CPCC

Cray XE6 Performance Workshop
Cache and Memory Practicals

David Henty

1 Introduction

The basic aim of this practical is to run simple test programs to investigate the various features of caches
on modern multicore systems. This includes aspects such as memory bandwidth, cache sizes, line sizes,
coherency overheads and NUMA issues.

Today we will be running on the 32-core Interlagos processors used by the Cray XE6. Although quan-
titative measurements will differ between different processors, all the features we cover should be fairly
generic amongst all multicore CPUs. One of the main reasons for using the Cray is that, unlike on most
general-purpose Linux systems, the user has extremely fine-grained control over thread placement.

2 Memory Bandwidth

You should work in theache directory for these exercises. Compile the code:
user@hector> cc -0 cache cache.c location.c

and run a single copy of this serial program using:
user@hector> qsub submit.sh

e Look at the bandwidth figures and see if you can determine the cache boundaries. What are the
sizes of the various caches?

e Edit the code so the summation loop runs backwards from n-1 to 0. How does this affect the
bandwidth? What is the explanation?

e Use various non-unit strides in the summation loop, e.g. 2, 4, 8, 16 and 32. You should be able to
determine the size of the cache lines from the point at which the bandwidth from memory (i.e. the
bandwidth for very large n) is constant with respect to the stride. What is the cache line size?

3 Multicore

As an initial test of saturating the memory bandwidth, run 32 simultaneous copies of the code from
Section 2. This can be done by setting bothpwidth andmppnppn to 32 insubmit.sh . There

will be a lot of output (since all 32 processes are writing to the same file), but you should be able to see
the various effects.

How does the total memory bandwidth compare to the bandwidth available from a single core? How
does this ratio change as the data size increases?

1

In the multicore directory you will see a version of the codeacheomp.c , parallelised using
OpenMP. Compile this code and run it using different numbers of threads. What effects do you observe?

You should compare the bandwidth on multiple threads to the bandwidth obtained with the serial code.
How does this vary with data size? Can you relate this to the cache sizes on the Interlagos processor?

3.1 False Sharing

Look at the code ircoherency.c and check you can understand what it does. To illustrate false
sharing, this code has two threads continually accessing different elements of an array. If these elements
are close together, they may be in the same cache line and cause false sharing. The code varies the
separation between the two array elements to look for this effect.

The scriptcoherency.sh ensures that the code runs on two cores, with threads placed on cores 0 and
2. On the Interlagos processor, pairs of cores share functional units so you will not see the desired effect
if you use the default allocation on cores 0 and 1.

From the results, what is the cache line size?

4 NUMA

Look again at theacheomp.c code. You will see that there is an OpenMP directive around the array
initialisation that has been commented out. If you uncomment this line then the array will be initialised
in parallel and the first-touch policy should give better memory placement for NUMA codes.

Note that for this exercise yatannotrun multiple data sizes (i.e. different valuesnjfwithin the same
code. You must set = NDBLEIn the loop. To change the data size, change the valiNDBLEand
recompile.

Run the code on 32 cores and compare the results from the two initialisation policies. What is the
difference for very large data sizes, and how do the results compare with those obtained previously by
running 32 independent copies of the serial program? Do you see the same NUMA effects when running
with data sizes that fit into the L2 cache?

