
Cray Scientific Libraries:

Overview and Performance

Cray XE6 Performance Workshop
University of Reading

20-22 Nov 2012

Contents

11/22/2012
2

● LibSci overview and usage

● BFRAME / CrayBLAS

● LAPACK

● ScaLAPACK

● FFTW / CRAFFT

● CASK

● LibSci for Accelerators

● Building blocks for writing scientific applications

● Historically – allowed the first forms of code re-use

● Later – became ways of running optimized code

● These days the complexity of the hardware is very high

● Cray PE insulates the user from that complexity
● Cray module environment

● CCE

● Performance tools

● Tuned MPI libraries (+PGAS)

● Optimized Scientific libraries

 Cray scientific libraries are designed to give maximum
possible performance from Cray systems with
minimum effort

What are libraries for?

1. Node performance
● Highly tune BLAS etc at the low-level

2. Network performance
● Optimize for network performance

● Overlap between communication and computation

● Use the best available low-level mechanism

● Use adaptive parallel algorithms

3. Highly adaptive software
● Using auto-tuning and adaptation, give the user the known best

(or very good) codes at runtime

4. Productivity features
● Simpler interfaces into complex software

What makes Cray libraries special

FFT

FFTW

CRAFFT

Sparse

Trilinos

PETSc

CASK

Dense
BLAS

LAPACK

ScaLAPACK

IRT

Scientific libraries – functional view

Libsci Usage all fits on one slide

11/22/2012
6

● LIbSci
● The drivers should do it all for you. Don’t explicitly link.
● For threads, set OMP_NUM_THREADS

● Threading is used within libsci.
● If you call within parallel region, single thread used
● -Wl, -ydgemm_ reveals where the link was resolved

● FFTW

● Module load fftw (there are also wisdom files you can pick up)

● PETSc

● Module load petsc (or module load petsc-complex)
● Use as you would your normal petsc build

● Trilinos

● Module load trilinos

● CASK – no need to do anything you get optimizations free

● module command
(module --help)

● PrgEnv modules :

● Component modules

● csmlversion (tool)

● Cray driver scripts ftn, cc, CC

Your friends
TUNER/STUNER> module avail PrgEnv

PrgEnv-cray/3.1.35 PrgEnv-gnu/4.0.12A PrgEnv-

pathscale/3.1.37G

PrgEnv-cray/3.1.37AA PrgEnv-gnu/4.0.26A PrgEnv-

pathscale/3.1.49A

PrgEnv-cray/3.1.37C PrgEnv-gnu/4.0.36(default) PrgEnv-

pathscale/3.1.61

PrgEnv-cray/3.1.37E PrgEnv-intel/3.1.35 PrgEnv-

pathscale/4.0.12A

PrgEnv-cray/3.1.37G PrgEnv-intel/3.1.37AA PrgEnv-

pathscale/4.0.26A

PrgEnv-cray/3.1.49A PrgEnv-intel/3.1.37C PrgEnv-

pathscale/4.0.36(default)

PrgEnv-cray/3.1.61 PrgEnv-intel/3.1.37E PrgEnv-pgi/3.1.35

PrgEnv-cray/4.0.12A PrgEnv-intel/3.1.37G PrgEnv-

pgi/3.1.37AA

PrgEnv-cray/4.0.26A PrgEnv-intel/3.1.49A PrgEnv-pgi/3.1.37C

PrgEnv-cray/4.0.36(default) PrgEnv-intel/3.1.61 PrgEnv-

pgi/3.1.37E

PrgEnv-gnu/3.1.35 PrgEnv-intel/4.0.12A PrgEnv-pgi/3.1.37G

PrgEnv-gnu/3.1.37AA PrgEnv-intel/4.0.26A PrgEnv-

pgi/3.1.49A

PrgEnv-gnu/3.1.37C PrgEnv-intel/4.0.36(default) PrgEnv-

pgi/3.1.61

PrgEnv-gnu/3.1.37E PrgEnv-pathscale/3.1.35 PrgEnv-

pgi/4.0.12A

PrgEnv-gnu/3.1.37G PrgEnv-pathscale/3.1.37AA PrgEnv-

pgi/4.0.26A

PrgEnv-gnu/3.1.49A PrgEnv-pathscale/3.1.37C PrgEnv-

pgi/4.0.36(default)

PrgEnv-gnu/3.1.61 PrgEnv-pathscale/3.1.37E

--- /opt/cray/modulefiles --------------------------------------

xt-libsci/10.5.02 xt-libsci/11.0.04 xt-libsci/11.0.05.1

xt-libsci/11.0.03 xt-libsci/11.0.04.8 xt-libsci/11.0.05.2(default)

● Add options to the linker to make sure you have the
correct library loaded.

● -Wl adds a command to the linker from the driver

● You can ask for the linker to tell you where an object
was resolved from using the –y option.
● E.g. –Wl, -ydgemm_

Note : explicitly linking “-lsci” is bad! This won’t be found from
libsci 11+ (and means single core library for 10.x!)

Check you got the right library!

.//main.o: reference to dgemm_

/opt/xt-libsci/11.0.05.2/cray/73/mc12/lib/libsci_cray_mp.a(dgemm.o):

definition of dgemm_

● LibSci is compatible with OpenMP

● Control the number of threads to be used in your program using
OMP_NUM_THREADS

e.g. in job script

 setenv OMP_NUM_THREADS 16

● Then run with aprun –n1 –d16

● What behavior you get from the library depends on
your code
1. No threading in code

● The BLAS call will use OMP_NUM_THREADS threads

2. Threaded code, outside parallel region
● The BLAS call will use OMP_NUM_THREADS threads

3. Threaded code, inside parallel region
● The BLAS call will use a single thread

Threading

Emphasis

11/22/2012
10

● A large subset of HPC customers care very deeply about each
of the following

● BLAS – explicit calls in their code

● LAPACK – linear solvers

● LAPACK – eigensolvers

● ScaLAPACK

● Serial FFT

● Our job is to make them work at extreme performance on Cray
hardware

● A flaming-hot GEMM library can support wide usage

GEMM

But that is very hard

11/22/2012
11

● Vendor libraries can be very heavily tuned for a specific problem.

● Tunings are not general, unfortunately.

● Your library is probably tuned for this

• dim = X * 1000

● But matrices in science do not look like those. They look like this :

A

A
A

B
C B

C

B

C

small M small N small K

A B C

BFRAME / CrayBLAS

11/22/2012
12

● Goal

● Entire auto-tuning framework for BLAS on CPUS & GPUS

● Must provide better performance than alternatives for “real”
matrices

● Improve threaded performance for any problem size on any

number of threads

● Encapsulate all tunings into a run-time performance model

● Design :

1. Generalized GEMM implementation

2. Offline Auto tuning

3. Runtime performance modeling

LibSci

LibSci

LibCrayBLAS

BFRAME infrastructure

11/22/2012
13

RUNMODEL

BFRAME

GEMM

CODEGEN

SEARCH TUNER

Simple

Database

Runtime

Performance

Model

BFRAME

GEMM

Generalized

GEMM

June 12, 2012
14

0

50

100

150

200

250

0 2000 4000 6000 8000 10000

G
F

L
O

P
S

M=N=K

CrayBLAS DGEMM :
AMD Bulldozer 2.1 GHz
Large Square Matrices

ACML 1 thread Libsci 1 thread

ACML 16 threads Libsci 16 threads

ACML 32 threads Libsci 32 threads

June 12, 2012
15

0

10

20

30

40

50

60

70

80

90

0 100 200 300 400 500 600

G
F

L
O

P
S

 (
h

ig
h

e
r

is
 b

e
tt

e
r)

M=N=K

CrayBLAS DGEMM :
AMD Bulldozer 2.1 GHz
Small Square Matrices

ACML 1 thread

Libsci 1 thread

ACML 16 threads

Libsci 16 threads 40Gflops!

June 12, 2012
16

0

5

10

15

20

25

0 2000 4000 6000 8000 10000

G
F

L
O

P
S

K

CrayBLAS DGEMM :
AMD Bulldozer 2.1 GHzM :

Varying K dimension

ACML 1 thread Libsci 1 thread

ACML 16 threads Libsci 16 threads

11/22/2012
17

0

5

10

15

20

25

30

1
2
5

0

2
2
5

0

3
2
5

0

4
2
5

0

5
2
5

0

6
2
5

0

7
2
5

0

8
2
5

0

9
2
5

0

1
0
2

5
0

1
1
2

5
0

1
2
2

5
0

1
2
5

0

2
2
5

0

3
2
5

0

4
2
5

0

5
2
5

0

6
2
5

0

7
2
5

0

8
2
5

0

9
2
5

0

1
0
2

5
0

1
1
2

5
0

1
2
2

5
0

1
2
5

0

2
2
5

0

3
2
5

0

4
2
5

0

5
2
5

0

6
2
5

0

7
2
5

0

8
2
5

0

9
2
5

0

1
0
2

5
0

1
1
2

5
0

1
2
2

5
0

1
2
5

0

2
2
5

0

3
2
5

0

4
2
5

0

5
2
5

0

6
2
5

0

7
2
5

0

8
2
5

0

9
2
5

0

1
0
2

5
0

1
1
2

5
0

1
2
2

5
0

G
F

L
O

P
S

/s

CLASS 1 K = 64 CLASS 2 N = 64 CLASS 3 M = 64 CLASS 4 M,N =

64

4 threads

Interlagos

beta = 3.0

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

1
2
5
0

2
2
5
0

3
2
5
0

4
2
5
0

5
2
5
0

6
2
5
0

7
2
5
0

8
2
5
0

9
2
5
0

1
0
2
5
0

1
1
2
5
0

1
2
2
5
0

1
2
5
0

2
2
5
0

3
2
5
0

4
2
5
0

5
2
5
0

6
2
5
0

7
2
5
0

8
2
5
0

9
2
5
0

1
0
2
5
0

1
1
2
5
0

1
2
2
5
0

1
2
5
0

2
2
5
0

3
2
5
0

4
2
5
0

5
2
5
0

6
2
5
0

7
2
5
0

8
2
5
0

9
2
5
0

1
0
2
5
0

1
1
2
5
0

1
2
2
5
0

1
2
5
0

2
2
5
0

3
2
5
0

4
2
5
0

5
2
5
0

6
2
5
0

7
2
5
0

8
2
5
0

9
2
5
0

1
0
2
5
0

1
1
2
5
0

1
2
2
5
0

G
F

L
O

P
S

/s

Larger matrix dimension

Libsci11.0.06

libsci11.1.0

CLASS 1 K = 64 CLASS 2 N = 64 CLASS 3 M = 64 CLASS 4 M,N =

64

16 threads

Interlagos

Beta = 3.0

DGEMM Performance across Matrix classes

Tuning requests

11/22/2012
18

● CrayBLAS is an auto-tuned library

● Generally, excellent performance is possible for all shapes and sizes

● However, even the adaptive CrayBLAS can be improved by

tuning for exact sizes and shapes

● Send your specific tuning requirements to

 crayblas@cray.com

● Just send the routine name, and the list of calling sequences

mailto:crayblas@cray.com

● For ZGEMM only
● Complex matrix multiplication can be performed using real matrix

additions, for fewer flops

● You can turn on the 3M algorithm

● Set the environment variable

 ZGEMM_USE_3M=1

● Note : there is an accuracy trade-off, though this should be safe
most of the time

Advanced optimizations for BLAS

● Threaded LAPACK works exactly the same as
threaded BLAS

● Anywhere LAPACK uses BLAS, those BLAS can be
threaded

● Some LAPACK routines are threaded at the higher
level

● No special instructions

Threaded LAPACK

11/22/2012
21

0

20

40

60

80

100

120

0 2000 4000 6000 8000 10000

G
F

lo
p

s
/s

 (
h

ig
h

e
r

is
 b

e
tt

e
r)

Matrix Size (M=N)

LAPACK DGETRF (LU)
AMD Bulldozer 2.1Ghz ::July 2012

ACML 32 threads

Libsci 32 threads

11/22/2012
22

0

20

40

60

80

100

120

140

160

0 2000 4000 6000 8000 10000

G
fl

o
p

s
/s

 (
h

ig
h

e
r

is
 b

e
tt

e
r)

Matrix Size (N)

LAPACK DPOTRF (Cholesky)
AMD Bulldozer 2.1Ghz ::Aug 2012

ACML-32 threads

Libsci-32 threads

ScaLAPACK

11/22/2012
23

● ScaLAPACK in libsci is optimized for Gemini interconnect

● New collective communication procedures are added

● Default topologies are changed to use the new optimizations

● Much better strong scaling

● It also benefits from the optimizations in CrayBLAS

● IRT can provide further improvements (see later)

June 12, 2012
LibSci Team Technical

Presentation

24

0

5

10

15

20

25

0 5000 10000 15000 20000

T
F

L
O

P
S

 (
h

ig
h

e
r

is
 b

e
tt

e
r)

of cores

ScaLAPACK Double LU
Cray XE6 :: AMD Bulldozer 2.1 GHz

M = 131072 :: July 2012

NETLIB

Cray Libsci

Iterative Refinement Toolkit

● Mixed precision can yield a big win on x86 machines.

● SSE (and AVX) units issue double the number of single precision
operations per cycle.

● On CPU, single precision is always 2x as fast as double

● Accelerators sometimes have a bigger ratio

● Cell – 10x

● Older NVIDIA cards – 7x

● New NVIDIA cards (2x)

● Newer AMD cards (> 2x)

● IRT is a suite of tools to help exploit single precision

● A library for direct solvers

● An automatic framework to use mixed precision under the covers

25

● Various tools for solves linear systems in mixed precision
● Obtaining solutions accurate to double precision

● For well conditioned problems

● Serial and Parallel versions of LU, Cholesky, and QR
● 2 usage methods

● IRT Benchmark routines
● Uses IRT 'under-the-covers' without changing your code

● Simply set an environment variable
● Useful when you cannot alter source code

● Advanced IRT API
● If greater control of the iterative refinement process is required

● Allows
● condition number estimation
● error bounds return
● minimization of either forward or backward error
● 'fall back' to full precision if the condition number is too high
● max number of iterations can be altered by users

26

Iterative Refinement Toolkit - Library

Decide if you want to use advanced API or benchmark API
 benchmark API :

 setenv IRT_USE_SOLVERS 1
 advanced API :
1. locate the factor and solve in your code (LAPACK or

ScaLAPACK)
2. Replace factor and solve with a call to IRT routine

● e.g. dgesv -> irt_lu_real_serial
● e.g. pzgesv -> irt_lu_complex_parallel
● e.g pzposv -> irt_po_complex_parallel

3. Set advanced arguments
● Forward error convergence for most accurate solution
● Condition number estimate
● “fall-back” to full precision if condition number too high

Note : “info” does not return zero when using IRT !!

27

IRT library usage

11/22/2012
28

0

5

10

15

20

25

30

G
F

L
O

P
S

/s

Matrix DImension (M,N)

IRT with LAPACK LU DGETRF
AMD Bulldozer 2.1 GHz

2threads :: September 2012

IRT+LAPACK

LAPACK

● Cray’s main FFT library is FFTW from MIT
● Some additional optimizations for Cray hardware

● Usage is simple
● Load the module

● In the code, call an FFTW plan

● Cray’s FFTW provides wisdom files for these systems

● You can use the wisdom files to skip the plan stage

● This can be a significant performance boost

● FFTW 3.1.0.1 includes Cray optimizations for IL
processors

FFTW

11/22/2012
30

0

5000

10000

15000

20000

25000

30000

0 50 100 150 200 250 300

M
F

lo
p

s

Number of MPI Ranks

FFTW 2d FFT 544x544
AMD Bulldozer : 2.1 GHz : 2 threads

July 2012

FFTW3.3.0.1 MFLOPS FFTW3.3.0.0 MFLOPS

● Serial CRAFFT is largely a productivity enhancer
● Also a performance boost due to “wisdom” usage
● Some FFT developers have problems such as

● Which library choice to use?

● How to use complicated interfaces (e.g., FFTW)

● Standard FFT practice
● Do a plan stage

● Do an execute

● CRAFFT is designed with simple-to-use interfaces
● Planning and execution stage can be combined into one function

call
● Underneath the interfaces, CRAFFT calls the appropriate FFT

kernel

Cray Adaptive FFT (CRAFFT)

31

1. Load module fftw/3.2.0 or higher.

2. Add a Fortran statement “use crafft”

3. call crafft_init()

4. Call crafft transform using none, some or all optional
arguments (as shown in red)

 In-place, implicit memory management :

call crafft_z2z3d(n1,n2,n3,input,ld_in,ld_in2,isign)

 in-place, explicit memory management
call crafft_z2z3d(n1,n2,n3,input,ld_in,ld_in2,isign,work)

 out-of-place, explicit memory management :
crafft_z2z3d(n1,n2,n3,input,ld_in,ld_in2,output,ld_out,ld_out2,isign,work)

Note : the user can also control the planning strategy of CRAFFT using the
CRAFFT_PLANNING environment variable and the do_exe optional
argument, please see the intro_crafft man page.

32

CRAFFT usage

● Parallel CRAFFT is meant as a performance improvement to FFTW2
distributed transforms

● Uses FFTW3 for the serial transform

● Uses ALLTOALL instead of ALLTOALLV where possible

● Overlaps the local transpose with the parallel communications

● Uses a more adaptive communication scheme based on input

● Lots of more advanced research in one-sided messaging and active
messages

● Can provide impressive performance improvements over FFTW2

● Currently implemented

● complex-complex

● Real-complex and complex-real

● 3-d and 2-d

● In-place and out-of-place

● 1 data distribution scheme but looking to support more (please tell us)

● C language support for serial and parallel

● Generic interfaces for C users (use C++ compiler to get these)

33

Parallel CRAFFT

1. Add “use crafft” to Fortran code
2. Initialize CRAFFT using crafft_init
3. Assume MPI initialized and data distributed (see

manpage)
4. Call crafft, e.g. (optional arguments in red)
 2-d complex-complex, in-place, internal mem management :
 call crafft_pz2z2d(n1,n2,input,isign,flag,comm)

 2-d complex-complex, in-place with no internal memory :
 call crafft_pz2z2d(n1,n2,input,isign,flag,comm,work)

 2-d complex-complex, out-of-place, internal mem manager :
 call crafft_pz2z2d(n1,n2,input,output,isign,flag,comm)

 2-d complex-complex, out-of-place, no internal memory :
 crafft_pz2z2d(n1,n2,input,output,isign,flag,comm,work)

Each routine above has manpage. Also see 3d equivalent :
 man crafft_pz2z3d

34

parallel CRAFFT usage

● Sparse matrix operations in PETSc and Trilinos on Cray
systems are optimized via CASK

● CASK is a product developed at Cray using the Cray Auto-tuning
Framework

● Offline :
● ATF program builds many thousands of sparse kernel
● Testing program defines matrix categories based on density,

dimension etc
● Each kernel variant is tested against each matrix class
● Performance table is built and adaptive library constructed

● Runtime
● Scan matrix at very low cost
● Map user’s calling sequence to nearest table match
● Assign best kernel to the calling sequence
● Optimized kernel used in iterative solver execution

Cray Adaptive Sparse Kernel (CASK)

35

CASK + PETSc AMD IL

11/22/2012
37

0

200

400

600

800

1000

1200

1400

1600

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

G
F

L
O

P
S

/s
 (

h
ig

h
e
r

is
 b

e
tt

e
r)

of cores

PETSc, Linear System Solution
 2D Laplacian Problem

Weak Scalability
N=262,144 --- 268M

AMD Bulldozer 2.1G :: July 2012

PETSC-3.2-p2 (Original source)

PETSc-3.2.2 CCE(CASK)

CASK and PETSc: Single Node XT5 (60
matrices)

Speedup on Parallel SpMV on 8 cores, 60 different matrices

38

0

200

400

600

800

1000

1200

1400

1600

1800

2000

M
F

lo
p

s

Matrix Name

Trilinos + CASK
AMD Istanbul single node

Trilinos-CASK

Trilinos-Original

LibSci for Accelerators

11/22/2012
39

● Provide basic libraries for accelerators, tuned for Cray

● Must be independent to openACC, but fully compatible

● Multiple use case support

● Get the base use of accelerators with no code change

● Get extreme performance of GPU with or without code change

● Extra tools for support of complex code

● Incorporate the existing GPU libraries into libsci

● Provide additional performance and usability

● Maintain the Standard APIs where possible!

● Simple interface

dgetrf(M, N, A, lda, ipiv, &info)

dgetrf(M, N, d_A, lda, ipiv, &info)

● Device interface

 dgetrf_acc(M, N, d_A, lda, ipiv, &info)

● CPU interface

 dgetrf_cpu(M, N, A, lda, ipiv, &info)

Three interfaces for three use cases

11/22/2012 40

CPU

GPU

GPU + CPU

● Supports Cray and GNU compilers.

● Fortran and C interfaces (column-major assumed)

● Load the module craype-accel-nvidia20.

● Compile as normal (dynamic libraries used)

● To enable threading in the CPU library, set

OMP_NUM_THREADS

● E.g. export OMP_NUM_THREADS=16

● Assign 1 single MPI process per node

● Multiple processes cannot share the single GPU

● Execute your code as normal

Usage - Basics

41 11/22/2012

Libsci_acc Example

● Starting with a
code that relies on
dgemm.

● The library will
check the
parameters at
runtime.

● If the size of the
matrix multiply is
large enough, the
library will run it on
the GPU, handling
all data movement
behind the scenes.

● NOTE: Input and
Output data are in
CPU memory.

call dgemm('n','n',m,n,k,alpha,&

 a,lda,b,ldb,beta,c,ldc)

Libsci_acc Example

● If the rest of the
code uses
OpenACC, it’s
possible to use the
library with
directives.

● All data
management
performed by
OpenACC.

● Calls the device
version of dgemm.

● All data is in CPU
memory before and
after data region.

!$acc data copy(a,b,c)

!$acc parallel

!Do Something

!$acc end parallel

!$acc host_data use_device(a,b,c)

call dgemm ('n','n',m,n,k,&

 alpha,a,lda,&

 b,ldb,beta,c,ldc)

!$acc end host_data

!$acc end data

!$acc data copy(a,b,c)

!$acc parallel

!Do Something

!$acc end parallel

!$acc host_data use_device(a,b,c)

call dgemm_acc('n','n',m,n,k,&

 alpha,a,lda,&

 b,ldb,beta,c,ldc)

!$acc end host_data

!$acc end data

Libsci_acc Example

● Libsci_acc is a bit
smarter that this.

● Since ‘a,’ ‘b’, and
‘c’ are device
arrays, the library
knows it should
run on the device.

● So just dgemm is
sufficient.

!$acc data copy(a,b,c)

!$acc parallel

!Do Something

!$acc end parallel

!$acc host_data use_device(a,b,c)

call dgemm_acc('n','n',m,n,k,&

 alpha,a,lda,&

 b,ldb,beta,c,ldc)

!$acc end host_data

!$acc end data

!$acc data copy(a,b,c)

!$acc parallel

!Do Something

!$acc end parallel

!$acc host_data use_device(a,b,c)

call dgemm ('n','n',m,n,k,&

 alpha,a,lda,&

 b,ldb,beta,c,ldc)

!$acc end host_data

!$acc end data

45

0

50

100

150

200

250

300

350

0 2000 4000 6000 8000 10000 12000

G
F

L
O

P
S

Matrix Dimensions M & N

Libsci_acc : Double : LU (DGETRF)
 Cray XK6 (and XE6)

July 2012

Libsci 16 cores

Libsci 32 cores

Libsci_acc

MAGMA

CULA/R13

11/22/2012

46

0

50

100

150

200

250

300

350

400

0 2000 4000 6000 8000 10000 12000

G
F

L
O

P
S

Matrix dimensions M & N

Libsci_acc : Double Complex LU (ZGETRF)
 Cray XK6 (and XE6)

July 2012

Libsci 16 cores

Libsci 32 cores

Libsci_acc

MAGMA

CULA/R13

11/22/2012

11/22/2012
47

0

50

100

150

200

250

300

350

0 2000 4000 6000 8000 10000 12000

G
F

L
O

P
S

Matrix Dimension M & N

Libsci_acc : Double Complex Cholesky (DPOTRF)
 Cray XK6 (and XE6)

July 2012

Libsci 16 cores

Libsci 32 cores

Libsci_acc

Magma

CULA/R13

48

0

50

100

150

200

250

300

350

400

450

1024 2048 3072 4032 5184 6016 7040 8064

S
e
c
o

n
d

s

Matrix Size

libsci_acc : Double Complex LU (ZGETRF)
 Cray XK6 July 2012

DGESDD LIBSCI

DGESDD Libsci_ACC

CULA DGESDD

11/22/2012

Thanks

11/22/2012
49

● For specific CrayBLAS optimizations

● crayblas@cray.com

● For more information on Cray libraries

● Cray Centre of Excellence

● tedwards@cray.com

