
Optimising Communication on the
Cray XE6

MPICH2 Releases for XE

Day in the Life of an MPI Message
● Gemini NIC Resources

● Eager Message Protocol

● Rendezvous Message Protocol

● Important MPI environment variables

MPI rank order

Huge Pages

Outline

MPI device for Gemini based on
● User level Gemini Network Interface (uGNI)

● Distributed Memory Applications (DMAPP) library

FMA (Fast Memory Access)
● In general used for small transfers

● FMA transfers are lower latency

BTE (Block Transfer Engine)
● BTE transfers take longer to start but can transfer large amount of data

without CPU involvement (DMA offload engine)

Gemini Software

Which is Better
FMA PROS

● Lowest latency (<1.4 usec)
● All data has been read by the time

dmapp returns
● More than one transfer active at the

same time

FMA CONS

● CPU involved in the transfer
● Performance can vary depending on

die used

BTE PROS
● Transfer done by Gemini,

asynchronous with CPU
● Transfers are queued if Gemini is busy

● Seems to get better P2P
bandwidth in more cases

BTE CONS

● Higher latency : ~2 usec if queue
is empty

● Transfers are queued if Gemini is busy

● Only 4 BTE transaction can be
active at a time
(4 virtual channels)

Cray MPI uses MPICH2 distribution from Argonne
● Provides a good, robust and feature rich MPI

● Cray provides low level communication libraries

● Point to point tuning

● Collective tuning

● Shared memory device is built on top of Cray XPMEM

Many layers are straight from MPICH2
● Error messages can be from MPICH2

MPICH2 and Cray MPT

MPICH2 on CRAY XE6

Application

MPI Interface

MPICH2

ADI3

CH3 Device

CH3 Interface

xpmem

Nemesis NetMod Interface

GNI GM MX PSM IB TCP

mvapich2 1.5

Cray specific

components

P
M

I

Nemesis

J
o
b
 l
a
u
n
c
h
e
r

ROMIO

ADIO

Lus. GPFS ...

Optimized

Collectives

MPICH2 over GNI Basics

Applications with scalable communication patterns benefit from
high message rates and low latency of GNI private SMSG mailboxes
without large memory consumption. (~1.7 μsec latency nn, ~1.4
MM/sec nn/rank*)
Applications with dense communication graphs aren’t going to
scale too well on Gemini using GNI private SMSG mailboxes, may be
okay with shared SMSG mailboxes.

Implications of GNI SMSG Mailboxes for Apps

.

.

.
Good for scaling to

xflops

. . .
. . .

okay for ISV apps

scaling to ~1000

ranks, bad for

petascale apps,

forget xflops with

MPI flat program

model

* For ranks on die0

A Day in the Life of an MPI Message

Gemini NIC Resources for Transferring Data

Eager Message Protocol : E0 and E1 Paths

Rendezvous Message Protocol : R0 and R1 Paths

MPI environment variables that alter those paths

Four Main Pathways through the MPICH2 GNI NetMod

● Two EAGER paths (E0 and E1)
● For a message that can fit in a GNI SMSG mailbox (E0)

● For a message that can’t fit into a mailbox but is less than

MPICH_GNI_MAX_EAGER_MSG_SIZE in length (E1)

● Two RENDEZVOUS (aka LMT) paths : R0 (RDMA get) and R1 (RDMA

put)

Selected Pathway is based on Message Size

Day in the Life of an MPI Message

0 512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1MB 4MB

E0 E1 R0 R1

MPICH_GNI_MAX_VSHORT_MSG_SIZE

MPICH_GNI_MAX_EAGER_MSG_SIZE

MPICH_GNI_NDREG_MAXSIZE

MPICH_GNI_MAX_VSHORT_MSG_SIZE
● Controls max size for E0 Path

Default varies with job size: 216-984 bytes

MPICH_GNI_MAX_EAGER_MSG_SIZE
● Controls max message size for E1 Path (Default is 8K bytes)

MPICH_GNI_NDREG_MAXSIZE
● Controls max message size for R0 Path (Default is 4MB bytes)

MPICH_GNI_LMT_PATH=disabled
● Can be used to Disable the entire Rendezvous (LMT) Path

MPI env variables affecting the pathway

Data is transferred when MPI_Send (or variant)

encountered
● This implies data will be buffered on receiver’s node

Two EAGER Pathways
● E0 – small messages that fit into GNI SMSG Mailbox

● Default mailbox size varies with number of ranks in the job

● Use MPICH_GNI_MAX_VSHORT_MSG_SIZE to adjust size

● E1 – too big for SMSG Mailbox, but small enough to still go EAGER

● Use MPICH_GNI_MAX_EAGER_MSG_SIZE to adjust size

● Requires extra copies

EAGER Message Protocol

Default mailbox size varies with number of ranks in the job

Protocol for messages that can fit into a GNI SMSG mailbox

The default varies with job size, although this can be tuned by the

user to some extent

EAGER Message Protocol

 Ranks in Job Max user data (MPT 5.3) MPT 5.4 and later

 < = 512 ranks 984 bytes 8152 bytes

 > 512 and <= 1024 984 bytes 2008 bytes

 > 1024 and < 16384 472 bytes 472 bytes

 > 16384 ranks 216 bytes 216 bytes

GNI SMSG Mailbox size changes with number of ranks in job

If user data is 16 bytes or less, it is copied into the MPI header

Day in the Life of Message type E0

Sender Receiver

1. GNI SMSG Send (MPI header + user data)

SMSG Mailboxes

 CQs

PE 1

 PE 82

PE 5

PE 22

PE 96

EAGER messages that fit in the GNI SMSG Mailbox

2. Memcpy

User data is copied into internal MPI buffers

on both send and receive side

Day in the Life of Message type E1

Sender Receiver SMSG Mailboxes

 CQs

PE 1

 PE 82

PE 5

PE 22

PE 96

EAGER messages that don’t fit in the GNI SMSG Mailbox

5. Memcpy

2. GNI SMSG Send (MPI header)

4. GNI SMSG Send (Recv done)

1. Memcpy data to pre-allocated MPI buffers

MPICH_GNI_NUM_BUFS

default 64 buffers, each 32K

MPICH_GNI_NUM_BUFS

Data is transferred after both MPI_Send and
MPI_Recv are encountered

Two RENDEZVOUS Pathways
● R0 – RDMA GET method

● By default, used for messages between 8K and 4MB

● Use MPICH_GNI_MAX_EAGER_MSG_SIZE to adjust starting
point

● Use MPICH_GNI_NDREG_MAXSIZE to adjust ending point

● Can get overlap of communication and computation in this path

● Helps to issue MPI_Isend prior to MPI_Irecv

● May deplete memory registration resources

● R1 – Pipelined RDMA PUT method

● By default, used for messages greater than 512k

● Use MPICH_GNI_NDREG_MAXSIZE to adjust starting point

● Very difficult to overlap communication and computation in this path

RENDEZVOUS Message Protocol

No extra data copies

Best chance of overlapping communication with computation

Day in the Life of Message type R0

Sender Receiver SMSG Mailboxes

 CQs

PE 1

 PE 82

PE 5

PE 22

PE 96

Rendezvous messages using RDMA Get

2. GNI SMSG Send (MPI header)

5. GNI SMSG Send (Recv done)

1. Register App Send Buffer

3. Register App Recv Buffer

Repeat steps 2-6 until all sender data is transferred

Chunksize is MPI_GNI_MAX_NDREG_SIZE (default of 4MB)

Day in the Life of Message type R1

Sender Receiver SMSG Mailboxes

 CQs

PE 1

 PE 82

PE 5

PE 22

PE 96

Rendezvous messages using RDMA Put

1. GNI SMSG Send (MPI header)

5. RDMA PUT

6. GNI SMSG Send (Send done)

4. Register Chunk of App

 Send Buffer

2. Register Chunk of App

 Recv Buffer

3. GNI SMSG Send (CTS msg)

Environment Variables

Environment Variables for Inter-node Point-to-

Point Messaging

Check ‘man mpi’ for all details

Can be used to control the maximum size message that can go

through the private SMSG mailbox protocol (E0 eager path).

Default varies with job size

Maximum size is 8192 bytes. Minimum is 80 bytes.

If you are trying to demonstrate an MPI_Alltoall at very high count,

with smallest possible memory usage, may be good to set this as

low as possible.

If you know your app has a scalable communication pattern, and

the performance drops at one of the edges shown on table on

slide 18, you may want to set this environment variable.

Pre-posting receives for this protocol avoids a potential extra

memcpy at the receiver.

MPICH_GNI_MAX_VSHORT_MSG_SIZE

Default is 8192 bytes

Maximum size message that go through the eager (E1) protocol

May help for apps that are sending medium size messages, and

do better when loosely coupled. Does application have a large

amount of time in MPI_Waitall? Setting this environment variable

higher may help.

Maximum allowable setting is 131072 bytes

Pre-posting receives can avoid potential double memcpy at the

receiver.

Note that a 40-byte Nemesis header is included in account for the

message size.

MPICH_GNI_MAX_EAGER_MSG_SIZE

Provides a means for controlling which memories on a node are

used for some SMSG mailboxes (private).

Default is to place the mailboxes on the memory where the

process is running when the memory for the mailboxes is faulted

in.

For optimal MPI message rates, better to place mailboxes on

memory of die0 (where Gemini is attached).

Only applies to first 4096 mailboxes of each rank on the node.

Syntax for enabling placement of mailboxes near the Gemini:

export MPICH_GNI_MBOX_PLACEMENT=nic

 MPICH_GNI_MBOX_PLACEMENT

8
 M

B
 L

3
 C

a
c
h

e

DDR3 Channel

DDR3 Channel

DDR3 Channel

DDR3 Channel

DDR3 Channel

DDR3 Channel

DDR3 Channel

DDR3 Channel

To
Gemini

Bulldozer

Bulldozer

L1

L1
L2

Bulldozer

Bulldozer

L1

L1
L2

Bulldozer

Bulldozer

L1

L1
L2

Bulldozer

Bulldozer

L1

L1
L2

8
M

B
 L

3
 C

a
c
h

e

Bulldozer

Bulldozer

L1

L1
L2

Bulldozer

Bulldozer

L1

L1
L2

Bulldozer

Bulldozer

L1

L1
L2

Bulldozer

Bulldozer

L1

L1
L2

H
T

3

8
 M

B
 L

3
 C

a
c
h

e

Bulldozer

Bulldozer

L1

L1
L2

Bulldozer

Bulldozer

L1

L1
L2

Bulldozer

Bulldozer

L1

L1
L2

Bulldozer

Bulldozer

L1

L1
L2

8
M

B
 L

3
 C

a
c
h

e

Bulldozer

Bulldozer

L1

L1
L2

Bulldozer

Bulldozer

L1

L1
L2

Bulldozer

Bulldozer

L1

L1
L2

Bulldozer

Bulldozer

L1

L1
L2

H
T

3

HT3

HT3

HT3

Cray XE6 Node Details – 32-core Interlagos

● 2 Multi-Chip Modules,
4 Opteron Dies: ~300 Gflops

● 8 Channels of DDR3 Bandwidth to 8 DIMMs: ~105 GB/s
● 32 Computational Cores, 32 MB of L3 cache
● Dies are fully connected with HT3

August 1, 2012 Cray Proprietary
27

Default is now 1024 bytes

Controls the threshold at which the GNI netmod switches from

using FMA for RDMA read/write operations to using the BTE.

Since BTE is managed in the kernel, BTE initiated RDMA requests

can progress even if the applications isn’t in MPI.

Owing to Opteron/HT quirks, the BTE is often better for moving

data to/from memories that are farther from the Gemini.

But using the BTE may lead to more interrupts being generated

 MPICH_GNI_RDMA_THRESHOLD

Default is enabled. To disable

export MPICH_GNI_NDREG_LAZYMEM=disabled

Controls whether or not to use a lazy memory deregistration

policy inside UDREG. Memory registration is expensive so this is

usually a good idea.

Only important for those applications using the LMT (large

message transfer) path, i.e. messages greater than

MPICH_GNI_MAX_EAGER_MSG_SIZE.

Disabling results in a significant drop in measured bandwidth for

large transfers ~40-50 %.

If code only works with this feature being diabled => BUG

 MPICH_GNI_NDREG_LAZYMEM

Only relevant for mixed MPI/SHMEM/UPC/CAF codes

Normally want to leave enabled so MPICH2 and DMAPP can share

the same memory registration cache,

May have to disable for SHMEM codes that call shmem_init after

MPI_Init.

May want to disable if trying to add SHMEM/CAF to an MPI code

and notice a big performance drop.

Syntax:

export MPICH_GNI_DMAPP_INTEROP=disabled

 MPICH_GNI_DMAPP_INTEROP

May have to set to disable if one gets a traceback like this:

MPICH_GNI_DMAPP_INTEROP

Rank 834 Fatal error in MPI_Alltoall: Other MPI error, error stack:

MPI_Alltoall(768).......................: MPI_Alltoall(sbuf=0x2aab9c301010,

scount=2596, MPI_DOUBLE, rbuf=0x2aab7ae01010, rcount=2596,

MPI_DOUBLE,

comm=0x84000004) failed

MPIR_Alltoall(469)......................:

MPIC_Isend(453).........................:

MPID_nem_lmt_RndvSend(102)..............:

MPID_nem_gni_lmt_initiate_lmt(580)......: failure occurred while attempting to

send RTS packet

MPID_nem_gni_iStartContigMsg(869).......:

MPID_nem_gni_iSendContig_start(763).....:

MPID_nem_gni_send_conn_req(626).........:

MPID_nem_gni_progress_send_conn_req(193):

MPID_nem_gni_smsg_mbox_alloc(357).......:

MPID_nem_gni_smsg_mbox_block_alloc(268).: GNI_MemRegister

GNI_RC_ERROR_RESOURCE)

Default is 64 32K buffers (2M total)

Controls the number of 32KB DMA buffers available for each rank

to use in the GET-based Eager protocol (E1).

May help to modestly increase. But other resources constrain the

usability of a large number of buffers, so don’t go berserk with

this one.

Syntax:

export MPICH_GNI_NUM_BUFS=X

 MPICH_GNI_NUM_BUFS

Enabled by default

Normally want to leave enabled so mailbox resources (memory,

NIC resources) are allocated only when the application needs

them

If application does all-to-all or many-to-one/few, may as well

disable dynamic connections. This will result in significant

startup/shutdown costs though.

Syntax for disabling:

export MPICH_GNI_DYNAMIC_CONN=disabled

 MPICH_GNI_DYNAMIC_CONN

Environment Variables for
Collective Operations

Again, please check ‘man mpi’

With MPT 5.1 switched to using Seastar-style algorithm where for

short transfers/rank: use MPI_Gather/MPI_Bcast rather than ANL

algorithm

Switchover from Cray algorithm to ANL algorithm can be

controlled by the MPICH_ALLGATHER_VSHORT_MSG environment

variable. By default enabled for transfers/rank of 1024 bytes or

less

The Cray algorithm can be deactivated by setting

export MPICH_COLL_OPT_OFF=mpi_allgather

MPI_Allgather

With MPT 5.1 switched to using Seastar-style algorithm where for

short transfers/rank: use a specialized MPI_Gatherv/MPI_Bcast

rather than ANL algorithm

Switchover from Cray algorithm to ANL algorithm can be

controlled by the MPICH_ALLGATHERV_VSHORT_MSG environment

variable. By default enabled for transfers/rank of 1024 bytes or

less.

The Cray algorithm can be deactivated by setting

export MPICH_COLL_OPT_OFF=mpi_allgatherv

MPI_Allgatherv

Optimizations added in MPT 5.1

Switchover from ANL’s implementation of Bruck algorithm (IEEE

TPDS, Nov. 1997) is controllable via the MPICH_ALLTOALL_SHORT_MSG

environment variable. Defaults are

MPI_Alltoall

ranks in

communicator Limit (in bytes) for using Bruck

<= 512

>512 && <=1024

> 1024

2048

1024

128

 Larger transfers use an optimized pair-wise exchange algorithm

 New algorithm can be disabled by
export MPICH_COLL_OPT_OFF=mpi_alltoall

The ANL smp-aware MPI_Allreduce/MPI_Reduce algorithms

can cause issues with bitwise reproducibility. To address this

Cray MPICH2 has two new environment variables starting

with MPT 5.1 -

MPI_ALLREDUCE_NO_SMP – disables use of smp-aware

MPI_Allreduce

MPI_REDUCE_NO_SMP – disables use of smp-aware MPI_Reduce

MPI_Allreduce/MPI_Reduce

Starting with MPT 5.1, all ANL algorithms except for binomial tree
are disabled since the others perform poorly for communicators
with 512 or more ranks

To disable this tree algorithm-only behaviour, set the
MPICH_BCAST_ONLY_TREE environment variable to 0, i.e.

export MPICH_BCAST_ONLY_TREE=0

MPI_Bcast

Environment Variables for
Intra-node Point-to-Point Messaging

Did I mention ‚man mpi‘ ?

Default is 8192 bytes

Specifies threshold at which the Nemesis shared memory

channel switches to a single-copy, XPMEM based protocol for

intra-node messages

Note that XPMEM is completely different from KNEM (INRIA)

which is in use in MPICH2 deployed on other Linux cluster

systems. Don’t get confused if following mpich-discuss, etc.

MPICH_SMP_SINGLE_COPY_SIZE

In MPT 5.1 the default is enabled, In 5.4 it is disabled

Specifies whether or not to use a XPMEM-based single-copy

protocol for intra-node messaes of size

MPICH_SMP_SINGLE_COPY_SIZE bytes or larger

May need to set this environment variable if
● Finding XPMEM is kernel OOPses (check the console on the SMW)

● Sometimes helps if hitting UDREG problems. XPMEM goes kind of

crazy with Linux mmu notifiers and causes lots of UDREG invalidations

(at least the way MPICH2 uses XPMEM).

MPICH_SMP_SINGLE_COPY_OFF

The Gemini does not have a progress engine.

If set, enables the MPICH2 asynchronous progress feature. In

addition, the MPICH_MAX_THREAD_SAFETY environment

variable must be set to multiple in order to enable this feature.

The asynchronous progress feature is effective only when the

aprun -r option is used to reserve one or more processors on

each node for core specialization. See the aprun(1) man page for

more information regarding how to use core specialization.

MPICH_NEMESIS_ASYNC_PROGRESS

MPI rank orders

Is your nearest neighbor really your nearest

neighbor? And do you want them to be your

nearest neighbor?

The default ordering can be changed using the following

environment variable:
● MPICH_RANK_REORDER_METHOD

These are the different values that you can set it to:
● 0: Round-robin placement – Sequential ranks are placed on the next

node in the list. Placement starts over with the first node upon reaching

the end of the list.

● 1: (DEFAULT) SMP-style placement – Sequential ranks fill up each node

before moving to the next.

● 2: Folded rank placement – Similar to round-robin placement except that

each pass over the node list is in the opposite direction of the previous

pass.

● 3: Custom ordering. The ordering is specified in a file named

MPICH_RANK_ORDER.

Rank Placement

When is this useful?
● Point-to-point communication consumes a significant fraction of program time

and a load imbalance detected

● Also shown to help for collectives (alltoall) on subcommunicators

● Spread out IO across nodes

Rank Placement

0: Round Robin Placement

Node 0

0 12

24 36

Node 1

1 13

25 37

Node 2

2 14

26 38

Node 3

3 15

27 39

Node 4

4 16

28 40

Node 5

5 17

29 41

Node 6

6 18

30 42

Node 7

7 19

31 43

Node 8

8 20

32 44

Node 9

9 21

33 45

Node 10

10 22

34 46

Node 11

11 23

35 47

Node 7

Node 8 Node 9 Node 10 Node 11

Node 6

Node 3

1: SMP Placement (default)

Node 0

0 12

24

36

Node 1

1

13

25

37

Node 2

2

14

26

38

3 15

27

39

Node 4

4

16 28

40

Node 5

5

17 29

41

6

18 30

42

7

19 31

43

8

20

32 44

9

21

33 45

10

22

34 46

11

23

35 47

Node 10 Node 11

2: Folded Placement

Node 0

0

12

24

Node 1

1

13

25

Node 2

2

26

Node 3

3

27

Node 4

4

28

Node 5

5

29

Node 6

6

30

Node 7

7

31

Node 8

8

32

Node 9

9

33

10

34

11

35

14 15

36

16

40

17 18

42

20 21 22

41

44 45 46

23

47

37 38 39

19

43

From the man page: The grid_order utility is used to
generate a rank order list for use by an MPI application
that uses communication between nearest neighbors in
a grid. When executed with the desired arguments,
grid_order generates rank order information in the
appropriate format and writes it to stdout. This output
can then be copied or written into a file named
MPICH_RANK_ORDER and used with the

MPICH_RANK_REORDER_METHOD=3

environment variable to override the default MPI rank
placement scheme and specify a custom rank
placement.
Craypat will also make suggestions

Rank Placement

June 20, 2011 Cray Proprietary

50

Case Study:
AWP-ODC and MPI Re-ordering

David Whitaker

Applications Group

Cray Inc

 AWP-ODC code from NCAR procurement

● Earthquake code – x, y, z structured grid

MPI uses two communicators

● Shared memory on node – fast

● uGNI between nodes – not as fast

AWP-ODC grid => 3-D grid of blocks

● Each block mapped to a processor

● Map blocks to node to minimize off-node
communication

Use MPI rank re-ordering to map blocks to nodes

AWP-ODC and MPI re-
ordering

If MPICH_RANK_REORDER_METHOD=3

 then rank order => MPICH_RANK_ORDER file

Use grid_order to generate MPICH_RANK_ORDER

● Part of perftools

● “module load perftools” to access command/man-page

● grid_order –C –g x,y,z –c nx, ny, nz

● -C: row major ordering

● -g: x, y, z grid size

● x*y*z = number of MPI processes

● -c: nx, ny, nz of the grids on node

● nx*ny*nz = number of MPI processes on a node

AWP-ODC and grid_order

NCAR provided three test cases:

● 256 processors: 16x2x8 grid

● 512 processors: 16x4x8 grid

● 1024 processors: 16x4x16 grid

For 256 processors: 16x2x8 grid

● IL-16 node has 32 cores

● Possible grid block groups (nx, ny, nz) for a node:

● 16x2x1: 64 neighbors off-node

● 2x2x8: 32 neighbors off-node

● 4x2x4: 24 neighbors off -node

AWP-ODC example – Part 1

16

2 8

Graphics by Kevin McMahon

Interior Grid Block-Top

For 256 processors test case

● Using 2x2x8 blocks/node was fastest

● Default: 0.097 sec/compute iter

● 2x2x8 blocks/node: 0.085 sec/compute iter

● 12% faster than the default results!

Final additions to the 256pe PBS batch script:
. ${MODULESHOME}/init/sh

module load perftools

export MPICH_RANK_REORDER_METHOD=3

/bin/rm –rf MPICH_RANK_ORDER

grid_order –C –g 16,2,8 –c 2,2,8 > MPICH_RANK_ORDER

AWP-ODC example – Part 2

+ grid_order -R -P -m 8192 -n 32 -g 32,16,16 -c 4,4,2

outnbl16_8192.N32:4.031155e-06 cpuseconds per step and atom

outnbl64_8192.N32:4.095462e-06 cpuseconds per step and atom

+ grid_order -R -P -m 8192 -n 32 -g 32,16,16 -c 2,4,1

outnbl16_8192.N32:4.026443e-06 cpuseconds per step and atom

outnbl64_8192.N32:4.039731e-06 cpuseconds per step and atom

+ grid_order -R -P -m 8192 -n 32 -g 32,16,16 -c 4,4,1

outnbl16_8192.N32:3.902369e-06 cpuseconds per step and atom

outnbl64_8192.N32:4.027267e-06 cpuseconds per step and atom

IMD

Hugepages

The Gemini perform better with HUGE pages than with 4K

pages.

HUGE pages use less GEMINI resources than 4k pages

(fewer bytes).

Your code may run with fewer TLB misses (hence faster)

Use modules to change default page sizes (man

intro_hugepages):
● e.g. module load craype-hugepages#

● craype-hugepages128K

● craype-hugepages512K

● craype-hugepages2M

● craype-hugepages8M

● craype-hugepages16M

● craype-hugepages64M

Why use Huge Pages

The setting of HUGETLB_DEFAULT_PAGE_SIZE varies between

hugepages modules, but the other settings are the same

hpcander@eslogin003:~> module show craype-hugepages8M

/opt/cray/xt-asyncpe/default/modulefiles/craype-hugepages8M:

append-path PE_PRODUCT_LIST HUGETLB8M

setenv HUGETLB_DEFAULT_PAGE_SIZE 8M

setenv HUGETLB_MORECORE yes

setenv HUGETLB_ELFMAP W

setenv HUGETLB_FORCE_ELFMAP yes+

setenv HUGETLB8M_POST_LINK_OPTS -Wl,--whole-archive,-lhugetlbfs,--

no-whole-archive -Wl,-Ttext-segment=0x4000000,-zmax-page-size=0x4000000

So to use huge pages, it is important to link your executable with a huge

pages module loaded, but you can select a different one when running.

What is in the module file

Linked with the correct library: -lhugetlbfs

Activate the library at run time: export HUGETLB_MORECORE=yes

Launch the program with aprun pre-allocating huge pages

● request <size> MBytes per PE -m<size>h (advisory

mode)

● request <size> MBytes per PE -m<size>hs (required

mode)

● What if the request can’t be satisfied ? Slow or crash ?

Example: aprun -m700hs -N2 -n8 ./my_app

● Requires 1400 MBytes of huge page memory on each node

Huge pages – details

Thank You
Questions ?

