012

mailto:crayblas@cray.com

Advanced optimizations for BLAS

e For ZGEMM only

e Complex matrix multiplication can be performed using real matrix
additions, for fewer flops

e You can turn on the 3M algorithm
e Set the environment variable
ZGEMM_USE_3M=1

e Note : there is an accuracy trade-off, though this should be safe
most of the time

Threaded LAPACK

e Threaded LAPACK works exactly the same as
threaded BLAS

e Anywhere LAPACK uses BLAS, those BLAS can be
threaded

e Some LAPACK routines are threaded at the higher
level

e No special instructions

120

100

o0]
o

AN
o

GFlops/s (higher is better)
(@]
o

N
o

11/22/2012

LAPACK DGETRF (LU)
AMD Bulldozer 2.1Ghz ::July 2012

= ACML 32 threads

«we| ibsci 32 threads

2000 4000 6000 8000 10000
Matrix Size (M=N)

e
LAPACK DPOTRF (Cholesky) [— P~ g
\

AMD Bulldozer 2.1Ghz ::Aug 2012

K \
\

160

140 - el

=

N

o
T

=

(@)

o
T

S
1

N
o
T

Gflops/s (higher is better)
oo
o

ap=ACML-32 threads

N
o
T

w=Libsci-32 threads

0 2000 4000 6000 8000 10000
Matrix Size (N)

o

11/22/2012 @

e e
(el — V-l
\

° \
\

ScaLAPACK

e ScaLAPACK in libsci is optimized for Gemini interconnect

e New collective communication procedures are added
e Default topologies are changed to use the new optimizations

e Much better strong scaling
e It also benefits from the optimizations in CrayBLAS

e |IRT can provide further improvements (see later)

11/22/2012 @

25

= = N
o Ul o

TFLOPS (higher is better)

ol

June 12, 2012

ScaLAPACK Double LU e — V-
Cray XEG6 :: AMD Bulldozer 2.1 GHz \
M = 131072 :: July 2012 RS,
\
==NETLIB
«w=Cray Libsci
5000 10000 15000 20000
of cores

I 1 h<ei Team Technical

lterative Refinement Toolkit

e Mixed precision can yield a big win on x86 machines.
e SSE (and AVX) units issue double the number of single precision
operations per cycle.
e On CPU, single precision is always 2x as fast as double
e Accelerators sometimes have a bigger ratio
e Cell —10x
e Older NVIDIA cards — 7x
e New NVIDIA cards (2x)
e Newer AMD cards (> 2x)
e |IRT is a suite of tools to help exploit single precision
e Alibrary for direct solvers
e An automatic framework to use mixed precision under the covers

25

e e
(el — V-l
\

° \
\

Iterative Refinement Toolkit - Library

e Various tools for solves linear systems in mixed precision
e Obtaining solutions accurate to double precision

e For well conditioned problems
e Serial and Parallel versions of LU, Cholesky, and QR

e 2 usage methods

e IRT Benchmark routines

e Uses IRT 'under-the-covers' without changing your code
e Simply set an environment variable
e Useful when you cannot alter source code

e Advanced IRT API

e If greater control of the iterative refinement process is required
e Allows
e condition number estimation
error bounds return
minimization of either forward or backward error
'fall back' to full precision if the condition number is too high
max number of iterations can be altered by users

26

IRT library usage

Decide if you want to use advanced API or benchmark API

benchmark API :
setenv IRT_USE SOLVERS 1

advanced API ;

1. locate the factor and solve in your code (LAPACK or
ScaLAPACK)

2. Replace factor and solve with a call to IRT routine
e e.¢g.dgesv->irt_lu real serial
e.g. pzgesv -> irt_lu_complex_parallel
e.g pzposv ->irt_po_complex parallel
3. Set advanced arguments
e Forward error convergence for most accurate solution
Condition number estimate
“fall-back” to full precision if condition number too high

Note : “info” does not return zero when using IRT !!

27

IRT with LAPACK LU DGETRF
AMD Bulldozer 2.1 GHz
2threads :: September 2012 % \

N
o

GFLOPS/s

[Ey
o
1

==|RT+LAPACK

== APACK

L o e o o o o L L B e e s e . e e L e e
NI IO IR NI OO IO OO IO
Matrix DImension (M,N)

11/22/2012

FFTW

e Cray’s main FFT library is FFTW from MIT

e Some additional optimizations for Cray hardware

e Usage is simple
e Load the module
e Inthe code, call an FFTW plan

e Cray’s FFTW provides wisdom files for these systems
e You can use the wisdom files to skip the plan stage
e This can be a significant performance boost

e FFTW 3.1.0.1 includes Cray optimizations for IL
Processors

30000

25000

20000

15000

MFlops

10000

5000

FFTW 2d FFT 544x544
AMD Bulldozer : 2.1 GHz : 2 threads
July 2012

-+=FFTW3.3.0.1 MFLOPS -mFFTW3.3.0.0 MFLOPS

/

/

50 100 150 200 250
Number of MPI Ranks

300

Cray Adaptive FFT (CRAFFT)

e Serial CRAFFT is largely a productivity enhancer
e Also a performance boost due to “wisdom” usage

e Some FFT developers have problems such as
e Which library choice to use?
e How to use complicated interfaces (e.g., FFTW)

e Standard FFT practice
e Do a plan stage
e Do an execute

e CRAFFT is designed with simple-to-use interfaces

o Plrﬁnning and execution stage can be combined into one function
ca

o lL(Jnderineath the interfaces, CRAFFT calls the appropriate FFT
erne

CRAFFT usage
1. Load module fftw/3.2.0 or higher.
2. Add a Fortran statement “use crafft”
3. call crafft_init()
4. Call crafft transform using none, some or all optional

arguments (as shown in red)

In-place, implicit memory management

call crafft z2z3d(nl,n2,n3,input,ld in,1ld in2,isign)
In-place, explicit memory management

call crafft z2z3d(nl,n2,n3,input,ld in,1ld in2,isign,work)
out-of-place, explicit memory management :

crafft z2z3d(nl,n2,n3,input,1ld in,1ld in2,output,ld out,ld out2,isign,work)

Note : the user can also control the planning strategy of CRAFFT using the
CRAFFT_PLANNING environment variable and the do_exe optional
argument, please see the intro_crafft man page.

Parallel CRAFET Rl

e Parallel CRAFFT is meant as a performance improvement to FFTW?2 R
distributed transforms
e Uses FFTWS for the serial transform \
Uses ALLTOALL instead of ALLTOALLV where possible
Overlaps the local transpose with the parallel communications
Uses a more adaptive communication scheme based on input

Lots of more advanced research in one-sided messaging and active
messages

e Can provide impressive performance improvements over FFTW2

e Currently implemented

complex-complex

Real-complex and complex-real

3-d and 2-d

In-place and out-of-place

1 data distribution scheme but looking to support more (please tell us)
C language support for serial and parallel

Generic interfaces for C users (use C++ compiler to get these)

\

33

parallel CRAFFT usage

Add “use crafft” to Fortran code

Initialize CRAFFT using crafft_init

Assume MPI initialized and data distributed (see
manpage)

Call crafft, e.g. (optional arguments in red)

2-d complex-complex, in-place, internal mem management :
call crafft pz2z2d(nl,n2,input,isign,flag,comm)

2-d complex-complex, in-place with no internal memory :
call crafft pz2z2d(nl,n2,input,isign,flag,comm, work)

2-d complex-complex, out-of-place, internal mem manager :
call crafft pz2z2d(nl,n2,input, output,isign,flag,comm)

2-d complex-complex, out-of-place, no internal memory :
crafft pz2z2d(nl,n2,input, output,isign,flag,comm, work)

Each routine above has manpage. Also see 3d equivalent :
man crafft pz2z3d

> Wbk

Cray Adaptive Sparse Kernel (CASK)

e Sparse matrix operations In PETSc and Trilinos on Cray
systems are optimized via CASK

e CASK is a product developed at Cray using the Cray Auto-tuning
Framework

e Offline :
e ATF program builds many thousands of sparse kernel

e Testing program defines matrix categories based on density,
dimension etc

e Each kernel variant is tested against each matrix class

e Performance table is built and adaptive library constructed
e Runtime
Scan matrix at very low cost
Map user’s calling sequence to nearest table match
Assign best kernel to the calling sequence
Optimized kernel used in iterative solver execution

35

CASK + PETSc AMD IL R

PETSc ex50 Performance Summary
Driven cavity simulation

1.2E-02
1.0E-02

8.0E-03

6.0E-03
4.0E-03
2.0E-03 -
0.0E+00
1 2 4 8 16

node count

m nocask
mcask

executiontime (sec)

11/22/2012

1600

1400 F

1200 F

GFLOPS/s (higher is better)

400 ~

200 r

1000

800 r

600 r

PETSc, Linear System Solution

2D Laplacian Problem C/)RANY ‘
i

Weak Scalability
N=262,144 --- 268M
AMD Bulldozer 2.1G :: July 2012

e=pmPETSC-3.2-p2 (Original source)

«4d=PETSc-3.2.2 CCE(CASK)

2000 3000 4000 5000 6000 7000 8000
of cores

9000

7

O Trilinos-Original

I“I[II“

Trilinos + CASK

ﬂ”””

2000
1800
1600
1400
800
600
400

,,1200

Q.

21000
LL
=

200 -
0

Matrix Name

LibSci for Accelerators

e Provide basic libraries for accelerators, tuned for Cray
e Must be independent to openACC, but fully compatible

e Multiple use case support

e Get the base use of accelerators with no code change
e Get extreme performance of GPU with or without code change

e Extra tools for support of complex code

e Incorporate the existing GPU libraries into libsci
e Provide additional performance and usability

e Maintain the Standard APIs where possible!

11/22/2012

CRANY
\

\
\

Three interfaces for three use cases

e Simple interface
? _ GPU+CPU

dgetrf lda, ipiv, &info) m
dgetr£ (M, N@"lda, ipiv, &info) m

e Device interface

dgetrf acc(M, N, d A, lda, ipiv, &info)

e CPU interface

dgetrf cpu(M, N, A, lda, ipiv, &info)

11/22/2012

Usage - Basics
e Supports Cray and GNU compilers.

e Fortran and C interfaces (column-major assumed)
e Load the module craype-accel-nvidia20.

e Compile as normal (dynamic libraries used)

e To enable threading in the CPU library, set

OMP_NUM_THREADS
e E.g. export OMP_NUM_THREADS=16

e Assign 1 single MPI process per node

e Multiple processes cannot share the single GPU

e Execute your code as normal

11/22/2012 ‘ 4 \

Libsci_acc Example

e Starting with. a
code that relies on
dgemm.

e The library will
check the
parameters at
runtime.

o If the size ofthe
matrlx mu '[IR
large enou t
library will run |ton
the GPU, handlin
all data movemen
behind the scenes.

call dgemm('n', 'n' ,m,n,k,alpha, &
a,lda,b,ldb,beta,c,1ldc)

e NOTE: Input and

Qutput data are in
CPU memory. \ /

Libsci_acc Example

e |f the rest of the
code uses ,
OpenACC, it’s !$acc data copy(a,b,c)

Ioossmleto use the

Ibrary with
directives. !$acc parallel

Do Something
1Sacc end parallel

e All data

management
perforgmed b 1Sacc host data use device(a,b,c)

OpenACC.
call dgemm acc('n','n',m,n,k, &
alpha,a,lda, &

. .
Calls the device b,1db,beta,c,1ldc)

version of dgemm.

|
e All datais in CPU !$acc end host _data

memory before and !$acc end data
after data region.

Libsci_acc Example

e Libsci_acc is a bit
smarter that this.
!1Sacc data copy(a,b,c)

e Since ‘a,’ ‘b’, and I$acc parallel
‘c’ are device 'Do Something
arrays, the I|brary !Sacc end parallel
knows it should
run on the device. !Sacc host data use device(a,b,c)
_ _ call dgemm ('n','n'" ,m,n, k,&
e SO just dgemm is alpha,a,lda,&
sufficient. b,1db,beta,c,ldc)
!'Sacc end host data

Cec end data /

200

n
¥
O
—l
LL
O

[EEY
gl
o

11/22/2012

Libsci_acc : Double : LU (DGETRF)
Cray XK6 (and XEG6)

July 2012

2000

4000 6000 8000
Matrix Dimensions M & N

10000

12000

==L ibsci 16 cores
-B-Libsci 32 cores
Libsci_acc
==MAGMA
==CULA/R13

Libsci_acc : Double Complex LU (ZGETRF)
Cray XK6 (and XE6)
July 2012

==L ibsci 16 cores
-m-Libsci 32 cores
Libsci_acc
>=MAGMA
==CULA/R13

7))
S
O 200
L
@)

2000 4000 6000 8000 10000 12000
Matrix dimensions M & N

11/22/2012

350

300

250

150

GFLOPS

100

50

11/22/2012

Libsci_acc : Double Complex Cholesky (DPOTRF)

Cray XK6 (and XE6)

July 2012

2000

4000 6000 8000
Matrix Dimension M & N

10000

12000

CRAaNyY”
\

@

\
\

==|_|bsci 16 cores
-@-|_ibsci 32 cores

+Libsci_acc
==Magma
=¢=CULA/R13

450

libsci_acc : Double Complex LU (ZGETRF)

Cray XK6 July 2012

400

350

300

N
o)
o

N
o
o

Seconds

150

100

50

11/22/2012

1024 2048 3072 4032 5184
Matrix Size

6016 7040 8064

m DGESDD LIBSCI
m DGESDD Libsci_ ACC
w CULA DGESDD

Thanks

e For specific CrayBLAS optimizations

e crayblas@cray.com

e For more information on Cray libraries

e Cray Centre of Excellence
e tedwards@cray.com

11/22/2012

