
Using CrayPAT and Apprentice2: A Step-by-step guide

Cray Centre of Excellence for HECToR

November 2012

Abstract

This tutorial introduces Cray XE6 users to the Cray Performance Analysis Tool and its
Graphical User Interface, Apprentice2. The examples are based on the code supplied in the
Image Sharpening Tutorial, however, the techniques can easily be applied to any application
that is compiled and executed on a Cray supercomputer.

Introduction

The Cray Performance Analysis Tool (CrayPAT) is a powerful framework for analysing a parallel
application’s performance on Cray supercomputers. It can provide very detailed information on
the timing and performance of individual application procedures, directly incorporating infor-
mation from the raw hardware performance counters available on AMD Opteron processors.

Sampling vs. Tracing

CrayPAT has two modes of operation, Sampling and Tracing. Sampling takes regular snapshots of
the application, recording which routine the application was in. This can provide a good overview
of the important routines in an application without interfering with the run time, however it has
the potential to miss smaller functions and cannot provide the more detailed information like MPI
messaging statistics or information from hardware performance counters.

Tracing involves instrumenting each subroutine with additional instructions that can record
this extra information when they enter and exit. This approach ensures full capture of informa-
tion, but can result in high overheads, especially where individual functions and subroutines are
very small (as is typical in Objected Oriented languages like C++), it can also generate very large
amounts of data which become difficult to process and visualise.

CrayPAT’s Automatic Program Analysis aims to capture the most important performance in-
formation without distorting the results by over instrumentation or generating large volumes of
data. APA uses two steps, the first uses sampling to identify important functions in the applica-
tion, it then uses this data, along with information about the size and number of calls to generate
a modified binary with tracing included. This approach aims to cover the vast majority of appli-
cation runtime with the minimum of overhead and provides a quick and straightforward method
of analysing an application’s performance on Cray supercomputers.

A step-by-step guide to using APA

This step-by-step guide demonstrates how to profile an application using CrayPAT’s Automatic
Program Analysis.

First, after logging on to the main system, users should load the perftools module, this loads
the module xt-craypat and apprentice2 modules.

module load perftools

The perftools module has to be loaded while all source files are compiled and linked. The Image
Sharpening Tutorial can be built with a simple call to:

1

Table 1: Profile by Function

Samp% | Samp | Imb. | Imb. |Group

| | Samp | Samp% | Function

| | | | PE=HIDE

100.0% | 38.9 | -- | -- |Total

|--

| 51.0% | 19.8 | -- | -- |USER

||---

|| 23.9% | 9.3 | 3.7 | 29.5% |filter

|| 14.1% | 5.5 | 3.5 | 40.5% |dosharpen

|| 12.5% | 4.8 | 2.2 | 31.8% |_EXP_15

||===

| 48.0% | 18.7 | -- | -- |MPI

||---

|| 23.4% | 9.1 | 0.9 | 9.4% |MPI_Barrier

|| 19.4% | 7.5 | 0.5 | 6.0% |MPI_Bcast

|| 5.2% | 2.0 | 1.0 | 33.3% |MPI_Reduce

||===

| 1.0% | 0.4 | -- | -- |ETC

|==

Table 1: The tabular output for the C-MPI sharpen benchmark.

make

To instrument then the binary, run the pat_build command with the -O apa option. This will
generate a new binary with +pat appended to the end.

pat_build -O apa sharpen

You should now run the new binary on the backend using the batch.pbs script. With the image
sharpening example you should edit the PBS submission script, submit.sh and change the name
of the executable to sharpen+pat. You should then submit this executable to run on the Cray XE6
backend.

qsub submit.sh

Once this has run, you will see that the run has generated an extra file, sharpen+pat+<number>sdot.xf.
This file contains the raw sampling data from the run and needs to be post processed to pro-
duce useful results. This is done using the pat_report tool which converts all the raw data into a
summarised and readable form.

pat_report sharpen+pat+25165-2sdot.xf

This tool can generate a large amount of data, so you may wish to capture the data in an output
file, either using a shell redirect like >, or adding the -o <file> option to the command.

Table 1 shows the results from sampling the application. Program functions are separated out into
different types, USER functions are those defined by the application, MPI functions contains the
time spent in MPI library functions, ETC functions are generally library or miscellaneous functions
included. ETC function can include a variety of external functions, from mathematical functions
called in by the library (as is this case) to system calls.

The raw number of samples for each code section is show in the second column and the num-
ber as an absolute percentage of the total samples in the first. The third column is a measure of the
imbalance between individual processors being sampled in this routine and is calculated as the
difference between the average number of samples over all processors and the maximum samples
an individual processor was in this routine.

2

This report will generate two more files, one with the extension .ap2 which holds the same
data as the .xf but in the post processed form. The other file has a .apa extension and is a text
file with a suggested configuration for generating a traced experiment. You are welcome and
encouraged to review this file and modify its contents in subsequent iterations, however in this
first case we will continue with the defaults.

Suggested trace options file: sharpen+pat+25165-2sdot.apa

Trace option suggestions have been generated into a separate file

from the data in the next table. You can examine the file, edit it

if desired, and use it to reinstrument the program like this:

pat_build -O sharpen+pat+25165-2sdot.apa

This file acts as the input to the pat_build command and is supplied as the argument to the -O

flag.

pat_build -O sharpen+pat+25165-2sdot.apa

This will produce a third binary with extension +apa. This binary should once again be run on
the back end, so the input submit.sh script should be modified and the name of the executable
changed to sharpen+apa. The script is then submitted to the backend.

qsub submit.sh

Again, a new .xf file will be generated by the application, which should be processed by the
pat_report tool. As this is now a tracing experiment it will provide more information than before

pat_report sharpen+apa+25218-2tdot.xf

Table 2 is the more detailed version of Table 1 that is the result of tracing data. In this case, true
timing information is available (averages per processor) and the number of times each function is
called. Table 3 shows the information available for individual functions. Timings are more accu-
rate and features like the number of calls are available. Information from the Opteron’s hardware
performance counters is also available, specifically in this case details relating to the number of
floating point operations, cache references and TLB buffer. There are a large number of perfor-
mance counters available from the Opteron however only 4 may be run concurrently.

Additional document ion is available for CrayPAT and can be access either through the man pages
for individual commands or through the interactive CrayPAT command (requires perftools to
be loaded):

pat_help

Or though man pages:

man intro_pat

man pat_build

man pat_report

Apprentice2

Apprentice2 is the Graphic User Interface and visualisation suite for CrayPAT’s performance data.
It reads the .ap2 files generated by pat_report’s processing of .xf files. It is launched from the
command line with:

app2 <file>.ap2

Figure 1 shows a screen shot of the call tree information available from CrayPAT. It shows how
time is spent along the call tree, inclusive time corresponds to the width of boxes, excluding time
to the height. Yellow represents the load imbalance time between processors. Extra information
is provided by holding the mouse over areas of the screen, the “?” box will provide hints on how
to interpret the information displayed.

3

Table 1: Profile by Function Group and Function

Time% | Time | Imb. | Imb. | Calls |Group

| | Time | Time% | | Function

| | | | | PE=HIDE

100.0% | 0.639638 | -- | -- | 36.0 |Total

|---

| 51.7% | 0.330767 | -- | -- | 3.0 |USER

||--

| 51.7% | 0.330409 | 0.250140 | 44.5% | 1.0 | dosharpen

||==

| 41.2% | 0.263766 | -- | -- | 11.0 |MPI_SYNC

||--

|| 23.0% | 0.146806 | 0.141102 | 96.1% | 5.0 |MPI_Barrier(sync)

|| 18.3% | 0.116941 | 0.116862 | 99.9% | 5.0 |MPI_Bcast(sync)

||==

| 7.1% | 0.045105 | -- | -- | 22.0 |MPI

||--

|| 5.8% | 0.037132 | 0.003068 | 7.9% | 1.0 |MPI_Reduce

|| 1.2% | 0.007741 | 0.000044 | 0.6% | 5.0 |MPI_Bcast

|===

Table 2: A more detailed function profiling

==

USER / dosharpen

--

Time% 63.4%

Time 0.499493 secs

Imb.Time 0.182487 secs

Imb.Time% 29.1%

Calls 2.0 /sec 1.0 calls

PAPI_L1_DCM 1.622M/sec 809965 misses

PAPI_TLB_DM 0.033M/sec 16296 misses

PAPI_L1_DCA 847.673M/sec 423413396 refs

PAPI_FP_OPS 345.699M/sec 172677072 ops

User time (approx) 0.500 secs 1048953736 cycles 100.0%Time

Average Time per Call 0.499493 secs

CrayPat Overhead : Time 0.0%

HW FP Ops / User time 345.699M/sec 172677072 ops 4.1%peak(DP)

HW FP Ops / WCT 345.699M/sec

Computational intensity 0.16 ops/cycle 0.41 ops/ref

MFLOPS (aggregate) 8296.78M/sec

TLB utilization 25983.32 refs/miss 50.749 avg uses

D1 cache hit,miss ratios 99.8% hits 0.2% misses

D1 cache utilization (misses) 522.76 refs/miss 65.344 avg hits

==

Table 3: Hardware Performance Counter information from a traced CrayPAT APA experiment

4

Figure 1: Apprentice2: Application call tree

Figure 2: Apprentice2: Summarised Hardware Performance information

5

Figure 3: Apprentice2: Application’s runtime environment

Accessing Temporal Information

Tracing an application can potentially generate very large amounts of data, to reduce this volume
the CrayPAT will, by default, summarise the data over the entire application run. To see more
detailed information about the timing of individual events (like the sequencing of MPI messages
between processors or the number of hardware counter events in a time interval) CrayPAT has to
be instructed to store all data from throughout the run. This is controlled by the PAT_RT_SUMMARY

environment variable, setting it to 0 in batch.pbs will prevent summarising and allow access to
even more data.

export PAT_RT_SUMMARY=0

Warning! Running tracing experiment on a large number of processors for a long period of time will
generate VERY large files! Most tracing experiments should be conducted on a small number of
processors (≤ 256) and over a short wall clock time period (< 5 minute).

Figures 3,4,5 and 6 show captures of the additional screens available in Apprentice2 when
analysing non-summarised data.

6

Figure 4: Apprentice2: Application activity information over time

Figure 5: Apprentice2: Hardware counter values over time

7

Figure 6: Apprentice2: Message traffic information panel

8

